An Algorithm for Computing the I nvariant Distance
from Word Position

Sergio Lujan-Morat

Departamento de Lengugjesy Sistemas Informaéticos, Universidad de Alicante,
Campus de San Vicente del Raspeig,
Ap. Correos 99 — E-03080 Alicante, Spain
{sl ujan, npal omar} @l si . ua. es

Abstract. There ae many problems involving string matching. The string
matching bases in a number of similarity or distance measures, and many of
them are spedal cases or generdlisations of the Levenshtein distance In this
paper, we focus on the problem of evaluating an invariant distance from word
position between two strings: e.g., the strings “Universidad de Alicante” and
“Alicante, Universidad de” refer to the same oncept, so the distance ought to
below, in order to consider them as very similar strings.

Keywords: String Matching, String Simil arity, Approximate String Matching, Edit
Distance, Pattern Matching

1 Phone: (+34) 965 90 34 M ext. 2514 Fax: (+34) 965 90 93 26

An Algorithm for Computing the I nvariant Distance
from Word Position

Sergio Lujan-Mora

Departamento de Lengugjesy Sistemas Informéticos, Universidad de Alicante,
Campus de San Vicente del Raspeig,
Ap. Correos 99 — E-03080 Alicante, Spain
{sl ujan, npal omar} @l si . ua. es

Abstract. There ae many problems involving string matching. The string
matching hbases in a number of similarity or distance measures, and many of
them are spedal cases or generdlisations of the Levenshtein distance In this
paper, we focus on the problem of evaluating an invariant distance from word
position between two strings: e.g., the strings “Universidad de Alicante” and
“Alicante, Universidad de” refer to the same oncept, so the distance ought to
below, in order to consider them as very similar strings.

1 Introduction

The problem of determining the differences between two sequences of symbals has
been studied extensively [1, 3, 4, 5, 6, 10, 12]. Algorithms for the problem have nu-
merous applications, including approximate string matching, spelling error detedion
and corredion system, phoretic string matching, file comparison toadls, and the study
of genetic evolution [7, 9, 13, 14].

The string matching beses in a number of similarity or distance meesures, and
many of them are spedal cases or generaisations of the Levenshtein distance [8].
This distance is not useful when we want to compute the similarity between two
strings of words. although edit distanceis robust to spelling variants, it can be com-
pletely uselesswhen permutations of words occur.

Consider the seven strings in Table 1. They belongin three dasss, {s, S, S,, S},
{s, s} and{s}. Each of these das=s represents a separate institution and we would
like to consider them as smilar strings. In Sedion 2, we present the Levenshtein dis-
tance and show how this distance is useless when a permuted word order exists. In
Sedion 3 we outline the invariant distance from word position as a mechanism for
overcoming the problem.

Table 1. Strings
Length
s,: Universidad de Alicante 23
s, Universitat d’ Alacant 21
s, University of Alicante 22
s,: Alicante University 19

s,: Ciencias, Universidad de Vaencia 33
s, Universitat de Valencia, Ciencies 33
s,: Universidad Politémicade Vaencia 35

2 String Similarity

The similarity between any two strings can be evaluated by the edit distance or
Levenshtein distance (LD) [8]. This distance has been traditionally used in approxi-
mate-string searching and spelli ng error detedion and corredion. The LD of strings x
andy is defined as the minimal number of simple editing operations that are required
to transform x into y. The simple eliting operations considered are: the insertion of a
charader, the deletion of a charader, and the substitution of one charader with an-
other, with costs &A, o), &g, A), and &g, g,), that are functions of the involved
charader(s). Extended Levenshtein distances also consider transposing two adjacent
charaders. In the examples of this paper, we have taken a unitary cost function for all
the operations and for all of the charaders.

The LD of two strings m and n in length, respedively, can be cdculated by a dy-
namic programming algorithm. The dgorithm requires @(mn) time and space a-
though refinements of the dgorithm require only ©(ND) time and space[11], where
N isthe sum of mand n and D is the distance between the strings.

