
An Algor ithm for Computing the Invar iant Distance
from Word Position

Sergio Luján-Mora1

Departamento de Lenguajes y Sistemas Informáticos, Universidad de Alicante,
Campus de San Vicente del Raspeig,

Ap. Correos 99 – E-03080 Alicante, Spain
{slujan, mpalomar}@dlsi.ua.es

Abstract. There are many problems involving string matching. The string
matching bases in a number of similarity or distance measures, and many of
them are special cases or generalisations of the Levenshtein distance. In this
paper, we focus on the problem of evaluating an invariant distance from word
position between two strings: e.g., the strings “Universidad de Alicante” and
“Alicante, Universidad de” refer to the same concept, so the distance ought to
be low, in order to consider them as very similar strings.

Keywords: String Matching, String Similarity, Approximate String Matching, Edit
Distance, Pattern Matching

1 Phone: (+34) 965 90 34 00 ext. 2514 Fax: (+34) 965 90 93 26

An Algor ithm for Computing the Invar iant Distance
from Word Position

Sergio Luján-Mora

Departamento de Lenguajes y Sistemas Informáticos, Universidad de Alicante,
Campus de San Vicente del Raspeig,

Ap. Correos 99 – E-03080 Alicante, Spain
{slujan, mpalomar}@dlsi.ua.es

Abstract. There are many problems involving string matching. The string
matching bases in a number of similarity or distance measures, and many of
them are special cases or generalisations of the Levenshtein distance. In this
paper, we focus on the problem of evaluating an invariant distance from word
position between two strings: e.g., the strings “Universidad de Alicante” and
“Alicante, Universidad de” refer to the same concept, so the distance ought to
be low, in order to consider them as very similar strings.

1 Introduction

The problem of determining the differences between two sequences of symbols has
been studied extensively [1, 3, 4, 5, 6, 10, 12]. Algorithms for the problem have nu-
merous applications, including approximate string matching, spelli ng error detection
and correction system, phonetic string matching, file comparison tools, and the study
of genetic evolution [7, 9, 13, 14].

The string matching bases in a number of similarity or distance measures, and
many of them are special cases or generalisations of the Levenshtein distance [8].
This distance is not useful when we want to compute the similarity between two
strings of words: although edit distance is robust to spelli ng variants, it can be com-
pletely useless when permutations of words occur.

Consider the seven strings in Table 1. They belong in three classes, { s1, s2, s3, s4} ,
{ s5, s6} and { s7} . Each of these classes represents a separate institution and we would
like to consider them as similar strings. In Section 2, we present the Levenshtein dis-
tance and show how this distance is useless when a permuted word order exists. In
Section 3 we outline the invariant distance from word position as a mechanism for
overcoming the problem.

Table 1. Strings

Length
s1: Universidad de Alicante
s2: Universitat d’Alacant
s3: University of Alicante
s4: Alicante University

23
21
22
19

s5: Ciencias, Universidad de Valencia
s6: Universitat de València, Ciències
s7: Universidad Politécnica de Valencia

33
33
35

2 Str ing Similar ity

The similarity between any two strings can be evaluated by the edit distance or
Levenshtein distance (LD) [8]. This distance has been traditionally used in approxi-
mate-string searching and spelli ng error detection and correction. The LD of strings x
and y is defined as the minimal number of simple editing operations that are required
to transform x into y. The simple editing operations considered are: the insertion of a
character, the deletion of a character, and the substitution of one character with an-
other, with costs δ(λ, σ), δ(σ, λ), and δ(σ1, σ2), that are functions of the involved
character(s). Extended Levenshtein distances also consider transposing two adjacent
characters. In the examples of this paper, we have taken a unitary cost function for all
the operations and for all of the characters.

The LD of two strings m and n in length, respectively, can be calculated by a dy-
namic programming algorithm. The algorithm requires Θ(mn) time and space, al-
though refinements of the algorithm require only Θ(ND) time and space [11], where
N is the sum of m and n and D is the distance between the strings.

