

Reducing Inconsistency in Integrating Data From Different Sources

Sergio Luján-Mora and Manuel Palomar

Departamento de Lenguajes y Sistemas Informáticos, Universidad de Alicante,

Campus de San Vicente del Raspeig

Ap. Correos 99 – E-03080 Alicante, Spain

{slujan, mpalomar}@dlsi.ua.es

Abstract

One of the main problems in integrating databases

into a common repository is the possible inconsistency of

the values stored in them, i.e., the very same term may

have different values, due to misspelling, a permuted

word order, spelling variants and so on. In this paper, we

present an automatic method for reducing inconsistency

found in existing databases, and thus, improving data

quality. All the values that refer to a same term are

clustered by measuring their degree of similarity. The

clustered values can be assigned to a common value that,

in principle, could substitute the original values. We

evaluate different similarity measures for clustering. The

method we propose gives good results with a

considerably low error rate.

1. Introduction

Information fusion is the process of integration and

interpretation of data from different sources in order to

derive information of a new quality. Integrating databases

into a common repository has become a research topic for

many years. Information fusion is a very complex

problem, and is relevant in several fields, such as Data Re-

engineering, Data Warehouse, Web Information Systems,

E-commerce, Scientific Databases, etc. The problem of

inconsistency has also lately been a focus of interest in the

area of Data warehouses (DW) as a DW is a repository of

integrated information from distributed, autonomous, and

possibly heterogeneous, sources.

Traditional search systems work by matching the term

that is being searched with the values stored in the

corresponding database. If the information contained in

databases is inconsistent (i.e., if a given term appears with

different values because several denominations exist, or

because it is misspelled), a search using a given value will

not provide all the available information about the term.

In Figure 0, we present an example to show the aim of

our proposal. Let us suppose that we have different

databases (particularly, different relational tables) and the

sources have different criteria for representing values in

affiliation names. For example, with reference to the

affiliation of researchers who work at the University of

Alicante, we may easily find that there are different values

for this university: “Universidad de Alicante” or

“Universidad Alicante” (in Spanish) and “Alicante

University” (in English).

The problem of the inconsistency found in the values

stored in databases may have three principal causes:

1. If the number of possible values that a single field

can accept is not controlled, a given person, (or different

persons), may insert the same term with different values.

For instance, a database that stores the names of the

departments of a university may have several different

forms (e.g., the use of upper-case letters or abbreviations):

“Departamento de Lenguajes y Sistemas Informáticos”,

“Depto. de Lenguajes y Sistemas Informáticos”, “Dpt. de

lenguajes y sistemas informáticos”, etc.

2. When we try to integrate different databases into a

common repository (e.g., in a DW), one or more of them

may suffer from the above-mentioned problem. The

consistency of their contents has been guaranteed

separately. However, the criteria used for establishing the

consistency of each one might well be different and

integrating them all could cause inconsistency problems.

For example, we wish to integrate three different

databases that store bibliographical information. The

authors might well appear in different forms in each one:

i.e., full names, “Miguel de Cervantes Saavedra”, or by

last names first and then the first name, “Cervantes

Saavedra, Miguel de”, or by first name and last name

only, “Miguel de Cervantes”.

3. Another problem is the multilinguality. In a

multilingual society (e.g., European Community) it is

common to find official names written in different

languages. For instance, we consult a database that stores

information about university researchers, (e.g.,

researcher’s name, researcher’s university, etc.), and we

wish to obtain a list of all of the researchers who work at

the University of Alicante. We may easily find that there

are different values for this university: “Universidad de

Alicante” (in Spanish), “Universitat d'Alacant” (in

Catalan), “University of Alicante” or “Alicante

University” (in English), and “Université d'Alicante” (in

French).

Figure 0. Solving inconsistency into a common repository

The remainder of the paper is structured as follows:

Section 2 outlines the origin of the problem and the

possible causes that give rise to the different variants that

appear for the same term; Section 3 introduces our method

for reducing inconsistency found in existing databases;

Section 4 explains the core of our study and details the

technical aspects of our method; Section 5 provides an

evaluation of the method; and finally, our conclusions are

presented in Section 6.

