
The GOLD Model CASE Tool: an environment for designing
OLAP applications

Juan Trujillo, Sergio Luján-Mora, Enrique Medina
Departamento de Lenguajes y Sistemas Informáticos. Universidad de Alicante.

Campus de San Vicente del Raspeig. Apartado 99. 03080 Alicante. SPAIN
Email: {jtrujillo,slujan,emedina}@dlsi.ua.es

Keywords: CASE Tool, Data Warehouse, Multidimensional, OLAP, UML

Abstract: The number of On-Line Analytical Processing (OLAP) applications in the market has dramatically
increased in the last years. Most of these applications provide their own multidimensional (MD)
models to represent main MD properties, thereby making the design totally dependent of the
target commercial OLAP application. In this paper, we present a Computer-Aided Software-
Engineering (CASE) operational environment to accomplish the design of an OLAP applications
totally independent of the target commercial OLAP tool. The designer uses a Unified Modeling
Language (UML) compliant approach to represent MD properties at the conceptual level. Once
the conceptual design is finished, the CASE tool semi-automatically generates the corresponding
implementation into the target commercial OLAP tool. Therefore, our approach frees conceptual
design from implementation issues.

1 Introduction

Data warehouse (DW) systems consolidate and
integrate data from heterogeneous sources and
provide powerful mechanisms to manage the in-
formation, enabling the knowledge workers to
make better and faster decisions for the enterprise
(Chaudhuri and Dayal, 1997)(Inmon, 1996). In
this context, OLAP tools, based on the multidi-
mensional (MD) modeling, are the predominant
front-end client tools for querying and analyzing
data in a DW. OLAP tools are mainly classi-
fied into ROLAP (Relational OLAP) and MO-
LAP (Multidimensional OLAP), depending on
whether the underlying multidimensional struc-
tures are relational tables or propietary MD vec-
tors, respectively.
During the last years, many OLAP tools have

increasingly arisen (Dinter et al., 1998). Most of
these OLAP tools provide their own MD model to
consider main MD properties. As a consequence,
1. not all MD properties are considered by all

commercial OLAP tools and,
2. a MD conceptual design does not usually have

the same representation in the different com-
mercial OLAP tools.

Therefore, nowadays the design process of an
OLAP application is totally dependent on the tar-
get OLAP tool and its underlying MD model.

Figure 1: Development of an OLAP application.

Figure 1 illustrates the above-mentioned prob-
lem. In the phase of analysis/design, the user
has to define one specific conceptual MD model
for each particular OLAP tool so that the imple-
mentation can be successfully achieved. In this
context, a conceptual MD model in Informix, for
example, is different from one another in Oracle.
We argue that this dependence could be solved

1



by providing a MD conceptual model that allows
us to accomplish a MD design totally indepen-
dent of implementation issues without taking into
consideration the target commercial OLAP tool.
Then, from this conceptual model, we should ide-
ally be able to generate its corresponding imple-
mentation into any market OLAP tool by pro-
viding the specific information to build the corre-
sponding MD model.
In this context, some conceptual approaches

have been lately proposed by the research com-
munity to accomplish the conceptual design of
OLAP applications, such as the Dimensional-Fact
Model by M. Golfarelli et al. (Golfarelli and
Rizzi, 1998), the starER model by N. Tryfona
et al. (Tryfona et al., 1999), the ME/R model
by C. Sapia et al. (Hahn et al., 2000; Sapia
et al., 1998) and the GOLD model by J. Trujillo
et al. (Trujillo, 2001; Trujillo et al., 2000; Trujillo
et al., 2001). To the best of our knowledge, the
only works that have explicitly provided details
regarding the automatic implementation from a
conceptual model into a target OLAP tool are
(Hahn et al., 2000; Trujillo et al., 2001).
In this sense, it is generally avowed that both