The Levenshtein distance between x[1:m] and y[1:n], LD(m, n), can be cdculated
by the next reaurrencerelation [5]:

0 (2)
0
0
D, if i=0andj =0
[1D(0, j -1)+3(A,y,), if i =0andj >0

LD(i, j) = LD ~1.0) +5(x ,), if i >0andj =0
ELD(i ~1,j-0), if x =y,

B DG, j-D+d(A,y,),
FMinALD(i -1)+ 8(x,,A),
4 B0 -1j-D+8(x,y)1

O if x 2y,
Ol
O

Table 2 shows the pairwise it distances? (LD) for the strings of Table 1. Asitisa
symmetric matrix, the lower part of the matrix is not presented. As we can see the
strings s, S,, and s, (type of institution, name) have alow LD between them: 6 (s-s),
5(s-s), and 7(s-s,). However, if we mnsider the previous drings and the string s,
(name, type of institution), the distances betwean them increase very much: 19 (s,-s),

2 All the strings are converted to lower case before the distanceis cdcul ated.

18 (s-s), and 18(s,-s,). The difference is due to word permutation: the four strings
represent the same institution and have similar words, but the string s, has a diff erent
word order. If two strings contain the same words but with a permuted word order
(variant forms of the same term), the LD will be large. Therefore, the LD is not a
useful distance when a permuted word order exists.

Table 2. LD matrix

S, S S S, S S S,
S, 0 6 5 19 17 14 19
S, 0 7 18 20 15 21
S, 0 18 22 16 21
S, 0 23 25 28
S 0 22 16
S, 0 19
S, 0

3 Invariant Distancefrom Word Position

The problem we have shown in the previous fdion can be resolved if we use adif-
ferent representation d the strings. The conventional representation d a string is a
sequence of charaders. A more useful representation is to think of astring as a set of
words, where ezh word is a sequence of charaders (letters and dgits). Using this
representation, the invariant distance from word position (IDWP) is cdculated. This
distanceis based onthe approximate word matching referred to in [2].

In Table 3 we can seethe strings siown in Table 1 broken up into words. The
words have been converted to lower case and the purctuation (commas and apostro-
phes) has also been removed.

Table 3. Strings

Number Words

of words
s;: Universidad de Alicante 3 universidad, de, alicante
s, Universitat d' Alacant 3 unversitat, d, alacant
s, University of Alicante 3 university, of, alicante
s, Alicante University 2 alicante, university
s, Ciencias, Universidad de Vaencia 4 ciencias, universidad, de,

valencia

s,: Universitat de Vaencia, Ciéncies 4 uriversitat, de, valencia,
ciencies

s,: Universidad Politemicade Valencia 4 uriversidad, paliteaica, de,

vaencia

3.1 Thealgorithm

To cdculate the IDWP of two strings, they are broken up into words. The ideais to
pair up the words < that the sum of the LD is minimized. If the strings contain differ-
ent number of words, the cost of each word in excessisthe length of the word.

It isamost always the cae that IDWP(X, y) < LD(X, y), athough thisis not aways
true. For instance, for the strings “abc def” and “a bed ef”, the LD and IDWP values
are 3 and 4respedively.

In Table 4 we show the IDWP agorithm. Basicdly the core of the dgorithm is the
reaursive method matching, that is siown in Table 5. This method cdculates the best
matching of the words by means of abranch and bound scheme.

Table 4. IDWP agorithm

Inpu:

S: Array of words (s,...s,)

m: Integer

T: Array of words (t,...t,)

n: Integer

Output:

Idwp: Integer

Variables:

i,],aux: Integer

D: Matrix (m + 1) x (n + 1) of Integer

* Fulfil D with zeros:

Fori=0Tom
Forj=0Ton
D[i][j] =0
Next
Next

* Fulfil the first column ant the first row of D with the length of s and t,
respectively:
Fori=1Tom
D[i][0] = s|
Next
Forj=1Ton
DIO][j] = It]
Next

* Mark the words that matches between them:
Fori=1Tom
Forj=1Ton
If D[i][j] =0 Then
Foraux=0Tom
Dlaux][j] =-1
Next

Foraux=0Ton
D[i][aux] =-1
Next
End If
Next
Next

* Call the matching method:
ldwp =-1
matching(D, m, n, 1, 0, Idwp)

Table 5. Matching method

Inpu:

D: Matrix (m + 1) x (n + 1) of Integer
m: Integer

n: Integer

i: Integer
cost: Integer
Idwp: Integer
Outpuit:

I dwp: Integer
Variables:

j, aux: Integer

If i<=m Then
If D[i][0] <>-1 Then

* Theword i of S has not yet been matched:
Forj=1Ton

* |f theword j of T has not yet been matched:
If D[i][j] <>-1AndD[Q][j] >0 Then
aux = cost + DJi][j]
If aux <ldwp Or Idwp =-1 Then

