Reducing Inconsistency in Integrating Data From Different Sources

Sergio Lujan-Mora and Manuel Palomar
Departamento de Lenguajes y Sistemas Informéticos, Universidad de Alicante,
Campus de San Vicente del Raspeig
Ap. Correos 99 — E-03080 Alicante, Spain
{slujan, mpalomar}@dlsi.ua.es

Abstract

One of the main problems in integrating databases
into a common repository is the possible inconsistency of
the values stored in them, i.e., the very same term may
have different values, due to misspelling, a permuted
word order, spelling variants and so on. In this paper, we
present an automatic method for reducing inconsistency
found in existing databases, and thus, improving data
quality. All the values that refer to a same term are
clustered by measuring their degree of similarity. The
clustered values can be assigned to a common value that,
in principle, could substitute the original values. We
evaluate different similarity measures for clustering. The
method we propose gives good results with a
considerably low error rate.

1. Introduction

Information fusion is the process of integration and
interpretation of data from different sources in order to
derive information of a new quality. Integrating databases
into a common repository has become a research topic for
many years. Information fusion is a very complex
problem, and is relevant in several fields, such as Data Re-
engineering, Data Warehouse, Web Information Systems,
E-commerce, Scientific Databases, etc. The problem of
inconsistency has also lately been a focus of interest in the
area of Data warehouses (DW) as a DW is a repository of
integrated information from distributed, autonomous, and
possibly heterogeneous, sources.

Traditional search systems work by matching the term
that is being searched with the values stored in the
corresponding database. If the information contained in
databases is inconsistent (i.e., if a given term appears with
different values because several denominations exist, or
because it is misspelled), a search using a given value will
not provide all the available information about the term.

In Figure 0, we present an example to show the aim of
our proposal. Let us suppose that we have different
databases (particularly, different relational tables) and the

sources have different criteria for representing values in
affiliation names. For example, with reference to the
affiliation of researchers who work at the University of
Alicante, we may easily find that there are different values
for this university: “Universidad de Alicante” or
“Universidad Alicante” (in Spanish) and “Alicante
University” (in English).

The problem of the inconsistency found in the values
stored in databases may have three principal causes:

1. If the number of possible values that a single field
can accept is not controlled, a given person, (or different
persons), may insert the same term with different values.
For instance, a database that stores the names of the
departments of a university may have several different
forms (e.g., the use of upper-case letters or abbreviations):
“Departamento de Lenguajes y Sistemas Informéticos”,
“Depto. de Lenguajes y Sistemas Informéticos”, “Dpt. de
lenguajes y sistemas informéticos”, etc.

2. When we try to integrate different databases into a
common repository (e.g., in a DW), one or more of them
may suffer from the above-mentioned problem. The
consistency of their contents has been guaranteed
separately. However, the criteria used for establishing the
consistency of each one might well be different and
integrating them all could cause inconsistency problems.
For example, we wish to integrate three different
databases that store bibliographical information. The
authors might well appear in different forms in each one:
i.e., full names, “Miguel de Cervantes Saavedra”, or by
last names first and then the first name, “Cervantes
Saavedra, Miguel de”, or by first name and last name
only, “Miguel de Cervantes”.

3. Another problem is the multilinguality. In a
multilingual society (e.g., European Community) it is
common to find official names written in different
languages. For instance, we consult a database that stores
information about university researchers, (e.g.,
researcher’s name, researcher’s university, etc.), and we
wish to obtain a list of all of the researchers who work at
the University of Alicante. We may easily find that there

are different values for this university: “Universidad de
Alicante” (in Spanish), “Universitat d'Alacant” (in
Catalan), “University of Alicante” or “Alicante

Common repository

University” (in English), and “Université d'Alicante” (in

French).

with consistent information

Research

Affiliation

Sergio Lujan

Universidad de Alicante

Manuel Palomar

Universidad de Alicante

Marisa Zavas

Universidad de Valencia

Jesds Peral

Universidad de Alicante

M. Farnieles

Universidad de VWalencia

AL Pedrefio Universidad de Alicante
Research Affiliation Research Affiliation

Universidad de Alicante

Sergio Lujan

Jesis Peral Universidad Alicante

Manuel Palomar Alicante University

M. Farnieles Universidad de Valencia

Marisa Zayas Univ. YWalencia

A Pedrefio Universidad de Alicante

Sources with inconsistent values /

Figure 0. Solving inconsistency into a common repository

The remainder of the paper is structured as follows:
Section 2 outlines the origin of the problem and the
possible causes that give rise to the different variants that
appear for the same term; Section 3 introduces our method
for reducing inconsistency found in existing databases;
Section 4 explains the core of our study and details the
technical aspects of our method; Section 5 provides an
evaluation of the method; and finally, our conclusions are
presented in Section 6.