2. Analysis of the Problem

After analysing several databases with information

both in Spanish and in English, we have noticed that the

different values that appear for a given term are due to a

combination of the following causes:

1. The omission or inclusion of the written accent:

“Asociación Astronómica” or “Asociacion Astronomica”.

2. The use of upper-case and lower-case letters:

“Departamento de Lenguajes y Sistemas Informáticos” or

“Departamento de lenguajes y sistemas informáticos”.

3. The use of abbreviations and acronyms: “Dpto. de

Derecho Civil” or “Departamento de Derecho Civil”.

4. Word order: “Miguel de Cervantes Saavedra” or

“Cervantes Saavedra, Miguel de”.

5. Different denominations: “Unidad de Registro

Sismológico” or “Unidad de Registro Sísmico”.

6. Punctuation marks (e.g., hyphens, commas,

semicolons, brackets, exclamation marks, etc.):

“Laboratorio Multimedia (mmlab)” or “Laboratorio

Multimedia – mmlab”.

7. Errors: Misspelling (apart from the written accent),

typing or printing errors (absence of a character,

interchange of adjacent characters, etc.): “Gabinete de

imagen” or “Gavinete de imagen”.

8. Use of different languages: “Universidad de

Alicante” (Spanish) or “Universitat d’Alacant” (Catalan).

There has been great interest in studying the quality of

the information stored in databases for a long time [8, 9,

13], and diverse methods have been developed for the

reduction of the inconsistency found in databases [11, 12].

3. Intuitive Proposal of a Method to Reduce

the Inconsistency Found in Databases

The method we propose in this paper improves our

previous works [7] that were developed from French’s

automatic creation of authority files for bibliographical

catalogues [1, 2]. We have added new distances,

developed different evaluation measures and employed a

different clustering algorithm. These improvements result

in a better performance of the method.

Our algorithm resolves all the problems detailed in

Section 2, except the fifth and the eighth, which depend

on how different the two strings that represent the same

term are. The method that we propose can be divided into

six steps:

1. Preparation. It may be necessary to prepare the

strings before applying the clustering algorithm.

2. Reading. The following process is repeated for each

of the strings contained in the input file:

Read a string

Expand abbreviations and acronyms
1

Remove accents: e.g., A substitutes Á and À, and a

substitutes á and à

Shift string to lower-case

Store the string: If it has been stored previously, its

frequency of appearance is increased by one unit

3. Sorting. The strings are sorted, in descending order,

by frequency of appearance.

4. Clustering. The most frequent string is chosen and it

is compared to the rest of the strings, using a measure of

similarity. This process is repeated, successively, until all

the strings have been clustered.

5. Checking. The resulting clusters are verified and the

possible errors are located and corrected.

6. Updating. The original database is updated. The

strings of a cluster are replaced by its centroid.

4. Technical Description of the Method

In this section, technical aspects of our method are

described. We start by introducing a previous processing

for obtaining better results in Section 4.1. Section 4.2

describes how the similarity between two strings is

considered. Section 4.3 presents the algorithm itself and

finally, Section 4.4 explains the last step of the method,

i.e., checking that the obtained clusters are correct.

4.1. Previous Processing

The strings undergo a previous processing to obtain

better results from the clustering. The objective of this

processing is to avoid the three first causes of the

appearance of different forms for the same term (see

Section 2.1.): i.e., accents, lower-case/upper-case and

abbreviations. The accents are eliminated, the string is

converted to lower-case and the abbreviations are

expanded.

4.2. String Similarity

The similarity between any two strings must be

evaluated. There are several similarity measures; in our

research, we employ five measures: Levenshtein distance

(LD), invariant distance from word position (IDWP), a

modified version of the previous distance (MIDWP),

Jaccard’s coefficient (JC), and the minimum of the four

previous measures (CSM).

1
 It is in general impossible to expand all the

abbreviations: often names are represented by initials,

sometimes by only some of the initials, etc.

The edit distance or Levenshtein distance (LD) [5] has

been traditionally used in approximate-string searching

and spelling-error detection and correction (causes 6 and

7). The LD of strings x and y is defined as the minimal

number of simple editing operations that are required to

transform x into y. The simple editing operations

considered are: the insertion of a character, the deletion of

a character, and the substitution of one character with

another. In our method, we have taken a unitary cost

function for all the operations and for all of the characters.

