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1 Introduction 

Existing information systems provide rapid and precise access to the information 
stored in databases. One of the main uses of databases is find information. Traditional 
search systems work by matching the term that is being searched with the values 
stored in the corresponding database. If the information contained in databases is in-
consistent (i.e., if a given term appears with different values because several denomi-
nations exist, or because it is misspelled), a search using a given value will not pro-
vide all the available information about the term. 

 If we consult a database that stores information about university researchers, (i.e., 
researcher’s name, researcher’s university, etc.), and we wish to obtain a list of all of 
the researchers who work at the University of Alicante, for example, we may easily 
find that there are different values for this university: “Universidad de Alicante” (in 
Spanish), “Universitat d'Alacant” (in Catalan) and “University of Alicante” or “Ali-
cante University” (in English). 

This problem not only affects the searches, but is also important when the same 
term appears with different values when it is displayed on a screen or a printer, giving 
a bad impression. The problem of inconsistent values in a given field, in bibliographi-
cal databases, is usually resolved by using authority files. 

In this paper, we present an automatic method for reducing on the inconsistency 
found in existing databases: i.e., all the values that refer to a given term are clustered 



by measuring their degree of similarity. 
 The remainder of the paper is structured as follows: Section 2 outlines the origin 

of the problem and the possible causes that give rise to the different variants that ap-
pear for the same term; Section 3 introduces our method for reducing on the inconsis-
tencies found in current databases; Section 4 explains the core of our study and details 
the technical aspects of our method; Section 5 provides an evaluation of the method; 
and finally, our conclusions are presented in Section 6. 

2 The Problem 

The problem of the inconsistency found in the values stored in databases may have 
two principal causes: 

 
1. If the number of possible values that a single field can accept is not controlled, a 

given person, (or different persons), may insert the same term with different val-
ues. A database that stores the names of the departments of a university, for in-
stance, may have several different forms (i.e., the use of upper-case letters or ab-
breviations): “Departamento de Lenguajes y Sistemas Informáticos”, “Depto. de 
Lenguajes y Sistemas Informáticos”, “Dpt. de lenguajes y sistemas informáticos”, 
etc. 

2. When we try to integrate different databases, one or more of them may suffer from 
the above-mentioned problem. Even if the consistency of their contents has been 
guaranteed separately, however, the criteria used for establishing the consistency of 
each one might well be different and integrating them all could cause inconsistency 
problems. If we wish to integrate three different databases that store bibliographi-
cal information, for example, the authors might well appear in different forms in 
each one: i.e., full names, “Miguel de Cervantes Saavedra”, or by last names first 
and then the first name, “Cervantes Saavedra, Miguel de”, or by first name and last 
name only, “Miguel de Cervantes”. 

2.1 Causes 

After analysing several databases with information in Spanish, we have noticed that 
the different values that appear for a given term are due to a combination of the fol-
lowing causes: 

 
1. The omission or inclusion of the written accent: “Asociación Astronómica” or 

“Asociacion Astronomica”. 
2. The use of upper-case and lower-case letters: “Departamento de Lenguajes y Sis-

temas Informáticos” or “Departamento de lenguajes y sistemas informáticos”. 
3. The use of abbreviations and acronyms: “Dpto. de Derecho Civil” or “Departa-

mento de Derecho Civil”. 
4. Word order: “Miguel de Cervantes Saavedra” or “Cervantes Saavedra, Miguel 

de”. 
5. Different denominations: “Unidad de Registro Sismológico” or “Unidad de Regis-



tro Sísmico”. 
6. Punctuation marks: (Hyphens, commas, semi-colons, brackets, exclamation marks, 

etc.): “Laboratorio Multimedia (mmlab)” or “Laboratorio Multimedia – mmlab”. 
7. Errors: Misspelling (apart from the written accent), typing or printing errors (ab-

sence of a character, interchange of adjacent characters, etc.): “Gabinete de ima-
gen” or “Gavinete de imagen”. 

8. Use of different languages: “Universidad de Alicante” (Spanish) or “Universitat 
d’Alacant” (Catalan). 
 
There has been great interest in studying the quality of the information stored in 

databases for a long time [8, 9], and diverse methods have been developed for the re-
duction of the inconsistency found in databases. In this area, James C. French [2, 3], 
who developed a method that allows the automatic creation of authority files for bib-
liographical catalogues, should be mentioned. 