2. Analysis of the Problem

After analysing several databases with information
both in Spanish and in English, we have noticed that the
different values that appear for a given term are due to a
combination of the following causes:

1. The omission or inclusion of the written accent:
“Asociacion Astronémica” or “Asociacion Astronomica”.

2. The use of upper-case and lower-case letters:
“Departamento de Lenguajes y Sistemas Informéticos” or
“Departamento de lenguajes y sistemas informaticos”.

3. The use of abbreviations and acronyms: “Dpto. de
Derecho Civil” or “Departamento de Derecho Civil”.

4. Word order: “Miguel de Cervantes Saavedra” or
“Cervantes Saavedra, Miguel de”.

5. Different denominations: “Unidad de Registro
Sismoldgico” or “Unidad de Registro Sismico”.

6. Punctuation marks (e.g., hyphens, commas,
semicolons, brackets, exclamation marks, etc.):
“Laboratorio Multimedia (mmlab)” or “Laboratorio
Multimedia — mmlab”.

7. Errors: Misspelling (apart from the written accent),
typing or printing errors (absence of a character,
interchange of adjacent characters, etc.): “Gabinete de
imagen” or “Gavinete de imagen”.

8. Use of different languages: “Universidad de
Alicante” (Spanish) or “Universitat d’Alacant” (Catalan).

There has been great interest in studying the quality of
the information stored in databases for a long time [8, 9,
13], and diverse methods have been developed for the
reduction of the inconsistency found in databases [11, 12].

3. Intuitive Proposal of a Method to Reduce
the Inconsistency Found in Databases

The method we propose in this paper improves our
previous works [7] that were developed from French’s
automatic creation of authority files for bibliographical
catalogues [1, 2]. We have added new distances,
developed different evaluation measures and employed a
different clustering algorithm. These improvements result
in a better performance of the method.

Our algorithm resolves all the problems detailed in
Section 2, except the fifth and the eighth, which depend
on how different the two strings that represent the same
term are. The method that we propose can be divided into
six steps:

1. Preparation. It may be necessary to prepare the
strings before applying the clustering algorithm.

2. Reading. The following process is repeated for each
of the strings contained in the input file:

Read a string

Expand abbreviations and acronyms®

Remove accents: e.g., A substitutes A and A, and a

substitutes & and a

Shift string to lower-case

Store the string: If it has been stored previously, its

frequency of appearance is increased by one unit

3. Sorting. The strings are sorted, in descending order,
by frequency of appearance.

4. Clustering. The most frequent string is chosen and it
is compared to the rest of the strings, using a measure of
similarity. This process is repeated, successively, until all
the strings have been clustered.

5. Checking. The resulting clusters are verified and the
possible errors are located and corrected.

6. Updating. The original database is updated. The
strings of a cluster are replaced by its centroid.

4. Technical Description of the Method

In this section, technical aspects of our method are
described. We start by introducing a previous processing
for obtaining better results in Section 4.1. Section 4.2
describes how the similarity between two strings is
considered. Section 4.3 presents the algorithm itself and
finally, Section 4.4 explains the last step of the method,
i.e., checking that the obtained clusters are correct.

4.1. Previous Processing

The strings undergo a previous processing to obtain
better results from the clustering. The objective of this
processing is to avoid the three first causes of the
appearance of different forms for the same term (see
Section 2.1.): i.e., accents, lower-case/upper-case and
abbreviations. The accents are eliminated, the string is
converted to lower-case and the abbreviations are
expanded.

4.2. String Similarity

The similarity between any two strings must be
evaluated. There are several similarity measures; in our
research, we employ five measures: Levenshtein distance
(LD), invariant distance from word position (IDWP), a
modified version of the previous distance (MIDWP),
Jaccard’s coefficient (JC), and the minimum of the four
previous measures (CSM).

Y It is in general impossible to expand all the
abbreviations: often names are represented by initials,
sometimes by only some of the initials, etc.