The LD of two strings m and n in length, respectively, can

be calculated by a dynamic programming algorithm [4].

The algorithm requires (mn) time and space.

If two strings contain the same words (variant forms of

the same term) but with a permuted word order (cause 4),

the LD will not permit their clustering. To solve this

problem, we introduce another distance that we call the

invariant distance from word position (IDWP) [6]. It is

based on the approximate word matching referred to in

[1]. To calculate the IDWP of two strings, they are broken

up into words (we consider a word to be any succession of

digits and letters of the Spanish alphabet). The idea is to

pair off the words so that the sum of the LD is minimised.

If the strings contain different numbers of words, the cost

of each word in excess is the length of the word.

We also use a modified IDWP (MIDWP). We add a

new matching condition: if two strings fulfil Equation 1,

we assume they match perfectly (in that case, we consider

their LD is zero).

20
1),(

yx
yxLD


 .

(1)

The last similarity measure we have employed is the

Jaccard’s coefficient (JC) [10], the ratio of the matching

words in x and y to all the words in x and y:

YX

YX
JC




 ,

(2)

where X is the set of words of the string x and Y the set of

words of y.

In order to compare the above-mentioned measures, we

need the JC subtracted from one (1 – JC). Besides, the

LD, IDWP, and MIDWP are divided by the length of the

longest string. Thus, all the measures obtain a similarity

value from 0 (x and y are the same string) to 1 (x and y are

totally different).

Finally, we also combine the four previous similarity

measures (combined similarity measure, CSM): we

choose the minimum of the four similarity measures for

every pair of strings.

4.3. Algorithm

The goal of clustering is to find similarity between

strings and cluster them together based on a threshold of

similarity between the strings.

In previous works [1, 2, 7], the clustering algorithm

employed is basically the leader algorithm [3]. This

algorithm is chosen as opposed to more elaborate

algorithms (e.g. k-means algorithm, Fisher algorithm)

because they are slower and the number of clusters is

unknown. The leader algorithm is very fast, requiring

only one pass through the data, but it has several negative

properties: the partition is not invariant under reordering

of the cases, the first clusters are always larger than the

later ones and the final number of clusters depends on the

threshold values. This is due to the very algorithm: the

comparison between a new string and the existing clusters

is made only until a cluster that meets the condition is

found, without considering the possibility that a better

value of the criteria is met later, for another cluster.

The clustering algorithm we propose in Table 1

resolves the previous problem: it uses a centroid method

and the comparison for every string is made with all the

existing clusters for the time being.

The algorithm chooses the strings, from greater to

smaller frequency of appearance, since it assumes that the

most frequent strings have a greater probability of being

correct, and thus, they are taken as being representative of

the rest. As seen in Table 1, it depends on one parameter

 (threshold). The algorithm makes one pass through the

strings, assigning each string to the cluster whose centroid

is closer and close enough (distance between the string

and the centroid lower than ) and making a new cluster

for cases that are not close enough to any existing

centroid. The distance D is calculated using one of the

similarity measures explained in Section 4.2.

Table 1. Clustering algorithm

Input:

S: Sorted strings in descending order by frequency

(s1…sm)

: Threshold

Output:

C: Set of clusters (c1…cn)

Variables:

b, d, i, j, k, l

STEP 1. Begin with string si (i = 1). Let the number of

clusters be k = 1, classify si into the first cluster ck.

STEP 2. Increase i by 1. If i > m, stop.

STEP 3. Begin working with the cluster cj (j = 1).

Calculate the distance between the string si and the

centroid of cluster cj: d = D(si, cj). Let the best cluster be

cb (b = 1).

STEP 4. Increase j by 1. If j > k, then go to Step 7.

STEP 5. If D(si, cj) < d, then let the lower distance be d =

D(si, cj) and the best cluster be b = j.

STEP 6. Return to Step 4.

STEP 7. If d < , assign string si to cluster cb; recalculate

the centroid of cluster cb and return to Step 2.

STEP 8. Increase k by 1. Create a new cluster ck and

classify si into the new cluster. Return to Step 2.

The centroid of a cluster must be recalculated every

time a new string is assigned to the cluster. The centroid is

chosen to minimise the sum-of-squares criterion:




n

i

i CsD
1

2)),((,
(3)

where n is the number of strings assigned to the cluster

and C is the centroid of the cluster.

