
Clustering of Similar Values, in Spanish, for the
Improvement of Search Systems

Sergio Luján-Mora1 and Manuel Palomar2

Departamento de Lenguajes y Sistemas Informáticos, Universidad de Alicante,
Campus de San Vicente del Raspeig,

Ap. Correos 99 – E-03080 Alicante, Spain
{slujan, mpalomar}@dlsi.ua.es

Abstract. The ability to correctly access electronically stored information is
becoming increasingly important as stored information itself keeps growing
continuously. One of the problems that face search systems is the inconsistency
found among the stored values: i.e., the very same term may have different val-
ues, due to misspelling, a permuted word order, spelling variants and so on. The
clustering of the values that refer to a given term solves this problem by replac-
ing these clustered values with one single value. In this paper, we present a
clustering method that allows us to reduce on the existing inconsistencies in da-
tabases and, thus, improve on the performance of both search and information
retrieval systems. The method we propose here gives good results with a con-
siderably low error rate.

Keywords: Natural Language Processing, Information Storage and Retrieval, Da-

tabase, Data Mining, Pattern Matching

Open Discussion Track

Topics: Knowledge Discovery and Data Mining

1 Phone: (+34) 965 90 34 00 ext. 2514 Fax: (+34) 965 90 93 26
2 Phone: (+34) 965 90 36 53 Fax: (+34) 965 90 93 26

Sergio
IBERAMIA-SBIA 2000 Open Discussion Track Proceedings, p. 217-226, Atibaia - Sao Paulo (Brasil), November 19-22 2000.

Clustering of Similar Values, in Spanish, for the
Improvement of Search Systems

Sergio Luján-Mora and Manuel Palomar

Departamento de Lenguajes y Sistemas Informáticos, Universidad de Alicante,
Campus de San Vicente del Raspeig,

Ap. Correos 99 – E-03080 Alicante, Spain
{slujan, mpalomar}@dlsi.ua.es

Abstract. The ability to correctly access electronically stored information is
becoming increasingly important as stored information itself keeps growing
continuously. One of the problems that face search systems is the inconsistency
found among the stored values: i.e., the very same term may have different val-
ues, due to misspelling, a permuted word order, spelling variants and so on. The
clustering of the values that refer to a given term solves this problem by replac-
ing these clustered values with one single value. In this paper, we present a
clustering method that allows us to reduce on the existing inconsistencies in da-
tabases and, thus, improve on the performance of both search and information
retrieval systems. The method we propose here gives good results with a con-
siderably low error rate.

1 Introduction

Existing information systems provide rapid and precise access to the information
stored in databases. One of the main uses of databases is find information. Traditional
search systems work by matching the term that is being searched with the values
stored in the corresponding database. If the information contained in databases is in-
consistent (i.e., if a given term appears with different values because several denomi-
nations exist, or because it is misspelled), a search using a given value will not pro-
vide all the available information about the term.

 If we consult a database that stores information about university researchers, (i.e.,
researcher’s name, researcher’s university, etc.), and we wish to obtain a list of all of
the researchers who work at the University of Alicante, for example, we may easily
find that there are different values for this university: “Universidad de Alicante” (in
Spanish), “Universitat d'Alacant” (in Catalan) and “University of Alicante” or “Ali-
cante University” (in English).

This problem not only affects the searches, but is also important when the same
term appears with different values when it is displayed on a screen or a printer, giving
a bad impression. The problem of inconsistent values in a given field, in bibliographi-
cal databases, is usually resolved by using authority files.

In this paper, we present an automatic method for reducing on the inconsistency
found in existing databases: i.e., all the values that refer to a given term are clustered

by measuring their degree of similarity.
 The remainder of the paper is structured as follows: Section 2 outlines the origin

of the problem and the possible causes that give rise to the different variants that ap-
pear for the same term; Section 3 introduces our method for reducing on the inconsis-
tencies found in current databases; Section 4 explains the core of our study and details
the technical aspects of our method; Section 5 provides an evaluation of the method;
and finally, our conclusions are presented in Section 6.