the design of the conceptual model and the gen-
eration process should be accomplished within a
CASE tool framework. This environment should
have two design phases clearly identified: (i)
graphical notations should be provided by a con-
ceptual MD model to facilitate the designer with
the specification of the conceptual MD model and
(ii) an automatic generation process should per-
form the implementation of the designed concep-
tual MD model into a target commercial OLAP
tool. This generation process should generate
both (i) the database structures to house the MD
data and (ii) the underlying OLAP tool meta-
data which stores information on the created MD
model such as facts, measures, dimensions and
classification hierarchies. However, some MD is-
sues of the original conceptual MD may not have
their corresponding implementation in the target
commercial OLAP tool. In this particular case, a
well-founded transformation policy should be ac-
complished to transform some original MD issues
while trying to preserve their original meaning as
much as possible. Unfortunately, there will also
be some MD issues that will not have a corre-
sponding transformation, and therefore, they will
be ignored with the corresponding lack of expres-
siveness.
In this paper, we propose ‘The GOLD Model

CASE Tool’ (gmct), a graphical environment for
the design of OLAP applications. The concep-
tual design is accomplished by using the GOLD
model (Trujillo, 2001; Trujillo et al., 2000; Tru-

jillo et al., 2001), an object-oriented conceptual
model that facilitates the design of conceptual
MD models by using a subset of the Unified
Modeling Language (UML) (Object Management
Group (OMG), 2001). The semantic rules used by
this model for a proper MD design have been in-
corporated to the CASE tool, therefore providing
the mechanisms to ensure the correctness, consis-
tency and integrity of the accomplished model.
Once the conceptual MD design has been ac-
complished, the designer can pose the genera-
tion process that semi-automatically generates
the corresponding implementation into the most
popular front-end OLAP tools such as Informix
Metacube, Oracle Express and Cognos Power-
Play. During this process, the CASE tool informs
the designer about every needed transformation
to obtain the corresponding implementation.
The remainder of this paper is structured as

follows: Section 2 summarizes the main MD fea-
tures considered by the GOLD model. Based on
the GOLD model, Sections 3 and 4 discuss the
layered architecture and the usage of the gmct
respectively. Finally, Section 5 presents the con-
clusions and future works that are currently being
considered.

2 The GOLD model: an
object-oriented conceptual
model for OLAP tools

The GOLD model allows us to specify both the
structural (Trujillo et al., 2001) and dynamic
parts (Trujillo et al., 2000) of an OLAP applica-
tion at the conceptual level (Trujillo, 2001). The
structural part regards to the MD model struc-
tural properties such as facts, dimensions, mea-
sures, classification hierarchies, additivity and so
on. On the other hand, the dynamic one refers
to the initial user requirements and the evolution
(behaviour) of these requirements based on the
applied OLAP operations.
Let us consider an example in which the fact

is the product sales category for a large chain of
stores, which has the following dimensions: prod-
uct, store, customer, and time.
Regarding the structural part, a MD model is

specified by means of a UML class diagram in
which the information is clearly separated into
dimensions and facts.
Dimensions and facts are considered by dimen-

sion classes and fact classes respectively. Then,
facts classes are specified as composite classes
in a shared aggregation relationship of n di-
mension classes. Thanks to the flexibility of
shared-aggregation relationships that UML pro-

2



vides, many-to-many relationships between facts
and particular dimensions can be considered.
This is done by indicating the 1..* cardinality on
the dimension class role to show that a fact ob-
ject instance can be related to one or more di-
mension object instances. Derived measures can
also be explicitly considered (constraint / ) and
their derivation rules are placed between braces
in somewhere around the fact class. By default,
all measures are considered additive. For non-
additive measures, additive rules are defined as
constraints and also placed in somewhere around
the fact class.
Our approach also allows us to define identi-

fying attributes in the fact class, if convenient,
by placing the constraint {OID} next to a mea-
sure name, also known as degenerate dimensions
(Giovinazzo, 2000; Kimball, 1996). This provides
other fact features in addition to the measures
for analysis. In our example, we could store the
ticket and line numbers as other ticket features.
With respect to dimensions, every classifica-