The edit distance or Levenshtein distance (LD) [5] has
been traditionally used in approximate-string searching
and spelling-error detection and correction (causes 6 and
7). The LD of strings x and y is defined as the minimal
number of simple editing operations that are required to
transform x into y. The simple editing operations
considered are: the insertion of a character, the deletion of
a character, and the substitution of one character with
another. In our method, we have taken a unitary cost
function for all the operations and for all of the characters.
The LD of two strings m and n in length, respectively, can
be calculated by a dynamic programming algorithm [4].
The algorithm requires ®(mn) time and space.

If two strings contain the same words (variant forms of
the same term) but with a permuted word order (cause 4),
the LD will not permit their clustering. To solve this
problem, we introduce another distance that we call the
invariant distance from word position (IDWP) [6]. It is
based on the approximate word matching referred to in
[1]. To calculate the IDWP of two strings, they are broken
up into words (we consider a word to be any succession of
digits and letters of the Spanish alphabet). The idea is to
pair off the words so that the sum of the LD is minimised.
If the strings contain different numbers of words, the cost
of each word in excess is the length of the word.

We also use a modified IDWP (MIDWP). We add a
new matching condition: if two strings fulfil Equation 1,
we assume they match perfectly (in that case, we consider
their LD is zero).

LD(x,Y) 31+M. W
20

The last similarity measure we have employed is the
Jaccard’s coefficient (JC) [10], the ratio of the matching
words in x and y to all the words in x and y:

XA 2

JC = ,

X Y|
where X is the set of words of the string x and Y the set of
words of y.

In order to compare the above-mentioned measures, we
need the JC subtracted from one (1 — JC). Besides, the
LD, IDWP, and MIDWP are divided by the length of the
longest string. Thus, all the measures obtain a similarity
value from 0 (x and y are the same string) to 1 (x and y are
totally different).

Finally, we also combine the four previous similarity
measures (combined similarity measure, CSM): we
choose the minimum of the four similarity measures for
every pair of strings.

4.3. Algorithm

The goal of clustering is to find similarity between
strings and cluster them together based on a threshold of
similarity between the strings.

In previous works [1, 2, 7], the clustering algorithm
employed is basically the leader algorithm [3]. This
algorithm is chosen as opposed to more elaborate
algorithms (e.g. k-means algorithm, Fisher algorithm)
because they are slower and the number of clusters is
unknown. The leader algorithm is very fast, requiring
only one pass through the data, but it has several negative
properties: the partition is not invariant under reordering
of the cases, the first clusters are always larger than the
later ones and the final number of clusters depends on the
threshold values. This is due to the very algorithm: the
comparison between a new string and the existing clusters
is made only until a cluster that meets the condition is
found, without considering the possibility that a better
value of the criteria is met later, for another cluster.

The clustering algorithm we propose in Table 1
resolves the previous problem: it uses a centroid method
and the comparison for every string is made with all the
existing clusters for the time being.

The algorithm chooses the strings, from greater to
smaller frequency of appearance, since it assumes that the
most frequent strings have a greater probability of being
correct, and thus, they are taken as being representative of
the rest. As seen in Table 1, it depends on one parameter
o (threshold). The algorithm makes one pass through the
strings, assigning each string to the cluster whose centroid
is closer and close enough (distance between the string
and the centroid lower than o) and making a new cluster
for cases that are not close enough to any existing
centroid. The distance D is calculated using one of the
similarity measures explained in Section 4.2.

Table 1. Clustering algorithm

STEP 3. Begin working with the cluster ¢; (j = 1).
Calculate the distance between the string s; and the
centroid of cluster ¢;: d = D(s;, ¢;). Let the best cluster be
Cp (bzl)

STEP 4. Increase j by 1. If j > Kk, then go to Step 7.

STEP 5. If D(s;, ¢;) < d, then let the lower distance be d =
D(si, c;) and the best cluster be b = j.

STEP 6. Return to Step 4.

STEP 7. If d < a, assign string s; to cluster cy,; recalculate
the centroid of cluster c, and return to Step 2.

STEP 8. Increase k by 1. Create a new cluster ¢, and
classify s; into the new cluster. Return to Step 2.

Input:
S: Sorted strings in descending order by frequency

(51...Sm)
a: Threshold

Output:
C: Set of clusters (c;...cp)

Variables:
b,dij Kkl

STEP 1. Begin with string s; (i = 1). Let the number of
clusters be k = 1, classify s; into the first cluster cy.

STEP 2. Increase i by 1. If i > m, stop.