2 The Problem

The problem of the inconsistency found in the values stored in databases may have
two principal causes:

1. If the number of possible values that a single field can accept is not controlled, a

given person, (or different persons), may insert the same term with different val-
ues. A database that stores the names of the departments of a university, for in-
stance, may have several different forms (i.e., the use of upper-case letters or ab-
breviations): “Departamento de Lenguajes y Sistemas Informáticos”, “Depto. de
Lenguajes y Sistemas Informáticos”, “Dpt. de lenguajes y sistemas informáticos”,
etc.

2. When we try to integrate different databases, one or more of them may suffer from
the above-mentioned problem. Even if the consistency of their contents has been
guaranteed separately, however, the criteria used for establishing the consistency of
each one might well be different and integrating them all could cause inconsistency
problems. If we wish to integrate three different databases that store bibliographi-
cal information, for example, the authors might well appear in different forms in
each one: i.e., full names, “Miguel de Cervantes Saavedra”, or by last names first
and then the first name, “Cervantes Saavedra, Miguel de”, or by first name and last
name only, “Miguel de Cervantes”.

2.1 Causes

After analysing several databases with information in Spanish, we have noticed that
the different values that appear for a given term are due to a combination of the fol-
lowing causes:

1. The omission or inclusion of the written accent: “Asociación Astronómica” or

“Asociacion Astronomica”.
2. The use of upper-case and lower-case letters: “Departamento de Lenguajes y Sis-

temas Informáticos” or “Departamento de lenguajes y sistemas informáticos”.
3. The use of abbreviations and acronyms: “Dpto. de Derecho Civil” or “Departa-

mento de Derecho Civil”.
4. Word order: “Miguel de Cervantes Saavedra” or “Cervantes Saavedra, Miguel

de”.
5. Different denominations: “Unidad de Registro Sismológico” or “Unidad de Regis-

tro Sísmico”.
6. Punctuation marks: (Hyphens, commas, semi-colons, brackets, exclamation marks,

etc.): “Laboratorio Multimedia (mmlab)” or “Laboratorio Multimedia – mmlab”.
7. Errors: Misspelling (apart from the written accent), typing or printing errors (ab-

sence of a character, interchange of adjacent characters, etc.): “Gabinete de ima-
gen” or “Gavinete de imagen”.

8. Use of different languages: “Universidad de Alicante” (Spanish) or “Universitat
d’Alacant” (Catalan).

There has been great interest in studying the quality of the information stored in

databases for a long time [8, 9], and diverse methods have been developed for the re-
duction of the inconsistency found in databases. In this area, James C. French [2, 3],
who developed a method that allows the automatic creation of authority files for bib-
liographical catalogues, should be mentioned.

3 Intuitive Proposal of a Method to Reduce the Inconsistency
Found in Databases

Our method was developed from French’s clustering algorithm [2, 3], to which we
have added a new distance and developed different evaluation measures. Our algo-
rithm resolves all the problems detailed in Section 2, except the fifth and the eighth,
which depend on how different the two strings that represent the same term are.

The method that we propose can be divided into six steps:

1. Preparation. It may be necessary to prepare the strings before applying the cluster-
ing algorithm.

2. Reading. The following process is repeated for each of the strings contained in the
input file:

� Read a string
� Expand abbreviations and acronyms
� Remove accents: e.g., A substitutes Á and À, and a substitutes á and à
� Shift string to lower-case
� Store the string: If it has been stored previously, its frequency of appearance

is increased by one unit
3. Sorting. The strings are sorted, in descending order, by frequency of appearance.
4. Clustering. The most frequent string is chosen (canonical representative) and it is

compared to the rest of the strings, using a measure of similarity. This process is
repeated, successively, until all the strings have been clustered.

5. Checking. The resulting clusters are verified and the possible errors are located and
corrected.

6. Updating. The original database is updated. The strings of a cluster are replaced by
its canonical representative.

The four first steps are the main topic of this paper. The remaining steps will be

studied and presented in a future work.

4 Technical Description of the Method

4.1 Previous Processing

The strings undergo a previous processing to obtain better results from the clustering.
The objective of this processing is to avoid the three first causes of the appearance of
different forms for the same term (see Section 2.1): i.e., accents, lower-case/upper-
case and abbreviations. The accents are eliminated, the string is converted to lower-
case and the abbreviations are expanded.