4.4. Revision and Updating

The final step of the method consists of checking the

obtained clusters and detecting possible errors to correct

them. In the original database, the strings of a cluster are

replaced by its centroid (it represents its cluster).

Therefore, all variants of a term are put together under a

single form. Thus, in searching processes, final users will

be confident that they have located all values relating to

the required term.

5. Experimental Results and Evaluation

We have used three files for evaluating our method.

They contain data from three different databases with

inconsistency problems: files A and B contain information

in Spanish, while file C in English.

The method has been implemented in C and C++,

running in Linux.

5.1. File Descriptions

Table 2 gives a description of these three files. The

optimal number of clusters (ONC) indicates the number of

handcrafted clusters. The three last columns contain the

number of single strings (not duplicated) with and without

the expansion of abbreviations, and the rate of reduction

(on expanding the abbreviations, the number of single

strings is reduced, since duplicates are removed). We have

done all the tests with (W) and without (WO) expansion

of abbreviations.

Table 2. File descriptions
File Size

(Bytes)

ONC Strings

in file

Strings

WO

Strings

W

Reduction

(%)

A

B

C

10,399

1,717,706

108,608

92

92

57

234

37,599

2,206

234

1,212

119

145

1,117

118

38.0

7.8

0.8

We have developed a coefficient (consistency index)

that permits the evaluation of the complexity of a cluster:

the greater the value of the coefficient is, the more

different the strings that form the cluster are. A null value

indicates that the cluster contains only one string. The

consistency index (CI) of a cluster of n strings is defined

as:

 







 


n

i

i

n

i

n

j

ji

x

xxLD

CI

1

1 1

,

.

(4)

The file consistency index (FCI) of a file that contains

m clusters is defined as the average of the consistency

indexes of all the existing clusters in the file:

m

CI

FCI

m

i

i
 1 .

(5)

The FCI of the files A, B and C are shown in Table 3.

As the FCI is an average, the table also shows the standard

deviation. It is obvious that the clusters of file B are more

complex than those of file A and C. In all cases, however,

the FCI is reduced when expanding the abbreviations,

since the discrepancies between the strings of a given

cluster tend to diminish. With respect to file C, the

reduction of FCI when the abbreviations are expanded is

minimum, because the reduction of strings is not

appreciable: only 0.8% versus 38.0% (file A) and 7.8%

(file B), as it is shown in Table 2.

Table 3. File consistency indexes

File FCI

WO

Standard

deviation

FCI

W

Standard

deviation

A

B

C

0.311

1.726

0.337

0.298

1.267

1.181

0.127

1.113

0.319

0.269

1.142

1.136

5.2. Evaluation Measures

We have evaluated the quality of the produced clusters

when our method is applied by using four measures that

are obtained by comparing the clusters produced by our

method with the optimal clusters:

1. NC: number of clusters. Clusters that have been

generated.

2. NCC: number of completely correct clusters. Clusters

that coincide with the optimal ones: they contain the same

strings. From this measure, we obtain Precision: NCC

divided by ONC.

3. NIC: number of incorrect clusters. Clusters that contain

an erroneous string. From this measure, we obtain the

Error: NIC divided by ONC.

4. NES: number of erroneous strings. Strings incorrectly

clustered.

0

20

40

60

80

100

120

140

160

180

200

0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5 0,55

ONC NC WO NCC WO

NC W NCC W

Figure 1. NC and NCC vs. Threshold. File A with

and without expansion of abbreviations (CSM)

NC and NCC versus Threshold for File A with (W)

and without (WO) expansion of abbreviations, using the

CSM, are plotted in Figure 1. The expansion of

abbreviations diminishes NC and increases NCC.

5.3. Evaluation and Discussion

As we have already mentioned, the clustering

algorithm depends on one parameter (). We have done

all the tests on setting its value from 0.0 to 0.599, in 0.001

steps.

We compare the performance of the five similarity

measures. The result of the experiments using files A and

C are shown in Tables 4, 5, 6 and 7. The tables show the

highest precision rate and the corresponding error

obtained in each file when the LD, IDWP, MIDWP and

JC are used. The corresponding threshold () also

appears.