The centroid of a cluster must be recalculated every
time a new string is assigned to the cluster. The centroid is
chosen to minimise the sum-of-squares criterion:

3 (DGs,.C))’ “

i=1

where n is the number of strings assigned to the cluster
and C is the centroid of the cluster.

4.4. Revision and Updating

The final step of the method consists of checking the
obtained clusters and detecting possible errors to correct
them. In the original database, the strings of a cluster are
replaced by its centroid (it represents its cluster).
Therefore, all variants of a term are put together under a
single form. Thus, in searching processes, final users will
be confident that they have located all values relating to
the required term.

5. Experimental Results and Evaluation

We have used three files for evaluating our method.
They contain data from three different databases with
inconsistency problems: files A and B contain information
in Spanish, while file C in English.

The method has been implemented in C and C++,
running in Linux.

5.1. File Descriptions

Table 2 gives a description of these three files. The
optimal number of clusters (ONC) indicates the number of
handcrafted clusters. The three last columns contain the
number of single strings (not duplicated) with and without
the expansion of abbreviations, and the rate of reduction
(on expanding the abbreviations, the number of single
strings is reduced, since duplicates are removed). We have
done all the tests with (W) and without (WO) expansion
of abbreviations.

Table 2. File descriptions

Table 3. File consistency indexes

File FCI Standard FCI Standard
WO deviation W deviation

A 0.311 0.298 0.127 0.269
B 1.726 1.267 1.113 1.142
C 0.337 1.181 0.319 1.136

File Size ONC | Strings | Strings | Strings | Reduction
(Bytes) in file WO W (%)

A 10,399 92 234 234 145 38.0

B 1,717,706 92| 37,599 1,212 1,117 7.8

Cc 108,608 57 2,206 119 118 0.8

We have developed a coefficient (consistency index)
that permits the evaluation of the complexity of a cluster:
the greater the value of the coefficient is, the more
different the strings that form the cluster are. A null value
indicates that the cluster contains only one string. The
consistency index (CI) of a cluster of n strings is defined
as:

Zn:ZnZLD(xi,xj) @

Cl = it

n

2 Ixil

i=1

The file consistency index (FCI) of a file that contains
m clusters is defined as the average of the consistency
indexes of all the existing clusters in the file:

u 5)
Y.l

FCl =12
m

The FCI of the files A, B and C are shown in Table 3.
As the FCI is an average, the table also shows the standard
deviation. It is obvious that the clusters of file B are more
complex than those of file A and C. In all cases, however,
the FCI is reduced when expanding the abbreviations,
since the discrepancies between the strings of a given
cluster tend to diminish. With respect to file C, the
reduction of FCI when the abbreviations are expanded is
minimum, because the reduction of strings is not
appreciable: only 0.8% versus 38.0% (file A) and 7.8%
(file B), as it is shown in Table 2.

5.2. Evaluation Measures

We have evaluated the quality of the produced clusters
when our method is applied by using four measures that
are obtained by comparing the clusters produced by our
method with the optimal clusters:

1. NC: number of clusters. Clusters that have been
generated.

2. NCC: number of completely correct clusters. Clusters
that coincide with the optimal ones: they contain the same
strings. From this measure, we obtain Precision: NCC
divided by ONC.

3. NIC: number of incorrect clusters. Clusters that contain
an erroneous string. From this measure, we obtain the
Error: NIC divided by ONC.

4. NES: number of erroneous strings. Strings incorrectly
clustered.

200
180
160
140
120
100
80
60 1
40
20
0

o 00 o1 015 0,2 0,25 03 0,35 04 045 05 0,555

ONC NC WO
NC W NCC W

Figure 1. NC and NCC vs. Threshold. File A with
and without expansion of abbreviations (CSM)

NCC WO

NC and NCC versus Threshold for File A with (W)
and without (WO) expansion of abbreviations, using the
CSM, are plotted in Figure 1. The expansion of
abbreviations diminishes NC and increases NCC.

5.3. Evaluation and Discussion

As we have already mentioned, the clustering
algorithm depends on one parameter (o). We have done

all the tests on setting its value from 0.0 to 0.599, in 0.001
steps.