4.2 String Similarity

The similarity between any two strings must be evaluated. One solution is to use the
edit distance or Levenshtein distance (LD) [6]. This distance has been traditionally
used in approximate-string searching and spelling-error detection and correction
(causes 6 and 7). The LD of strings x and y is defined as the minimal number of sim-
ple editing operations that are required to transform x into y. The simple editing op-
erations considered are: the insertion of a character, the deletion of a character, and
the substitution of one character with another. In our method, we have taken a unitary
cost function for all the operations and for all of the characters.

The LD of two strings m and n in length, respectively, can be calculated by a dy-
namic programming algorithm [5]. The algorithm requires Θ(mn) time and space.

We consider two strings to be similar if their LD is lower than a threshold (α). A
fixed threshold cannot be established, as the longer strings will obviously have more
errors than the shorter ones. A relative threshold is therefore established for the form:

()yxminLDLD ,βα = , (1)

that is, the threshold is a fraction, βLD, of the length of the shorter string.

4.3 Computation Reduction

As we have already mentioned, the LD has a temporal and spatial complexity of
Θ(mn). In order to reduce the calculating time, the LD can be avoided when the dif-
ference in lengths between strings is greater than the threshold:

() LDLD yxyxLD αα <−< if , , (2)

as demonstrated in [2].
When the similarity of two strings is calculated, we do not consider the blanks, the

punctuation marks, and so on (cause 6). We have defined a new distance, length dis-
tance (LEND) of two strings, which is calculated as the difference in absolute value
between the characteristic lengths of the two strings. The term characteristic length
(cl) of a string represents the number of characters (digits and letters of the Spanish
alphabet: 37 altogether) that a string contains.

In using this distance, the LD will be only calculated when the LEND is lower than
a threshold. As with the LD, we use a relative threshold that depends on the strings
that are being compared; the threshold is a fraction of the minimum characteristic
lengths of the two strings:

() ()()yclxclminLENDLEND ,βα = . (3)

Even with the use of this distance as filter, however, too many LD calculations are
required. Furthermore, it is not very accurate as it is based exclusively on the length
of the strings. In order to reduce on the number of calculations required, another dis-
tance that is easier to calculate than the LD is used: the transposition-invariant dis-
tance (TID) of two strings [1]. This distance is more difficult to calculate than the
LEND, but it is also much more accurate, as it considers both the lengths of the
strings and the characters that form the strings. In any case, it has been proven that
TID(x, y) ≤ LD(x, y), and this can be done at a lower computational cost.

4.4 Distance Metric Improvement

If two strings contain the same words (variant forms of the same term) but with a
permuted word order (cause 4), the LD will not permit their clustering. To solve this
problem, we introduce another distance that we call the invariant distance from word
position (IDWP). It is based on the approximate word matching referred to in [2]. To
calculate the IDWP of two strings, they are broken up into words (we consider a word
to be any succession of digits and letters of the Spanish alphabet). The idea is to pair
off the words so that the sum of the LD is minimised. If the strings contain different
numbers of words, the cost of each word in excess is the length of the word.

It is almost always the case that IDWP(x, y) < LD(x, y), although this is not always
true. This is why both criteria (IDWP and LD) are used in deciding whether two
strings are similar or not. First, the LD is evaluated: two strings are similar if their LD
is smaller than the corresponding threshold. Otherwise, the IDWP is then calculated,
as it is more expensive to calculate (by means of a branch and bound scheme [7]).
The IDWP needs another threshold, which is calculated from the characteristic
lengths of the two strings:

() ()()yclxclminIDWPIDWP ,βα = . (4)

4.5 Algorithm

The clustering algorithm chooses the strings, from greater to smaller frequency of ap-
pearance, since it assumes that the most frequent strings have a greater probability of

being correct, and thus, they are taken as being representative of the rest.
We show the resulting algorithm in Table 1. The algorithm is basically the leader

algorithm3 [4]. This algorithm is chosen as opposed to more elaborate algorithms (e.g.
k-means algorithm, Fisher algorithm) because they are slower and the number of
clusters is unknown. As seen, the algorithm depends on four parameters: βLEND, βTID,
βLD, and βIDWP (used in the calculation of αLEND, αTID, αLD, and αIDWP, respectively).
The two first parameters reduce the number of LD and IDWP that are calculated, di-
minishing the time of calculation, but making worse the produced clusters.