* Mark theword j of T as matched:
DI0][j] =-DI0][j]
matching(D, m, n, i + 1, aux, | dwp)

* Remove the mark of word j of T:
D[O][i] = -DIa(j]
End If
End If
Next

* The method consider the word i of S is not matched, so its length is

added to the final distance:
aux = cost + D[i][0]
If aux < Idwp Or Idwp =-1 Then
matching(D, m, n, i + 1, aux, | dwp)
End If
Else

* The word i of S has already been matched, the method goes on to the
next word:
matching(D, m, n, i + 1, cost, |dwp)
EndIf
Else

* All the words of S have been matched; if any word of T has not been
matched, its length is added to the final distance:
aux = cost
Forj=1Ton
If D[O][j] >0 Then
aux = aux + D[O][j]
End If
Next
If aux < Idwp Or Idwp =-1 Then
Idwp = aux
EndIf
End If

Table 5 shows the pairwise IDWP for the strings of Table 1. As it is a symmetric

matrix, the lower part of the matrix isnot presented.

Table 5. IDWP matrix

S, S S; S, S Si S
S, 0 5 5 5 15 17 16
S, 0 6 5 17 15 20
S, 0 2 20 19 21
S, 0 20 19 21
S 0 3 8
S, 0 10
S, 0

In Table 6 is hown LD matrix versus IDWP matrix. As we @n seg the greder
changes between this two dstances are between s, and {s,, s,, S} and between s, and
s,- The IDWP between the strings of {s,, s,, s,, S} and{s,, s} are more homogenous

than LD. IDWP islower or equal than LD in all the cases, except s-s, and s;-s..

Table 6. LD matrix vs. IDWP matrix
| s | s | s | s | s | s [s |

s, 0 6/5 5/5 | 19/5 | 17/15| 14/17| 19/16
s, 0 7/6 | 18/5 | 20/17 | 15/15| 21/20
s, 0 18/2 | 22/20| 16/19| 21/21
S, 0 23/20| 25/19| 28/21
s 0 22/3 | 16/8
s, 0 19/10
S, 0
References

1

2.

8.

9.

A.V. Aho, D.S. Hirschberg, J.D. Ullman. Bounds on the Complexity of the Longest Com-
mon Subsequence Problem. Journal of the ACM, 23(1):1-12, 1976.

J.C. French, A.L. Powell, E. Schuiman. Applicaions of Approximate Word Matching in
Information Retrieval. In Forouzan Golshani, Kia Makki, editors, Proceedings of the Sxth
International Conference on Information and Knowledge Management (CIKM 1997), pages
9-15, Las Vegas (USA), November 1997.

. D. Gusfield. Algorithms on Strings, Trees, and Sequences. Computer Science and Computa-

tional Biology. Cambridge University Press 1997.

. D.S. Hirschberg. Algorithms for the Longest Common Subsequence Problem. Journal of the

ACM, 24(4):664-675, 1977.

. D.S. Hirschberg. Serial Computations of Levenshtein Distances. In A. Apostalico, Z. Gdlil,

editors, Pattern Matching Algorithms. Oxford University Press 1997.

. JW. Hunt, T.G. Szymanski. A Fast Algorithm for Computing Longest Common Subse-

guences. Communications of the ACM, 20(5):350-353, 1977.

. K. Kukich. Techniques for Automaticdly Correding Words in Text. Computing Surveys,

24(4):377-440, 1992.

V.l. Levenshtein. Binary codes cgpable of correding deletions, insertions, and reversals.
Cybernetics and Control Theory, 10:707-710, 1966.

R. Lowrance, R.A. Wagner. An Extension of the String-to-String Corredion Problem. Jour-
nal of the ACM, 22(2):177-183, 1975.

10. W.J. Masek, M.S. Paterson. A Faster Algorithm for Computing String Edit Distances.

Journal of Computer and Systems Sciences, 20(1):18-31, 1980.

11 E. Myers. An O(ND) Difference Algorithm and its Variations. Algorithmica, 1(2):251-266,

1986.

12. N. Nakatsu, Y. Kambayashi, S. Yagima. A Longest Common Subsequence Algorithm Suit-

able for Similar Text Strings. Acta Informatica, 18:171-179, 1982.

13. W. Tichy. The String-to-String Corredion Problem with Block Moves. ACM Transactions

on Computer Systems, 2(4):309-321, 1984.

14. R.A. Wagner, M.J. Fischer. The String-to-String Corredion Problem. Journal of the ACM,

21(1): 168-173, 1974.