We compare the performance of the five similarity
measures. The result of the experiments using files A and
C are shown in Tables 4, 5, 6 and 7. The tables show the
highest precision rate and the corresponding error
obtained in each file when the LD, IDWP, MIDWP and

Table 8 shows highest precision and the corresponding
error obtained for files A, B, and C when the CSM s
employed. Files A and C have better precision than file B
because their clusters are less complex: files A and C have
a FCI around 0.3, whereas file B has a FCI of 1.7 (WO)
and 1.1 (W).

JC are used. The corresponding threshold (o) also Table 8. CSM
appears. File o Precision Error
Note that the expansion of abbreviations improves the (%) (%)
precision and diminishes the error. Moreover, the best A | WO | [0.236,0.249] 81.5 8.6
precision, with a lower error, is obtained at a lower W [0.147,0.151] 89.1 0
threshold. B | WO | [0.270,0.288] 717 9.7
w [0.174,0.176] 77.1 2.1
File aTable . I_PDrecision Error C WO | [0.143,0.199] 84.2 L7
(%) (%) w [0.097,0.119] 84.2 0
A | WO 0.311 76.0 8.6 In Table 9, we show the precision and error obtained in
W [0.146, 0.151] 83.6 0 our previous works [7]. The test files A, B and C are the
C | WO | [0.159, 0.199] 84.2 17 same of this paper. If this table is compared to Table 8,
W | [0.100, 0.127] 84.2 0 you can see the new method achieves better results: the
precision increases and the error keeps very similar values
Table 5. IDWP or even diminish.
File a Precision Error
(%) (%) Table 9. Precision and Error in previous works
A | WO | [0.334,0.344] 81.5 10.8 File Precision (%0) Error (%)
w [0.160, 0.166] 84.7 0 A WO 70.7 7.6
C | WO | [0.143,0.227] 82.4 1.7 wW 84.8 0
w [0.072,0.119] 82.4 0 B WO 67.4 8.7
wW 72.8 6.5
As you can see in Table 6, File A obtains the higher C WO 85.9 1.7
precision (89.1%) when the MIDWP with the expansion W 842 17

of abbreviations is employed. However, as seen in Table
7, File C obtains it (89.4%) when the JC without the
expansion of abbreviations is used.

Table 6. MIDWP

File o Precision Error
(%) (%)

A | WO | [0.276,0.277] 80.4 9.7
W [0.153, 0.166] 89.1 0

C | WO | [0.143,0.227] 82.4 1.7
W [0.072, 0.119] 82.4 0

Table 7. JC

File a Precision Error
(%) (%)

A | WO | [0.400, 0.416] 72.8 6.5
W [0.286, 0.299] 85.8 0

C | WO | [0.471,0.499] 89.4 1.7
W [0.471, 0.499] 87.7 1.7

We compare the effect of the expansion of
abbreviations in Figure 2. It shows Precision versus
Threshold for File A with (W) and without (WO)
expansion of abbreviations using the CSM. It is seen that
the expansion of abbreviations produces the maximum
precision (90%) at a threshold of 0.15. From a threshold
of 0.25, the expansion of abbreviations does not influence
the precision as observed in the figure.

ol T e
0,6 I'J
05 / by
0.4 J/

0,3 —__’J"r/ y‘\

o B

0

0o 005 01 015 02 025 03 035 04 045 05 0,55

0,9

0,8

0,7 1

0,6

0,5

04

0,3

0,2

01t

0 T T f T T T T T T T T
0o 00 01 015 02 025 03 035 04 045 05 0,55

Pre. WO Error WO Pre. W Error W

Figure 2. Precision vs. Threshold. File A with and
without expansion of abbreviations (CSM)

Figure 3 shows Precision versus Threshold for File C
without expansion of abbreviations using different
similarity measures. The JC obtains the maximum value
(90%). All the measures, except the JC, have a similar
behaviour: they start at the same level (75%), rise until
85% and then plunge until 20%. However, the JC remains
steady over 75% for all the threshold values.

0,9
s |

0,8

0,7

0,6

0,5

0,4

0,3

0,2

LD IDWP MIDWP
JC csmMm

Figure 3. Precision vs. Threshold. File C without
expansion of abbreviations (different measures)

Finally, from Figure 4 it can be again seen that the
expansion of abbreviations influences the precision at a
low threshold, but from a threshold of 0.25, the influence
is imperceptible (the behaviour is very similar to Figure
2). Also, note that there is not error when the threshold is
lower than 0.15.