Table 1. Clustering algorithm

Input:
C: Sorted strings in descending order by frequency (c1…cm)
Output:
G: Set of clusters (g1…gn)

1 Select ci, the first string in C, and insert it into the new cluster gk
2 Remove ci from C
3 For each string cj in C
 If LEND(ci, cj) < αLEND(ci, cj) then
 If TID(ci, cj) < αTID(ci, cj) then
 If LD(ci, cj) < αLD(ci, cj) then
 Insert cj into cluster gk
 Remove cj from C
 Else
 If IDWP(ci, cj) < αIDWP(ci, cj) then
 Insert cj into cluster gk
 Remove cj from C
 End if
 End if
 End if
 End if
 Next
4 Insert gk into G
5 If C is not empty then
 Go to step 1
 End if

5 Experimental Results and Evaluation

We have used two files for evaluating our method. They contain data from two data-

3 The leader algorithm is very fast, requiring only one pass through the data, but it has several

negative properties: the partition is not invariant under reordering of the cases, the first clus-
ters are always larger than the later ones and the final number of clusters depends on the
threshold values.

bases with inconsistency problems. Table 2 gives a description of these two files. The
optimal number of clusters (ONC) indicates the number of hand-crafted clusters. The
three last columns contain the number of single strings (not duplicated) with and
without the expansion of abbreviations of both files, and the rate of reduction (on ex-
panding the abbreviations, the number of single strings is reduced, since duplicates
are removed). We have done the tests with and without expansion of abbreviations.

Table 2. File descriptions

File Size
(Bytes)

ONC Strings in
file

Strings
without ex-

pansion

Strings
with expan-

sion

Reduction
(%)

A
B

10399
1717706

92
92

234
37599

234
1212

145
1117

38.0
7.8

We have developed a coefficient (consistency index) that permits the evaluation of

the complexity of a cluster: the greater the value of the coefficient is, the more differ-
ent the strings that form the cluster are. A null value indicates that the cluster contains
only one string. The consistency index (CI) of a cluster of n strings is defined as:

()

∑

∑∑

=

= == n

i
i

n

i

n

j
ji

x

xxLD
CI

1

1 1
,

.

(5)

The file consistency index (FCI) of a file that contains m clusters is defined as the
average of the consistency indexes of all the existing clusters in the file:

m

CI
FCI

m

i
i∑

== 1 .

(6)

The FCI of the files A and B are shown in Table 3. It is obvious that the clusters of
file B are more complex than those of file A. In both cases, however, the FCI is re-
duced when expanding the abbreviations, since the discrepancies between the strings
of a given cluster tend to diminish.

Table 3. File consistency indexes

File FCI without
expansion

Standard
deviation

FCI with
expansion

Standard
deviation

A
B

0.311301
1.726352

0.298053
1.267117

0.127598
1.113732

0.269485
1.142570

We have evaluated the clusters obtained when our method is applied by using four

measures that are obtained by comparing the clusters produced by our method with
the optimal clusters:

1. NC: number of clusters. Clusters that have been generated.
2. NCC: number of correct clusters. Clusters that coincide with the optimal ones: they

contain the same strings. From this measure, we obtain Precision: NCC divided by
ONC.

3. NIC: number of incorrect clusters. Clusters that contain an erroneous string. From
this measure, we obtain the Error: NIC divided by ONC.

4. NES: number of erroneous strings. Strings incorrectly clustered.

As we have already mentioned, the algorithm depends on four parameters (see Sec-

tion 4.5). Parameters βLEND and βTID serve to reduce the number of LD and IDWP that
are calculated. We have done tests on setting the value of both to 0.3, 0.4 and 0.5. For
βLD, we have done tests with 0.1, 0.2 and 0.3. For βIDWP, we have set the following
values: 0.1, 0.2, 0.3, 0.35, 0.4, 0.45 and 0.5.