tion hierarchy level is specified by a class (called
a base class). An association of classes spec-
ifies the relationships between two levels of a
classification hierarchy. The only required con-
straint is that these classes must define a Directed
Acyclic Graph (DAG) rooted in the dimension
class. The DAG structure can represent both al-
ternative path and multiple classification hierar-
chies. Therefore, the constraint {dag} is placed
next to every dimension class. Every classifica-
tion hierarchy level has an identifying attribute
(constraint {OID}) and a descriptor attribute
(constraint {D}). These attributes are necessary
for an automatic generation process into a com-
mercial ROLAP tool as these tools store this in-
formation in their metadata. The multiplicities 1
and 1..* defined in the target associated class role
address the concepts of strictness and nonstrict-
ness. Defining the {completeness} constraint in
the target associated class role addresses the com-
pleteness of a classification hierarchy. By default,
our approach considers all classification hierar-
chies noncomplete.
The categorization of dimensions, used to

model additional features for an entity’s sub-
types, is considered by means of generalization-
specialization relationships. However, no class
other than the dimension class can belong to both
a classification and specialization hierarchy at the
same time.
Regarding the dynamic part, we provide a

UML-compliant class notation (called cube class)
to specify initial user requirements. A set of basic
OLAP operations (e.g. roll-up, drill-down, slice,
etc.) is provided to simulate the further data

analysis phase from these cube classes. Then,
we model the behaviour (evolution) of these cube
classes by means of state and interaction dia-
grams based on the applied OLAP operations
(Trujillo et al., 2000). These diagrams contain
information about the most probable evolution
of the final user requirements from the specified
cube classes. OLAP designers can use the in-
formation these diagrams contain to predict user
behaviour, thereby helping them in the design of
a proper view maintenance policy.
Finally, this model provides a set of modules

with adequate transformation rules to export the
accomplished conceptual model into a commer-
cial OLAP tool, which allows us to check the va-
lidity of the proposed approach.

3 Architecture of The GOLD
Model CASE Tool

The gmct1 is based on a layered architecture
of different modules and was designed and im-
plemented applying the object-oriented (OO)
methodology (Booch, 1994). The OO method-
ology enables a modular design and implementa-
tion, aimed at helping the task of maintenance
and extension of the code.
This layered architecture is structured in the

following modules, as shown in Figure 2: Graph-
ical User Interface (GUI) and Core Tool (3.1),
Repository (3.2), Export Model (3.3), Export
Queries (3.4) and Query Generator (3.5). In the
following sections, we will summarize each one of
these modules and their connections.

3.1 Graphical User Interface and
Core Tool

The GUI is based on Microsoft Windows interface
and uses Multiple Document Interface (MDI)2
technology. It is similar to OO commercial tools
like the Rational Rose Family from Rational Soft-
ware (Rational Software, 2001).
The GUI presents three different interfaces:

• Class Diagram: as above commented, the
class diagram allows us to represent the static
part of the GOLD Model (structural proper-
ties: dimensions, facts, classification hierar-
chies, etc.). It uses standard graphical model-

1This tool is developed using Borland C++
Builder 5 under Microsoft Windows 98.

2MDI allows to load multiple documents in the
same program. It is possible to copy and paste ele-
ments from one document into another.

3



Figure 2: Architecture of The GOLD Model CASE Tool

ing elements from UML: classes, aggregations,
associations, etc.

• Query Diagram: allows us to represent the
dynamic part of the GOLD model. This mod-
ule allows the user to define initial requirements
from the class diagram that are represented as
cube classes in this model.

• State Diagram: describes the behaviour of
each cube class according to the different
OLAP operations (roll-up, drill-down, com-
bine, etc.).