Figure 4. Precision and Error vs. Threshold. File
B with and without expansion of abbreviations
(Cswm)

6. Conclusions and Work in Progress

Referential integrity provided by relational database
management systems prevents users or applications from
entering inconsistent data. Databases with an inadequate
design may suffer data redundancy and inconsistency.
This paper has discussed techniques for improving data
quality by clustering different values that refer to the same
term and replacing them with a unique form. So, we have
presented an automatic method for reducing on the
inconsistency found in existing databases. The method we
have proposed achieves successful results with a
considerably low error rate, although it does no eliminate
the need to review the clusters obtained.

The expansion of abbreviations improves on the results
in most cases, but we have detected some cases in which it
actually makes the results worse. In addition, we have
seen that the combined use of four similarity measures
(Levenshtein distance, invariant distance from word
position, modified IDWP, and Jaccard’s coefficient)
normally obtains the best performance.

The final number of clusters strongly depends on the
threshold value fixed by the user. A very small threshold
(conservative) will produce a large number of small
clusters, meanwhile a very large (aggressive) one will
produce a small number of large clusters. Based on the
data obtained in our research, we propose the use of a
threshold between 0.1 and 0.25.

Other algorithms like k-means can not be applied to
this problem because the number of clusters is unknown
(k-means requires the number of clusters to be specified
beforehand).

Currently, we are working on improving the algorithm
in order to cluster the multilingual values. We are

applying dictionaries and other techniques relating to
natural language processing (e.g., removing stop words,
lexical analysis).

References

1. James C. French, Allison L. Powell, Eric Schulman.
Applications of Approximate Word Matching in Information
Retrieval. In Forouzan Golshani, Kia Makki, editors,
Proceedings of the Sixth International Conference on
Information and Knowledge Management (CIKM 1997), pages
9-15, Las Vegas (USA), November 1997.

2. James C. French, Allison L. Powell, Eric Schulman, John L.
Pfaltz. Automating the Construction of Authority Files in
Digital Libraries: A Case Study. In Carol Peters, Costantino
Thanos, editors, Proceedings of the First European Conference
on Research and Advanced Technology for Digital Libraries
(ECDL 1997), pages 55-71, Pisa (ltaly), September 1997.

3. John A. Hartigan. Clustering Algorithms. John Wiley & Sons,
New York (USA), 1975.

4. D.S. Hirschberg. Serial Computations of Levenshtein
Distances. In A. Apostolico, Z. Galil, editors, Pattern Matching
Algorithms. Oxford University Press, 1997.

5. V.I. Levenshtein. Binary codes capable of correcting
deletions, insertions, and reversals. Cybernetics and Control
Theory, 10:707-710, 1966.

6. Sergio Lujadn-Mora. An Algorithm for Computing the
Invariant Distance from Word Position. Available at
http://www.dlsi.ua.es/~slujan/files/idwp.ps
June 2000.

7. Sergio Lujan-Mora, Manuel Palomar. Clustering of Similar
Values, in Spanish, for the Improvement of Search Systems. In
Maria Carolina Monard, Jaime Simdo Sichman, editors, appear
in IBERAMIA-SBIA 2000 Open Discussion Track Proceedings,
pages 217-226, Sao Paulo (Brazil), November 2000.

8. Edward T. O’Neill, Diane Vizine-Goetz. Quality Control in
Online Databases. Annual Review of Information Science and
Technology, 23:125-156, 1988.

9. Edward T. O'Neill, Diane Vizine-Goetz. The Impact of
Spelling Errors on Databases and Indexes. In National Online
Meeting Proceedings, pages 313-320, New York (USA), May
1989.

10. CJ. van Rijsbergen. Information Retrieval. Butterworhs,
London (UK), 1979.

11. Mauricio Antonio Hernandez, Salvatore J. Stolfo. Real-
world data is dirty: Data cleansing and the merge/purge
problem. Journal of Data Mining and Knowledge Discovery,
2(1):9-37, 1998.

12. Alvaro E. Monge, Charles P. Elkan. An efficient domain-
independent algorithm for detecting approximately duplicate

database records. In SIGMOD Workshop on Research Issues on
Data Mining and Knowledge Discovery (DMKD’97), pages 23-
29, 1997.

13. Amihai Motro, Igor Rakov. Estimating the Quality of
Databases. In T. Andreasen, H. Chistiansen, H.L. Larsen,
editors, Proceedings of FQAS 98: Third International
Conference on Flexible Query Answering Systems, Lecture
Notes in Artificial Intelligence, vol. 1495, Springer-Verlag,
1998.