In Table 4 we show the results for file A, without (WO) and with (W) expansion of
abbreviations, for βLEND and βTID equal to 0.4 and βLD to 0.1. Those values provide the
best results. For file B, the best results are obtained by setting βLD equal to 0.3, as we
see in Table 5. In the two tables, the best results are in bold letters.

Table 4. File A results, with βLEND = 0.4, βTID = 0.4, and βLD = 0.1

NC NCC NIC NES Precision
(%)

Error (%) βIDWP

WO W WO W WO W WO W WO W WO W
0.1 179 130 21 62 0 0 0 0 22.8 67.4 0.0 0.0
0.2 148 107 40 78 0 0 0 0 43.5 84.8 0.0 0.0
0.3 119 97 63 73 4 3 9 8 68.5 79.3 4.3 3.3

0.35 114 94 65 71 7 5 15 11 70.7 77.2 7.6 5.4
0.4 106 86 63 64 11 8 22 18 68.5 69.6 12.0 8.7

0.45 101 83 65 63 11 11 28 22 70.7 68.5 12.0 12.0
0.5 95 74 57 48 16 17 42 32 62.0 52.2 17.4 18.5

Table 5. File B results, with βLEND = 0.4, βTID = 0.4, and βLD = 0.3

NC NCC NIC NES Precision
(%)

Error (%) βIDWP

WO W WO W WO W WO W WO W WO W
0.1 123 108 57 66 8 5 51 52 62.0 71.7 8.7 5.4
0.2 123 108 57 66 8 5 51 52 62.0 71.7 8.7 5.4
0.3 122 107 58 66 8 6 51 52 63.0 71.7 8.7 6.5

0.35 117 104 62 67 8 6 59 75 67.4 72.8 8.7 6.5
0.4 109 99 62 65 11 8 87 94 67.4 70.7 12.0 8.7

0.45 107 99 56 60 15 10 110 115 60.9 65.2 16.3 10.9
0.5 97 92 40 41 26 21 186 203 43.5 44.6 28.3 22.8

As observed in the results obtained for the file A, the best precision is obtained

when βLD is equal to 0.1, and βIDWP is equal to 0.35 without expansion of abbrevia-

tions and to 0.2 with the expansion. For file B, the best results are obtained when βLD
is equal to 0.3, and βIDWP is equal to 0.35 in both cases. We should emphasise that for
the file A, the greatest precision it is obtained by using different values for βIDWP
whether the expansion of abbreviations is used or not, whereas for file B this value is
the same in both cases.

In both files, the expansion of abbreviations produces improvements: it increases
the precision and reduces the error rate. For files A and B, a maximum precision of
70.7 % and 67.4%, respectively, is obtained without expansion, and 84.8% and 72.8%
with the expansion.

The number of distances that are calculated varies enormously for the different
values of the parameters and when the expansion of abbreviations takes place. Table 6
presents the number of calculated distances of each type for the tests of Table 4 (file
A). In Table 7 we present the values for the tests of Table 5 (file B).

Table 6. Number of calculated distances for file A, with βLEND = 0.4, βTID = 0.4, and βLD = 0.1

LEND TID LD IDWP βIDWP
WO W WO W WO W WO W

0.1 19903 9253 9398 4733 3472 1936 3422 1927
0.2 15372 7721 7134 3883 2547 1587 2505 1580
0.3 11956 6695 5429 3495 1860 1462 1824 1457

0.35 11071 6458 5106 3348 1789 1404 1756 1399
0.4 9978 5802 4592 2989 1616 1264 1587 1260

0.45 9196 5616 4276 2919 1504 1241 1475 1238
0.5 8257 4601 3852 2348 1367 989 1342 986

Table 7. Number of calculated distances for file B, with βLEND = 0.4, βTID = 0.4 and βLD = 0.3