To ensure the correctness of the model designed
using the gmct, the Core Tool module checks the
semantic constraints that have to be satisfied by
the model (e.g. a dimension class has to be con-
nected to a fact class, or a dimension class needs
an identifier and a descriptor attribute, etc.).
This module also ensures the correctness of the
cube classes. All these checkings are performed
while the class diagram and the cube classes are
being constructed. Once the model has been cor-
rectly checked, the model is stored internally in
the repository.

3.2 Repository

This part of the tool stores the metadata that
describes the internal definition of the different
models created by the user. For a proper CASE
tool internal use, we use an ad-hoc repository, but
we are currently working on the specification of
an XML DTD3 to store the metadata in an XML
format, so that it can be exported to different
OLAP tools.

3Document Type Definition.

3.3 Export Model

The gmct exports the implementation of the
model represented in a class diagram to different
OLAP tools. We have implemented the genera-
tion process for one representative of each set of
OLAP tools: Informix Metacube, Cognos Pow-
erPlay, IBM Warehouse Manager, etc. The only
prerequisite for an OLAP tool to be integrated
as a target in the gmct is the existence of any
form of external and accessible interface, e.g. a
model definition language in Cognos or metadata
relational tables in Informix that can be accessed
with SQL. This is a semiautomatic process, as the
user has to confirm possible changes (transforma-
tions) made to the original model, since some se-
mantics and constraints may be misspelled due to
the limitations of the target OLAP tool. In this
paper, we will only show the generation process
for the Informix Metacube ROLAP tool, which is
divided into two modules: Warehouse Manager,
to construct DSS4, and Explorer, to query previ-
ously constructed DSS. Once the model has been
exported, the cube classes (queries) can be also
exported.

3.4 Export Queries

The purpose of this module is to export the
cube classes (queries) to the target OLAP tool.
Whether the target OLAP tool has the possibility
of defining queries externally, this module trans-
lates cube classes in the query diagram to the
target query language. Again in this paper, we

4A multidimensional model is called Decision Sup-
port System (DSS) in Informix Metacube.

4



will only focus on the export query process for
the module Explorer of the ROLAP tool Informix
Metacube.

3.5 Query Generator

In order to allow the designer to execute user
queries directly to the DW from the gmct, this
module connects to the data stored in the DW
through ODBC and presents the results of the
execution of the queries in a spreadsheet style, as
the grid-oriented, two-dimensional layout struc-
ture used to analyze multidimensional data. This
module is currently under construction.

4 Working with the GOLD Model
CASE Tool environment

This section presents the main steps needed to de-
sign the static and dynamic parts of the GOLD
model. We have chosen two well-known examples,
“the advanced inventory snapshot model” and
“the inventory transaction model” from Chapter
3 (Kimball, 1996) to help the explanation. Sum-
marizing, in the first model, the DW stores the
inventory levels in separate records for each time
period (days, weeks, etc.). On the second model,
the DW stores every change in the status of the
products (arrival, processing, departure, etc.).

4.1 Graphical User Interface and
Core Tool

The GUI is the main window of the tool and is
shown in Figure 3. To accomplish the design of
a class diagram, the GUI provides the designer
with the toolbar on the left hand side where the
different icons are the following (from top to bot-
tom): cursor (selection), fact class, dimension
class, base class, shared aggregation, association
and generalization. These icons switch to ‘en-
abled/disabled’ depending on the actual state of
the design, not allowing the designer to perform
‘non-applicable’ actions.
The gmct does not necessary force the de-

signer to follow a creation order for the design
of the elements in the class diagram. How-
ever, the first class to include in the dia-
gram is usually the fact class; then, dimension
classes are created. Figure 3 shows the fact
class InventorySnapshot. Notice that every
class has two parts: attributes (inventory key,
quantity on hand and quantity shipped, ...)
and methods (New() and Destroy()). In order
to define attribute features (name, type, additiv-
ity rule, etc.) and methods, the gmct provides

Figure 3: GUI representation and Specification
dialog.

the Specification dialog, that can also be seen
in Figure 3. This dialog also allows us to define
derived attributes, both for the fact and the di-
mension classes, e.g. definition of derivation rule
for gross profit.
Hierarchy levels can also be defined within

the dimensions by creating a new class for ev-
ery level. Depending on how these classes are
conected, different and multiple hierarchy paths
can be represented for the same dimension. Fur-
thermore, merging dimensions can also be used.
Figure 4 shows two hierarchy paths: Product >
Subcategory > Category and Warehouse > Zip.