3 Intuitive Proposal of a Method to Reduce the Inconsistency 
Found in Databases 

Our method was developed from French’s clustering algorithm [2, 3], to which we 
have added a new distance and developed different evaluation measures. Our algo-
rithm resolves all the problems detailed in Section 2, except the fifth and the eighth, 
which depend on how different the two strings that represent the same term are. 

 
The method that we propose can be divided into six steps: 
 

1. Preparation. It may be necessary to prepare the strings before applying the cluster-
ing algorithm. 

2. Reading. The following process is repeated for each of the strings contained in the 
input file: 

� Read a string 
� Expand abbreviations and acronyms 
� Remove accents: e.g., A substitutes Á and À, and a substitutes á and à 
� Shift string to lower-case 
� Store the string: If it has been stored previously, its frequency of appearance 

is increased by one unit 
3. Sorting. The strings are sorted, in descending order, by frequency of appearance. 
4. Clustering. The most frequent string is chosen (canonical representative) and it is 

compared to the rest of the strings, using a measure of similarity. This process is 
repeated, successively, until all the strings have been clustered. 

5. Checking. The resulting clusters are verified and the possible errors are located and 
corrected.  

6. Updating. The original database is updated. The strings of a cluster are replaced by 
its canonical representative. 
 
The four first steps are the main topic of this paper. The remaining steps will be 



studied and presented in a future work. 

4 Technical Description of the Method 

4.1 Previous Processing 

The strings undergo a previous processing to obtain better results from the clustering. 
The objective of this processing is to avoid the three first causes of the appearance of 
different forms for the same term (see Section 2.1): i.e., accents, lower-case/upper-
case and abbreviations. The accents are eliminated, the string is converted to lower-
case and the abbreviations are expanded. 

4.2 String Similarity 

The similarity between any two strings must be evaluated. One solution is to use the 
edit distance or Levenshtein distance (LD) [6]. This distance has been traditionally 
used in approximate-string searching and spelling-error detection and correction 
(causes 6 and 7). The LD of strings x and y is defined as the minimal number of sim-
ple editing operations that are required to transform x into y. The simple editing op-
erations considered are: the insertion of a character, the deletion of a character, and 
the substitution of one character with another. In our method, we have taken a unitary 
cost function for all the operations and for all of the characters. 

The LD of two strings m and n in length, respectively, can be calculated by a dy-
namic programming algorithm [5]. The algorithm requires Θ(mn) time and space. 

We consider two strings to be similar if their LD is lower than a threshold (α). A 
fixed threshold cannot be established, as the longer strings will obviously have more 
errors than the shorter ones. A relative threshold is therefore established for the form: 

( )yxminLDLD ,βα = , (1) 

that is, the threshold is a fraction, βLD, of the length of the shorter string. 

4.3 Computation Reduction 

As we have already mentioned, the LD has a temporal and spatial complexity of 
Θ(mn). In order to reduce the calculating time, the LD can be avoided when the dif-
ference in lengths between strings is greater than the threshold: 

( ) LDLD yxyxLD αα <−<    if   , , (2) 

as demonstrated in [2]. 
When the similarity of two strings is calculated, we do not consider the blanks, the 



punctuation marks, and so on (cause 6). We have defined a new distance, length dis-
tance (LEND) of two strings, which is calculated as the difference in absolute value 
between the characteristic lengths of the two strings. The term characteristic length 
(cl) of a string represents the number of characters (digits and letters of the Spanish 
alphabet: 37 altogether) that a string contains. 

In using this distance, the LD will be only calculated when the LEND is lower than 
a threshold. As with the LD, we use a relative threshold that depends on the strings 
that are being compared; the threshold is a fraction of the minimum characteristic 
lengths of the two strings: 

( ) ( )( )yclxclminLENDLEND ,βα = . (3) 

Even with the use of this distance as filter, however, too many LD calculations are 
required. Furthermore, it is not very accurate as it is based exclusively on the length 
of the strings. In order to reduce on the number of calculations required, another dis-
tance that is easier to calculate than the LD is used: the transposition-invariant dis-
tance (TID) of two strings [1]. This distance is more difficult to calculate than the 
LEND, but it is also much more accurate, as it considers both the lengths of the 
strings and the characters that form the strings. In any case, it has been proven that 
TID(x, y) ≤ LD(x, y), and this can be done at a lower computational cost. 