Note that the expansion of abbreviations improves the

precision and diminishes the error. Moreover, the best

precision, with a lower error, is obtained at a lower

threshold.

Table 4. LD

File  Precision

(%)

Error

(%)

A WO 0.311 76.0 8.6

W [0.146, 0.151] 83.6 0

C WO [0.159, 0.199] 84.2 1.7

W [0.100, 0.127] 84.2 0

Table 5. IDWP

File  Precision

(%)

Error

(%)

A WO [0.334, 0.344] 81.5 10.8

W [0.160, 0.166] 84.7 0

C WO [0.143, 0.227] 82.4 1.7

W [0.072, 0.119] 82.4 0

As you can see in Table 6, File A obtains the higher

precision (89.1%) when the MIDWP with the expansion

of abbreviations is employed. However, as seen in Table

7, File C obtains it (89.4%) when the JC without the

expansion of abbreviations is used.

Table 6. MIDWP

File  Precision

(%)

Error

(%)

A WO [0.276, 0.277] 80.4 9.7

W [0.153, 0.166] 89.1 0

C WO [0.143, 0.227] 82.4 1.7

W [0.072, 0.119] 82.4 0

Table 7. JC

File  Precision

(%)

Error

(%)

A WO [0.400, 0.416] 72.8 6.5

W [0.286, 0.299] 85.8 0

C WO [0.471, 0.499] 89.4 1.7

W [0.471, 0.499] 87.7 1.7

Table 8 shows highest precision and the corresponding

error obtained for files A, B, and C when the CSM is

employed. Files A and C have better precision than file B

because their clusters are less complex: files A and C have

a FCI around 0.3, whereas file B has a FCI of 1.7 (WO)

and 1.1 (W).

Table 8. CSM

File  Precision

(%)

Error

(%)

A WO [0.236, 0.249] 81.5 8.6

W [0.147, 0.151] 89.1 0

B WO [0.270, 0.288] 71.7 9.7

W [0.174, 0.176] 77.1 2.1

C WO [0.143, 0.199] 84.2 1.7

W [0.097, 0.119] 84.2 0

In Table 9, we show the precision and error obtained in

our previous works [7]. The test files A, B and C are the

same of this paper. If this table is compared to Table 8,

you can see the new method achieves better results: the

precision increases and the error keeps very similar values

or even diminish.

Table 9. Precision and Error in previous works

File Precision (%) Error (%)

A WO 70.7 7.6

W 84.8 0

B WO 67.4 8.7

W 72.8 6.5

C WO 85.9 1.7

W 84.2 1.7

We compare the effect of the expansion of

abbreviations in Figure 2. It shows Precision versus

Threshold for File A with (W) and without (WO)

expansion of abbreviations using the CSM. It is seen that

the expansion of abbreviations produces the maximum

precision (90%) at a threshold of 0.15. From a threshold

of 0.25, the expansion of abbreviations does not influence

the precision as observed in the figure.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5 0,55

WO W

Figure 2. Precision vs. Threshold. File A with and

without expansion of abbreviations (CSM)

Figure 3 shows Precision versus Threshold for File C

without expansion of abbreviations using different

similarity measures. The JC obtains the maximum value

(90%). All the measures, except the JC, have a similar

behaviour: they start at the same level (75%), rise until

85% and then plunge until 20%. However, the JC remains

steady over 75% for all the threshold values.

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5 0,55

LD IDWP MIDWP

JC CSM

Figure 3. Precision vs. Threshold. File C without

expansion of abbreviations (different measures)

Finally, from Figure 4 it can be again seen that the

expansion of abbreviations influences the precision at a

low threshold, but from a threshold of 0.25, the influence

is imperceptible (the behaviour is very similar to Figure

2). Also, note that there is not error when the threshold is

lower than 0.15.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5 0,55

Pre. WO Error WO Pre. W Error W

 Figure 4. Precision and Error vs. Threshold. File

B with and without expansion of abbreviations

(CSM)

6. Conclusions and Work in Progress

Referential integrity provided by relational database

management systems prevents users or applications from

entering inconsistent data. Databases with an inadequate

design may suffer data redundancy and inconsistency.