The Levenshtein distance between x[1:m] and y[1:n], LD(m, n), can be calculated
by the next recurrence relation [5]:





















≠

=
=>
>=
==

















+−−
+−

+−
−−
+−

+−

=

ji

ji

ji

i

j

i

j

yx

yx

ji

ji

ji

yxjiLD

xjiLD

yjiLD

min

jiLD

xiLD

yjLD

jiLD

 if

 if

0 and 0 if

0 and 0 if

0 and 0 if

,

),()1,1(

),,(),1(

),,()1,(

),1,1(

),,()0,1(

),,()1,0(

,0

),(

δ
λδ

λδ

λδ
λδ

(1)

Table 2 shows the pairwise edit distances2 (LD) for the strings of Table 1. As it is a
symmetric matrix, the lower part of the matrix is not presented. As we can see, the
strings s1, s2, and s3 (type of institution, name) have a low LD between them: 6 (s1-s2),
5 (s1-s3), and 7 (s2-s3). However, if we consider the previous strings and the string s4

(name, type of institution), the distances between them increase very much: 19 (s4-s1),

2 All the strings are converted to lower case before the distance is calculated.

18 (s4-s2), and 18 (s4-s3). The difference is due to word permutation: the four strings
represent the same institution and have similar words, but the string s4 has a different
word order. If two strings contain the same words but with a permuted word order
(variant forms of the same term), the LD will be large. Therefore, the LD is not a
useful distance when a permuted word order exists.

Table 2. LD matrix

s1 s2 s3 s4 s5 s6 s7

s1 0 6 5 19 17 14 19
s2 0 7 18 20 15 21
s3 0 18 22 16 21
s4 0 23 25 28
s5 0 22 16
s6 0 19
s7 0

3 Invar iant Distance from Word Position

The problem we have shown in the previous section can be resolved if we use a dif-
ferent representation of the strings. The conventional representation of a string is a
sequence of characters. A more useful representation is to think of a string as a set of
words, where each word is a sequence of characters (letters and digits). Using this
representation, the invariant distance from word position (IDWP) is calculated. This
distance is based on the approximate word matching referred to in [2].

In Table 3 we can see the strings shown in Table 1 broken up into words. The
words have been converted to lower case and the punctuation (commas and apostro-
phes) has also been removed.

Table 3. Strings

Number
of words

Words

s1: Universidad de Alicante 3 universidad, de, alicante
s2: Universitat d’Alacant 3 universitat, d, alacant
s3: University of Alicante 3 university, of, alicante
s4: Alicante University 2 alicante, university
s5: Ciencias, Universidad de Valencia 4 ciencias, universidad, de,

valencia
s6: Universitat de València, Ciències 4 universitat, de, valencia,

ciencies
s7: Universidad Politécnica de Valencia 4 universidad, politecnica, de,

valencia

3.1 The algor ithm

To calculate the IDWP of two strings, they are broken up into words. The idea is to
pair up the words so that the sum of the LD is minimized. If the strings contain differ-
ent number of words, the cost of each word in excess is the length of the word.

It is almost always the case that IDWP(x, y) < LD(x, y), although this is not always
true. For instance, for the strings “abc def” and “a bcd ef” , the LD and IDWP values
are 3 and 4 respectively.

In Table 4 we show the IDWP algorithm. Basically the core of the algorithm is the
recursive method matching, that is shown in Table 5. This method calculates the best
matching of the words by means of a branch and bound scheme.

Table 4. IDWP algorithm

Input:
S: Array of words (s1…sm)
m: Integer
T: Array of words (t1…tn)
n: Integer
Output:
Idwp: Integer
Variables:
i, j , aux: Integer
D: Matrix (m + 1) x (n + 1) of Integer

* Fulfil D with zeros:
For i = 0 To m
 For j = 0 To n
 D[i][j] = 0
 Next
Next

* Fulfil the first column ant the first row of D with the length of si and tj

respectively:
For i = 1 To m
 D[i][0] = |si|
Next
For j = 1 To n
 D[0][j] = |t j|
Next

* Mark the words that matches between them:
For i = 1 To m
 For j = 1 To n
 If D[i][j] = 0 Then
 For aux = 0 To m
 D[aux][j] = -1
 Next

 For aux = 0 To n
 D[i][aux] = -1
 Next
 End If
 Next
Next

* Call the matching method:
Idwp = -1
matching(D, m, n, 1, 0, Idwp)

Table 5. Matching method

Input:
D: Matrix (m + 1) x (n + 1) of Integer
m: Integer
n: Integer
i: Integer
cost: Integer
Idwp: Integer
Output:
Idwp: Integer
Variables:
j , aux: Integer

If i <= m Then
 If D[i][0] <> -1 Then

* The word i of S has not yet been matched:
 For j = 1 To n

* If the word j of T has not yet been matched:
 If D[i][j] <> -1 And D[0][j] > 0 Then
 aux = cost + D[i][j]
 If aux < Idwp Or Idwp = -1 Then

* Mark the word j of T as matched:
 D[0][j] = -D[0][j]
 matching(D, m, n, i + 1, aux, Idwp)