4.4 Distance Metric Improvement 

If two strings contain the same words (variant forms of the same term) but with a 
permuted word order (cause 4), the LD will not permit their clustering. To solve this 
problem, we introduce another distance that we call the invariant distance from word 
position (IDWP). It is based on the approximate word matching referred to in [2]. To 
calculate the IDWP of two strings, they are broken up into words (we consider a word 
to be any succession of digits and letters of the Spanish alphabet). The idea is to pair 
off the words so that the sum of the LD is minimised. If the strings contain different 
numbers of words, the cost of each word in excess is the length of the word. 

It is almost always the case that IDWP(x, y) < LD(x, y), although this is not always 
true. This is why both criteria (IDWP and LD) are used in deciding whether two 
strings are similar or not. First, the LD is evaluated: two strings are similar if their LD 
is smaller than the corresponding threshold. Otherwise, the IDWP is then calculated, 
as it is more expensive to calculate (by means of a branch and bound scheme [7]). 
The IDWP needs another threshold, which is calculated from the characteristic 
lengths of the two strings: 

( ) ( )( )yclxclminIDWPIDWP ,βα = . (4) 

4.5 Algorithm 

The clustering algorithm chooses the strings, from greater to smaller frequency of ap-
pearance, since it assumes that the most frequent strings have a greater probability of 



being correct, and thus, they are taken as being representative of the rest. 
We show the resulting algorithm in Table 1. The algorithm is basically the leader 

algorithm3 [4]. This algorithm is chosen as opposed to more elaborate algorithms (e.g. 
k-means algorithm, Fisher algorithm) because they are slower and the number of 
clusters is unknown. As seen, the algorithm depends on four parameters: βLEND, βTID, 
βLD, and βIDWP (used in the calculation of αLEND, αTID, αLD, and αIDWP, respectively). 
The two first parameters reduce the number of LD and IDWP that are calculated, di-
minishing the time of calculation, but making worse the produced clusters. 

Table 1. Clustering algorithm 

Input:  
C: Sorted strings in descending order by frequency (c1…cm) 
Output: 
G: Set of clusters (g1…gn) 
 
1 Select ci, the first string in C, and insert it into the new cluster gk 
2 Remove ci from C 
3 For each string cj in C 
     If LEND(ci, cj) < αLEND(ci, cj) then 
       If TID(ci, cj) < αTID(ci, cj) then 
         If LD(ci, cj) < αLD(ci, cj) then 
           Insert cj into cluster gk 
           Remove cj from C 
         Else 
           If IDWP(ci, cj) < αIDWP(ci, cj) then 
              Insert cj into cluster gk 
              Remove cj from C 
           End if 
         End if 
       End if 
     End if 
  Next 
4 Insert gk into G 
5 If C is not empty then 
     Go to step 1 
   End if 

5 Experimental Results and Evaluation 

We have used two files for evaluating our method. They contain data from two data-
                                                           
3 The leader algorithm is very fast, requiring only one pass through the data, but it has several 

negative properties: the partition is not invariant under reordering of the cases, the first clus-
ters are always larger than the later ones and the final number of clusters depends on the 
threshold values. 



bases with inconsistency problems. Table 2 gives a description of these two files. The 
optimal number of clusters (ONC) indicates the number of hand-crafted clusters. The 
three last columns contain the number of single strings (not duplicated) with and 
without the expansion of abbreviations of both files, and the rate of reduction (on ex-
panding the abbreviations, the number of single strings is reduced, since duplicates 
are removed). We have done the tests with and without expansion of abbreviations. 