This paper has discussed techniques for improving data

quality by clustering different values that refer to the same

term and replacing them with a unique form. So, we have

presented an automatic method for reducing on the

inconsistency found in existing databases. The method we

have proposed achieves successful results with a

considerably low error rate, although it does no eliminate

the need to review the clusters obtained.

The expansion of abbreviations improves on the results

in most cases, but we have detected some cases in which it

actually makes the results worse. In addition, we have

seen that the combined use of four similarity measures

(Levenshtein distance, invariant distance from word

position, modified IDWP, and Jaccard’s coefficient)

normally obtains the best performance.

The final number of clusters strongly depends on the

threshold value fixed by the user. A very small threshold

(conservative) will produce a large number of small

clusters, meanwhile a very large (aggressive) one will

produce a small number of large clusters. Based on the

data obtained in our research, we propose the use of a

threshold between 0.1 and 0.25.

Other algorithms like k-means can not be applied to

this problem because the number of clusters is unknown

(k-means requires the number of clusters to be specified

beforehand).

Currently, we are working on improving the algorithm

in order to cluster the multilingual values. We are

applying dictionaries and other techniques relating to

natural language processing (e.g., removing stop words,

lexical analysis).

References
1. James C. French, Allison L. Powell, Eric Schulman.

Applications of Approximate Word Matching in Information

Retrieval. In Forouzan Golshani, Kia Makki, editors,

Proceedings of the Sixth International Conference on

Information and Knowledge Management (CIKM 1997), pages

9-15, Las Vegas (USA), November 1997.

2. James C. French, Allison L. Powell, Eric Schulman, John L.

Pfaltz. Automating the Construction of Authority Files in

Digital Libraries: A Case Study. In Carol Peters, Costantino

Thanos, editors, Proceedings of the First European Conference

on Research and Advanced Technology for Digital Libraries

(ECDL 1997), pages 55-71, Pisa (Italy), September 1997.

3. John A. Hartigan. Clustering Algorithms. John Wiley & Sons,

New York (USA), 1975.

4. D.S. Hirschberg. Serial Computations of Levenshtein

Distances. In A. Apostolico, Z. Galil, editors, Pattern Matching

Algorithms. Oxford University Press, 1997.

5. V.I. Levenshtein. Binary codes capable of correcting

deletions, insertions, and reversals. Cybernetics and Control

Theory, 10:707-710, 1966.

6. Sergio Luján-Mora. An Algorithm for Computing the

Invariant Distance from Word Position. Available at
http://www.dlsi.ua.es/~slujan/files/idwp.ps

June 2000.

7. Sergio Luján-Mora, Manuel Palomar. Clustering of Similar

Values, in Spanish, for the Improvement of Search Systems. In

Maria Carolina Monard, Jaime Simão Sichman, editors, appear

in IBERAMIA-SBIA 2000 Open Discussion Track Proceedings,

pages 217-226, Sao Paulo (Brazil), November 2000.

8. Edward T. O’Neill, Diane Vizine-Goetz. Quality Control in

Online Databases. Annual Review of Information Science and

Technology, 23:125-156, 1988.

9. Edward T. O'Neill, Diane Vizine-Goetz. The Impact of

Spelling Errors on Databases and Indexes. In National Online

Meeting Proceedings, pages 313-320, New York (USA), May

1989.

10. C.J. van Rijsbergen. Information Retrieval. Butterworhs,

London (UK), 1979.

11. Mauricio Antonio Hernández, Salvatore J. Stolfo. Real-

world data is dirty: Data cleansing and the merge/purge

problem. Journal of Data Mining and Knowledge Discovery,

2(1):9-37, 1998.

12. Alvaro E. Monge, Charles P. Elkan. An efficient domain-

independent algorithm for detecting approximately duplicate

database records. In SIGMOD Workshop on Research Issues on

Data Mining and Knowledge Discovery (DMKD’97), pages 23-

29, 1997.

13. Amihai Motro, Igor Rakov. Estimating the Quality of

Databases. In T. Andreasen, H. Chistiansen, H.L. Larsen,

editors, Proceedings of FQAS 98: Third International

Conference on Flexible Query Answering Systems, Lecture

Notes in Artificial Intelligence, vol. 1495, Springer-Verlag,

1998.