Once the dimension classes have been created,
the fact and dimension classes can be associ-
ated. Figure 4 illustrates how the fact class
InventoryTransaction is connected to four di-
mension classes (Product, Transaction, Time
and Warehouse) by means of shared aggregations.
Next, it is possible to define the additivity rules of
the measures within the fact classes. This task is
performed by using the Additivity dialog shown
in Figure 4. As a example, Figure 4 shows the ad-
ditivity rules that have been defined for the fact
class in our example: specifically, PO number is
nonadditive across any dimension and amount is
nonadditive across Time.

Once the class diagram (static part of the
GOLDmodel) is finished, the user can define cube
classes by using the query diagram. As it can be
seen in Figure 5, the query diagram presents a
different interface that displays facts and dimen-
sions from the class diagram on the left panel of
the window via a tree structure. This interface
allows the user to compose new queries by us-
ing the “drag’n’drop” technique. In this sense,
measures and attributes can be dragged from the
tree structure and dropped into any of the three

5



Figure 4: Definition of semi-additive measures us-
ing the Additivity dialog.

boxes named measures (fact attributes to be ana-
lyzed), slice (constraints to be satisfied) and dice
(dimensions and grouping conditions to address
the analysis) respectively. As outlined in 3.1, the
Core Tool module ensures the correctness of the
constructed queries (cube classes).

Figure 5: Interface for both the query and the
state diagram.

For every cube class, the gmct can automati-
cally represent its corresponding state diagram,
as reflected in Figure 5 for an example cube
class. This diagram shows the different states
and OLAP operations that can be performed
along with the corresponding transitions between
states. To follow the example shown in Figure 5,
if the user performs a roll-up operation in a cube
starting from the state Dicing by Subcategory,
then the cube changes to the new state Dicing
by Category.

4.2 Repository

At the moment, the repository is implemented as
a plain text file. This method has the advan-
tage that its meaning can be easily understood
without any difficulty, making it legible for any-
one. Figure 6 shows part of the definition of the
example fact and dimension classes, and the re-
lationships between them. These scripts can be
easily seen from the CASE tool.

Figure 6: Metadata of the example fact and di-
mension classes.

4.3 Export Model

The gmct allows the designer to export the con-
ceptual MD model to several external OLAP
tools. Figure 7 shows the expanded menu option
for exporting models.
The generation process into a target OLAP tool

accomplished in this module is divided into three
phases:

1. Loading the metadata corresponding to the
conceptual schema from the repository. This
metadata is internally stored using ad-hoc tech-
niques introduced in the previous Section 4.2.

2. Applying specific transformations to adapt
original semantics to the data model of the tar-
get system with the minimal loss of expressive-
ness.

3. Creating the output for the target OLAP tool
by translating every element in the original

6



Figure 7: Export models in the gmct.

schema to a corresponding construct in the tar-
get OLAP system. This logical schema is not
directly written into the target OLAP reposi-
tory, but written into an external file.
The transformation step handles the con-

straints of the target OLAP system. To accom-
plish this task, the target data model has to be
inspected and studied in order to discover all the
limitations with respect to the GOLD model and
how they can be resolved with the application
of specific transformation methods. These trans-
formations are designed to preserve as much as
possible of the original semantics, i.e. original
expressiveness. In some cases, due to limitations
in the target OLAP tool, some constraints can-
not be resolved by the generation process and are
simply ignored and discarded.
In order to check the validity of the generation

process and demonstrate the applicability of our
CASE tool, we focus on the generation process
for Warehouse Manager (WM), the module for
constructing DSS in Informix Metacube.