Table 2. File descriptions 

File Size 
(Bytes) 

ONC Strings in 
file 

Strings 
without ex-

pansion 

Strings 
with expan-

sion 

Reduction 
(%) 

A 
B 

10399 
1717706 

92 
92 

234 
37599 

234 
1212 

145 
1117 

38.0 
7.8 

 
We have developed a coefficient (consistency index) that permits the evaluation of 

the complexity of a cluster: the greater the value of the coefficient is, the more differ-
ent the strings that form the cluster are. A null value indicates that the cluster contains 
only one string. The consistency index (CI) of a cluster of n strings is defined as: 
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The file consistency index (FCI) of a file that contains m clusters is defined as the 
average of the consistency indexes of all the existing clusters in the file: 

m

CI
FCI

m

i
i∑

== 1 . 

(6) 

The FCI of the files A and B are shown in Table 3. It is obvious that the clusters of 
file B are more complex than those of file A. In both cases, however, the FCI is re-
duced when expanding the abbreviations, since the discrepancies between the strings 
of a given cluster tend to diminish. 

Table 3. File consistency indexes 

File FCI without 
expansion 

Standard 
deviation 

FCI with 
expansion 

Standard 
deviation 

A 
B 

0.311301 
1.726352 

0.298053 
1.267117 

0.127598 
1.113732 

0.269485 
1.142570 

 
We have evaluated the clusters obtained when our method is applied by using four 

measures that are obtained by comparing the clusters produced by our method with 
the optimal clusters: 



 
1. NC: number of clusters. Clusters that have been generated. 
2. NCC: number of correct clusters. Clusters that coincide with the optimal ones: they 

contain the same strings. From this measure, we obtain Precision: NCC divided by 
ONC. 

3. NIC: number of incorrect clusters. Clusters that contain an erroneous string. From 
this measure, we obtain the Error: NIC divided by ONC. 

4. NES: number of erroneous strings. Strings incorrectly clustered. 
 
As we have already mentioned, the algorithm depends on four parameters (see Sec-

tion 4.5). Parameters βLEND and βTID serve to reduce the number of LD and IDWP that 
are calculated. We have done tests on setting the value of both to 0.3, 0.4 and 0.5. For 
βLD, we have done tests with 0.1, 0.2 and 0.3. For βIDWP, we have set the following 
values: 0.1, 0.2, 0.3, 0.35, 0.4, 0.45 and 0.5. 

In Table 4 we show the results for file A, without (WO) and with (W) expansion of 
abbreviations, for βLEND and βTID equal to 0.4 and βLD to 0.1. Those values provide the 
best results. For file B, the best results are obtained by setting βLD equal to 0.3, as we 
see in Table 5. In the two tables, the best results are in bold letters. 

Table 4. File A results, with βLEND = 0.4, βTID = 0.4, and βLD = 0.1 

NC NCC NIC NES Precision 
(%) 

Error (%) βIDWP 

WO W WO W WO W WO W WO W WO W 
0.1 179 130 21 62 0 0 0 0 22.8 67.4 0.0 0.0 
0.2 148 107 40 78 0 0 0 0 43.5 84.8 0.0 0.0 
0.3 119 97 63 73 4 3 9 8 68.5 79.3 4.3 3.3 

0.35 114 94 65 71 7 5 15 11 70.7 77.2 7.6 5.4 
0.4 106 86 63 64 11 8 22 18 68.5 69.6 12.0 8.7 

0.45 101 83 65 63 11 11 28 22 70.7 68.5 12.0 12.0 
0.5 95 74 57 48 16 17 42 32 62.0 52.2 17.4 18.5 

Table 5. File B results, with βLEND = 0.4, βTID = 0.4, and βLD = 0.3 

NC NCC NIC NES Precision 
(%) 

Error (%) βIDWP 

WO W WO W WO W WO W WO W WO W 
0.1 123 108 57 66 8 5 51 52 62.0 71.7 8.7 5.4 
0.2 123 108 57 66 8 5 51 52 62.0 71.7 8.7 5.4 
0.3 122 107 58 66 8 6 51 52 63.0 71.7 8.7 6.5 

0.35 117 104 62 67 8 6 59 75 67.4 72.8 8.7 6.5 
0.4 109 99 62 65 11 8 87 94 67.4 70.7 12.0 8.7 

0.45 107 99 56 60 15 10 110 115 60.9 65.2 16.3 10.9 
0.5 97 92 40 41 26 21 186 203 43.5 44.6 28.3 22.8 

 
As observed in the results obtained for the file A, the best precision is obtained 

when βLD is equal to 0.1, and βIDWP is equal to 0.35 without expansion of abbrevia-



tions and to 0.2 with the expansion. For file B, the best results are obtained when βLD 
is equal to 0.3, and βIDWP is equal to 0.35 in both cases. We should emphasise that for 
the file A, the greatest precision it is obtained by using different values for βIDWP 
whether the expansion of abbreviations is used or not, whereas for file B this value is 
the same in both cases. 