LEND TID LD IDWP βIDWP
WO W WO W WO W WO W

0.1 53308 43285 24700 21563 9620 9122 8532 8114
0.2 53262 43274 24676 21555 9618 9123 8531 8116
0.3 53102 43122 24641 21514 9603 9094 8519 8107

0.35 51416 42751 23877 21288 9397 9024 8340 8054
0.4 48267 39993 22723 20372 9056 8659 8034 7722

0.45 46830 38524 22071 19731 8839 8455 7845 7541
0.5 42915 32622 19941 16429 7987 7069 7061 6224

As we can observe in Tables 6 and 7, the expansion of the abbreviations reduces

the number of distances that must be calculated. In the file A, the reduction is greater
than in file B; this is because the reduction of the number of strings in file A is greater
than in file B (38.0% as opposed to 7.8%), as can be seen in Table 2.

In Tables 6 and 7 we also see that the number of distances that are calculated di-
minishes when the value of the parameter βIDWP increases. This is because the strings
are previously clustered since the threshold is greater (equation 4), which is why the
number of strings that must be compared is smaller in the following steps of the algo-
rithm.

6 Conclusions

The inconsistency of values in databases that have not been controlled is a very com-
mon problem. In this paper, we have proposed a method that reduces such inconsis-
tencies. This method achieves successful results in all the experiments done, but it
does not eliminate the need to review the clusters obtained. In any case, it certainly
improves on data quality and data accessing. The method is effective and efficient
enough to be used in production environments.

The expansion of abbreviations improves on the results, in most cases, but we have
detected some cases in which it actually makes the results worse; we are currently
evaluating the expansion of abbreviations. In addition, we have seen that the IDWP
permits the clustering of similar strings with permuted word order, at the expense of
increased computational cost.

The value that is assigned to the four parameters of the method greatly influences
the results. The parameters βLEND and βTID reduce on the number of calculations re-
quired. The values of the parameters βLD and βIDWP that achieve the best results are
not fixed: they depend on the strings we decide to cluster.

We are currently applying other similarity measures to the algorithm (Dice, Cosine
and Jaccard Coefficient) and we use a different clustering algorithm. The preliminary
results are promising.

References

1. M. Díaz, J. Pérez, O. Santana. Distancia Dependiente de la Subsecuencia Común más Larga
entre Cadenas de Caracteres. In Anales de las II Jornadas de Ingeniería de Sistemas Infor-
máticos y de Computación, pages 117-123, Quito (Ecuador), 1993.

2. James C. French, Allison L. Powell, Eric Schulman. Applications of Approximate Word
Matching in Information Retrieval. In Forouzan Golshani, Kia Makki, editors, Proceedings
of the Sixth International Conference on Information and Knowledge Management (CIKM
1997), pages 9-15, Las Vegas (USA), November 1997.

3. James C. French, Allison L. Powell, Eric Schulman, John L. Pfaltz. Automating the Con-
struction of Authority Files in Digital Libraries: A Case Study. In Carol Peters, Costantino
Thanos, editors, Proceedings of the First European Conference on Research and Advanced
Technology for Digital Libraries (ECDL 1997), pages 55-71, Pisa (Italy), September 1997.

4. John A. Hartigan. Clustering Algorithms. John Wiley & Sons, New York (USA), 1975.
5. D.S. Hirschberg. Serial Computations of Levenshtein Distances. In A. Apostolico, Z. Galil,

editors, Pattern Matching Algorithms. Oxford University Press, 1997.
6. V.I. Levenshtein. Binary codes capable of correcting deletions, insertions, and reversals. Cy-

bernetics and Control Theory, 10:707-710, 1966.
7. Sergio Luján-Mora. An Algorithm for Computing the Invariant Distance from Word Posi-

tion. Available at http://www.dlsi.ua.es/~slujan/files/idwp.ps, June 2000.
8. Edward T. O’Neill, Diane Vizine-Goetz. Quality Control in Online Databases. Annual Re-

view of Information Science and Technology, 23:125-156, 1988.
9. Edward T. O'Neill, Diane Vizine-Goetz. The Impact of Spelling Errors on Databases and

Indexes. In National Online Meeting Proceedings, pages 313-320, New York (USA), May
1989.