* Remove the mark of word j of T:
 D[0][j] = -D[0][j]
 End If
 End If
 Next

* The method consider the word i of S is not matched, so its length is

added to the final distance:
 aux = cost + D[i][0]
 If aux < Idwp Or Idwp = -1 Then
 matching(D, m, n, i + 1, aux, Idwp)
 End If
 Else

* The word i of S has already been matched, the method goes on to the
next word:

 matching(D, m, n, i + 1, cost, Idwp)
 End If
Else

* All the words of S have been matched; if any word of T has not been
matched, its length is added to the final distance:

 aux = cost
 For j = 1 To n
 If D[0][j] > 0 Then
 aux = aux + D[0][j]
 End If
 Next
 If aux < Idwp Or Idwp = -1 Then
 Idwp = aux
 End If
End If

Table 5 shows the pairwise IDWP for the strings of Table 1. As it is a symmetric
matrix, the lower part of the matrix is not presented.

Table 5. IDWP matrix

s1 s2 s3 s4 s5 s6 s7

s1
0 5 5 5 15 17 16

s2
0 6 5 17 15 20

s3
0 2 20 19 21

s4
0 20 19 21

s5
0 3 8

s6
0 10

s7
0

In Table 6 is shown LD matrix versus IDWP matrix. As we can see, the greater
changes between this two distances are between s4 and { s1, s2, s3} and between s5 and
s6. The IDWP between the strings of { s1, s2, s3, s4} and { s5, s6} are more homogenous
than LD. IDWP is lower or equal than LD in all the cases, except s1-s6 and s3-s6.

Table 6. LD matrix vs. IDWP matrix

s1 s2 s3 s4 s5 s6 s7

s1
0 6 / 5 5 / 5 19 / 5 17 / 15 14 / 17 19 / 16

s2
0 7 / 6 18 / 5 20 / 17 15 / 15 21 / 20

s3
0 18 / 2 22 / 20 16 / 19 21 / 21

s4
0 23 / 20 25 / 19 28 / 21

s5
0 22 / 3 16 / 8

s6
0 19 / 10

s7
0

References

1. A.V. Aho, D.S. Hirschberg, J.D. Ullman. Bounds on the Complexity of the Longest Com-
mon Subsequence Problem. Journal of the ACM, 23(1):1-12, 1976.

2. J.C. French, A.L. Powell , E. Schulman. Applications of Approximate Word Matching in
Information Retrieval. In Forouzan Golshani, Kia Makki, editors, Proceedings of the Sixth
International Conference on Information and Knowledge Management (CIKM 1997), pages
9-15, Las Vegas (USA), November 1997.

3. D. Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science and Computa-
tional Biology. Cambridge University Press, 1997.

4. D.S. Hirschberg. Algorithms for the Longest Common Subsequence Problem. Journal of the
ACM, 24(4):664-675, 1977.

5. D.S. Hirschberg. Serial Computations of Levenshtein Distances. In A. Apostolico, Z. Galil ,
editors, Pattern Matching Algorithms. Oxford University Press, 1997.

6. J.W. Hunt, T.G. Szymanski. A Fast Algorithm for Computing Longest Common Subse-
quences. Communications of the ACM, 20(5):350-353, 1977.

7. K. Kukich. Techniques for Automatically Correcting Words in Text. Computing Surveys,
24(4):377-440, 1992.

8. V.I. Levenshtein. Binary codes capable of correcting deletions, insertions, and reversals.
Cybernetics and Control Theory, 10:707-710, 1966.

9. R. Lowrance, R.A. Wagner. An Extension of the String-to-String Correction Problem. Jour-
nal of the ACM, 22(2):177-183, 1975.

10. W.J. Masek, M.S. Paterson. A Faster Algorithm for Computing String Edit Distances.
Journal of Computer and Systems Sciences, 20(1):18-31, 1980.

11. E. Myers. An O(ND) Difference Algorithm and its Variations. Algorithmica, 1(2):251-266,
1986.

12. N. Nakatsu, Y. Kambayashi, S. Yajima. A Longest Common Subsequence Algorithm Suit-
able for Similar Text Strings. Acta Informatica, 18:171-179, 1982.

13. W. Tichy. The String-to-String Correction Problem with Block Moves. ACM Transactions
on Computer Systems, 2(4):309-321, 1984.

14. R.A. Wagner, M.J. Fischer. The String-to-String Correction Problem. Journal of the ACM,
21(1): 168-173, 1974.