In both files, the expansion of abbreviations produces improvements: it increases 
the precision and reduces the error rate. For files A and B, a maximum precision of 
70.7 % and 67.4%, respectively, is obtained without expansion, and 84.8% and 72.8% 
with the expansion. 

The number of distances that are calculated varies enormously for the different 
values of the parameters and when the expansion of abbreviations takes place. Table 6 
presents the number of calculated distances of each type for the tests of Table 4 (file 
A). In Table 7 we present the values for the tests of Table 5 (file B). 

Table 6. Number of calculated distances for file A, with βLEND = 0.4, βTID = 0.4, and βLD = 0.1 

LEND TID LD IDWP βIDWP 
WO W WO W WO W WO W 

0.1 19903 9253 9398 4733 3472 1936 3422 1927 
0.2 15372 7721 7134 3883 2547 1587 2505 1580 
0.3 11956 6695 5429 3495 1860 1462 1824 1457 

0.35 11071 6458 5106 3348 1789 1404 1756 1399 
0.4 9978 5802 4592 2989 1616 1264 1587 1260 

0.45 9196 5616 4276 2919 1504 1241 1475 1238 
0.5 8257 4601 3852 2348 1367 989 1342 986 

Table 7. Number of calculated distances for file B, with βLEND = 0.4, βTID = 0.4 and βLD = 0.3 

LEND TID LD IDWP βIDWP 
WO W WO W WO W WO W 

0.1 53308 43285 24700 21563 9620 9122 8532 8114 
0.2 53262 43274 24676 21555 9618 9123 8531 8116 
0.3 53102 43122 24641 21514 9603 9094 8519 8107 

0.35 51416 42751 23877 21288 9397 9024 8340 8054 
0.4 48267 39993 22723 20372 9056 8659 8034 7722 

0.45 46830 38524 22071 19731 8839 8455 7845 7541 
0.5 42915 32622 19941 16429 7987 7069 7061 6224 

 
As we can observe in Tables 6 and 7, the expansion of the abbreviations reduces 

the number of distances that must be calculated. In the file A, the reduction is greater 
than in file B; this is because the reduction of the number of strings in file A is greater 
than in file B (38.0% as opposed to 7.8%), as can be seen in Table 2. 

In Tables 6 and 7 we also see that the number of distances that are calculated di-
minishes when the value of the parameter βIDWP increases. This is because the strings 
are previously clustered since the threshold is greater (equation 4), which is why the 
number of strings that must be compared is smaller in the following steps of the algo-
rithm. 



6 Conclusions 

The inconsistency of values in databases that have not been controlled is a very com-
mon problem. In this paper, we have proposed a method that reduces such inconsis-
tencies. This method achieves successful results in all the experiments done, but it 
does not eliminate the need to review the clusters obtained. In any case, it certainly 
improves on data quality and data accessing. The method is effective and efficient 
enough to be used in production environments. 

The expansion of abbreviations improves on the results, in most cases, but we have 
detected some cases in which it actually makes the results worse; we are currently 
evaluating the expansion of abbreviations. In addition, we have seen that the IDWP 
permits the clustering of similar strings with permuted word order, at the expense of 
increased computational cost. 

The value that is assigned to the four parameters of the method greatly influences 
the results. The parameters βLEND and βTID reduce on the number of calculations re-
quired. The values of the parameters βLD and βIDWP that achieve the best results are 
not fixed: they depend on the strings we decide to cluster. 

We are currently applying other similarity measures to the algorithm (Dice, Cosine 
and Jaccard Coefficient) and we use a different clustering algorithm. The preliminary 
results are promising. 
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