4.3.1 From the GOLD model into
the Informix Warehouse
Manager

Metacube, as a ROLAP tool, stores the data
and the metadata in a relational database sys-
tem. In order to create the OLAP schema for
Metacube, our CASE tool generates two plain
text files with SQL statements: the first file,
containing the definition of the database ele-
ments (SQL Data Definition Language, DDL),
e.g. tables for facts and dimensions with their
attributes; the second file, defining the internal
description of the model (SQL Data Manipula-
tion Language, DML), i.e. the metadata (names
of the dimension levels, default attributes, etc.)

and information about the configuration of the
target OLAP tool. The overall information gen-
erated by our CASE tool is then used by WM to
build its own DSS.
Following these considerations, we run the gen-

eration process for the example described in Sec-
tion 4. During this interactive process, the user is
requested to confirm the transformations made by
this module. For example, as WM does not work
with OID, a transformation is needed in order to
generate the implementation. The acknowledge-
ment for this transformation is requested from the
user through the confirmation dialog illustrated
in Figure 8.

Figure 8: Confirmation dialog in the generation
process.

Once the generation process has finished, two
plain text files have been created that contain
SQL scripts that can be seen from the CASE tool
as reflected in Figure 9.

Figure 9: Scripts obtained in the generation pro-
cess for Informix Metacube.

In Figure 9, two scripts are shown: on the left
hand side, we can notice the SQL sentences that
load the model into the Informix DSS; on the
right hand side, we can see the SQL sentences
that create the star schema in the database.

4.4 Export Queries

Cube classes defined in the query diagram can be
also exported to an external query language, if
supported by the target OLAP tool. The export

7



process for a particular query is accomplished into
three steps:
1. Loading the metadata corresponding to the

query from the repository.
2. The query is then internally composed and an-

alyzed in order to find inconsistencies within
its own definition, e.g. non-allowed grouping
conditions, constraints on different data types,
etc.

3. Creating an external file that contains the map-
ping of the query for the corresponding external
query language used by the target OLAP tool,
e.g. SQL in the case of Informix Metacube.
As previously done, to check the validity of the

export query process and demonstrate the appli-
cability of our CASE tool, we focus on the export
query process for Explorer, the query module in
Informix Metacube.

4.4.1 From the GOLD model into
the Informix Explorer

As introduced in Section 4.3.1, Metacube uses
SQL as its query language. Figure 10 displays
the script generated for our example cube class
previously shown in Figure 5.

Figure 10: Query scripts obtained in the genera-
tion process for Informix Metacube.

The script represented in Figure 10 contains
the statements needed to compose a query in In-
formix Metacube. Every SQL statement refer-
ences one particular element of the internal query
metadata of Explorer.

4.5 Using the exported model and
queries

In order to check the validity of the generated im-
plementation, both for the model and the queries,

we build a DSS from the files presented in Figure
9. The resulting DSS in WM is shown in Figure
11.

Figure 11: DSS constructed from the generated
SQL script.

Figure 11 illustrates the DSS corresponding to
the original GOLD model. We can notice that the
definition of three levels (Product, Subcategory
and Category) for the Product dimension and
also the attributes within the Product level.
Several levels and attributes are also shown for
the rest of the dimensions (Time, Transaction
and Warehouse). Furthermore, measures defined
within the fact InventorySnapshot are illus-
trated with the particular definition of the Gross
Margin derived measure.

On the other hand, the script that contains the
queries is read from Explorer, so they are avail-
able to be executed. An example of a user query
is represented in Figure 12.
Whenever we define a query in Explorer, a filter

should be applied to constraint the set of data
that the query will return as a result. Filters
allow the user to limit the range of data returned
for any given attribute or measure. As can be
observed in Figure 12, we have filtered data for
the current week period.

5 Conclusions and future works

In this paper, we have presented a CASE oper-
ational environment for OLAP applications that
abstracts the conceptual design of implementa-
tion issues. The CASE tool gives support to
the GOLD model, an object-oriented conceptual

8



Figure 12: An example of a user query taken from
the generated SQL script

model based on a subset of the UML, which has
successfully been checked for representing main
MD properties at the conceptual level.
One of the main advances of this CASE tool is

its capability for semi-automatically generating
the corresponding implementation into a target
commercial OLAP tool. This generation process
involves a set of transformations from the mod-
eling constructors used in the conceptual design
(facts, dimension, classification hierarchies, etc.)
into the target OLAP tool.
We are currently working on providing a stan-

dard metadata repository in XML format to as-
sure us the portability of a conceptual design be-
tween different systems. We are also considering
the integration of OLAP facilities in the CASE
tool. This task involves data warehouse proto-
typing and sample data generation issues.

REFERENCES

Booch, G. (1994). Object Oriented Analysis and
Design with Applications. Addison-Wesley, 2
edition.

Chaudhuri, S. and Dayal, U. (1997). An Overview
of DataWarehousing and OLAP Technology.
ACM Sigmod Record, 26(1).

Dinter, B., Sapia, C., Höfling, G., and Blaschka,
M. (1998). The OLAP Market: State of the
Art and Research Issues. In Proc. of the
ACM 1st Intl. Workshop on Data warehous-
ing and OLAP (DOLAP’98), pages 22–27,
Washington D.C., USA.

Giovinazzo, W. (2000). Object-Oriented Data
Warehouse Design. Building a star schema.
Prentice-Hall, New Jersey, USA.

Golfarelli, M. and Rizzi, S. (1998). A methodolog-
ical Framework for Data Warehouse Design.
In Proc. of the ACM 1st Intl. Workshop on
Data warehousing and OLAP (DOLAP’98),
pages 3–9, Washington D.C., USA.

Hahn, K., Sapia, C., and Blaschka, M. (2000).
Automatically Generating OLAP Schemata
from Conceptual Graphical Models. In
Proc. of the ACM 3rd Intl. Workshop on
Data warehousing and OLAP (DOLAP’00),
Washington D.C., USA.

Inmon, W. (1996). Building the Data Warehouse.
John Wiley, 2 edition.

Kimball, R. (1996). The data warehousing toolkit.
John Wiley, 2 edition.

Object Management Group (OMG) (2001). Uni-
fied Modeling Language (UML). Internet:
http://www.omg.org/cgi-bin/doc?formal/-
01-09-67.

Rational Software (2001). Rational Rose Family.
http://www.rational.com.

Sapia, C., Blaschka, M., Hfling, G., and Dinter,
B. (1998). Extending the E/R Model for the
Multidimensional Paradigm. In Proc. of the
1st Intl. Workshop on Data Warehouse and
Data Mining (DWDM’98), volume 1552 of
LNCS, pages 105–116. Springer-Verlag.

Trujillo, J. (2001). The GOLD Model: An Object-
Oriented Conceptual Model for the Design
of OLAP Applications. Ph.D. Thesis. DLSI.
University of Alicante.

Trujillo, J., Gómez, J., and Palomar, M. (2000).
Modeling the Behavior of OLAP Applica-
tions Using an UML Compilant Approach.
In Proc. of the 1st Intl. Conf. On Advances
in Information Systems (ADVIS’00), volume
1909 of LNCS, pages 14–23. Springer-Verlag.

Trujillo, J., Palomar, M., Gómez, J., and Song, I.-
Y. (2001). Designing Data Warehouses with
OO Conceptual Models. IEEE Computer,
special issue on Data Warehouses, 34(12).

Tryfona, N., Busborg, F., and Christiansen, J.
(1999). starER: A Conceptual Model for
Data Warehouse Design. In Proc. of the
ACM 2nd Intl. Workshop on Data ware-
housing and OLAP (DOLAP’99), pages 3–8,
Kansas City, Missouri, USA.

9


