
A Web-Oriented Approach to Manage

Multidimensional Models through XML Schemas

and XSLT?

Sergio Luján-Mora, Enrique Medina, and Juan Trujillo

Departamento de Lenguajes y Sistemas Informáticos
Universidad de Alicante. SPAIN

{slujan,emedina,jtrujillo}@dlsi.ua.es

Abstract. Multidimensional (MD) modeling is the foundation of data
warehouses, MD databases, and OLAP applications. In the last years,
there have been some proposals to represent MD properties at the con-
ceptual level. In this paper, we present how to manage the representation,
manipulation, and presentation of MD models on the web by means of
eXtensible Stylesheet Language Transformations (XSLT). First, we use
eXtensible Markup Language (XML) to consider main MD modeling
properties at the conceptual level. Next, an XML Schema allows us to
generate valid XML documents that represent MD models. Finally, we
provide XSLT stylesheets that allow us to automatically generate HTML
pages from XML documents, thereby supporting di�erent presentations
of the same MD model easily. A CASE tool that gives support to all
theoretical issues presented in the paper has been developed.

Keywords: Multidimensional modeling, UML, XML, XML Schema, XSLT

1 Introduction

Multidimensional (MD) modeling is the foundation of data warehouses, MD
databases, and OLAP applications. These systems provide companies with huge
historical information for the decision making process. Various approaches for
the conceptual design of MD systems have been proposed in the last few years
[1][2][3,4][5]. Due to space constraints, we refer the reader to [6] for detailed
comparison and discussion about these models.

On the other hand, a salient issue nowadays in the scienti�c community and
in the business world is the interchange of information. Therefore, a relevant
feature of a model should be its capability to share information in an easy and
standard form. The eXtensible Markup Language (XML) [7] is rapidly being
adopted as a speci�c standard syntax for the interchange of semi-structured
data. Furthermore, XML is an open neutral platform and vendor independent

? This paper has been supported by the Spanish Ministery of Science and Technology,
project number TIC2001-3530-C02-02.

meta-language standard, which allows to reduce the cost, complexity, and e�ort
required in integrating data within and between enterprises. However, one com-
mon feature of the semi-structured data is the lack of schema, so the data is
describing itself.

Nevertheless, XML documents can be associated to a Document Type Def-
inition (DTD) or an XML Schema [8], both of which allow us to describe and
constraint the structure of XML documents. In this way, an XML document
can be validated against these DTDs or XML Schemas to check its correctness.
Moreover, thanks to the use of eXtensible Stylesheet Language Transformations
(XSLT) [9], users can express their intentions about how XML documents should
be presented, so they could be automatically transformed into other formats, e.g.
HTML documents. An immediate consequence is that we can de�ne di�erent
XSLT stylesheets to provide di�erent presentations of the same XML document.

In this paper, we present how to manage the representation, manipulation,
and presentation of the same conceptual MD model by means of XSLT. The
conceptual modeling is accomplished by the Object-Oriented (OO) approach
presented in [3,4], based on the Uni�ed Modeling Language (UML) [10], as it
easily considers main MD properties at the conceptual level such as the many-to-
many relationships between facts and dimensions, degenerate dimensions, mul-
tiple and alternative path classi�cation hierarchies, or non-strict and complete
hierarchies1. Each one of these MD properties is represented in a XML Schema.
This XML Schema is then used to automatically validate XML documents, so
any external application could bene�t from the expressiveness of the concep-
tual MD approach. Furthermore, we use XSLT stylesheets and XML documents
in a transformation process to automatically generate HTML pages that can
represent di�erent presentations of the same MD model. As an example of the
applicability of our proposal, these HTML pages can be used to document the
MD models in the web, with the advantages that it implies (standardization,
access from any computer with a browser, ease of use, etc.). Moreover, the auto-
matic generation of documentation from conceptual models avoids the problem
of documentation out of date (incoherences, features not re�ected in the docu-
mentation, etc.).

In this context, several proposals have been presented with respect to MD
modeling and XML support. All of these proposals make use of XML as the
base language for describing data. In [11], an innovative data structure called an
XML-star schema is presented with explicit dimension hierarchies using DTDs
that describe the structure of the objects permitted in XML data. Another ap-
proach is [12], where they propose a semi-automatic approach for building the
conceptual schema for a data mart starting from the XML sources. With regard
to the presentation of the information, [13] discusses the presentation of mul-
tidimensional XML data through multidimensional XSLT stylesheets, thereby
allowing the user to view di�erent variants of the same document. To the best
of our knowledge, the proposal that comes closest to our goal is [13]. However,

1 This model is supported by a CASE tool that allows us to semi-automatically gen-
erate the implementation of a MD model into a target commercial OLAP tool.

the latter approach focus on the presentation of the multidimensional XML data
rather than on the presentation of the structure of the multidimensional concep-
tual model itself. Furthermore, we use a very recent technology (XML Schemas)
which has not been used yet in any of the above-commented approaches.

Fig. 1. Structure of sections of this paper.

Following these considerations, the remainder of this paper is structured in
Fig. 1 as follows: Section 2 describes the basis of the OO conceptual MD mod-
eling approach that this paper is based on. Section 3 presents the XML Schema
created from the metamodel of the MD model that will allow us to validate
XML documents that store instances of the conceptual model. Then, Section 4
shows how to use XSLT stylesheets to automatically generate HTML pages from
XML documents, thereby allowing us to manage di�erent presentations of the
model in the web. In Section 5 we present our conclusions and bene�ts of our
proposal. Finally, future works that are currently being considered are presented
in Section 6.

2 Conceptual multidimensional modeling

In this section, we will summarize how the conceptual MD modeling approach
followed in this paper [3,4] represents both the structural and dynamic parts of
MD modeling. In this approach, main MD modeling structural properties are

speci�ed by means of a UML class diagram in which the information is clearly
separated into facts and dimensions.

Dimensions and facts are considered by dimension classes and fact classes
respectively. Then, fact classes are speci�ed as composite classes in shared ag-
gregation relationships of n dimension classes. Thanks to the �exibility of shared
aggregation relationships that UML provides, many-to-many relationships be-
tween facts and particular dimensions can be considered by indicating the 1..*
cardinality on the dimension class role.

By default, all measures in the fact class are considered additive. For nonad-
ditive measures, additive rules are de�ned as constraints and are also placed in
somewhere around the fact class. Furthermore, derived measures can also be ex-
plicitly considered (indicated by /) and their derivation rules are placed between
braces in somewhere around the fact class.

This OO approach also allows us to de�ne identifying attributes in the fact
class, if convenient, by placing the constraint {OID} next to a measure name.
In this way we can represent degenerate dimensions [14][15], thereby providing
other fact features in addition to the measures for analysis. For example, we could
store the ticket and line numbers as other ticket features in a fact representing
sales tickets.

With respect to dimensions, every classi�cation hierarchy level is speci�ed
by a class (called a base class). An association of classes speci�es the relation-
ships between two levels of a classi�cation hierarchy. The only prerequisite is
that these classes must de�ne a Directed Acyclic Graph (DAG) rooted in the di-
mension class (constraint {dag} placed next to every dimension class. The DAG
structure can represent both alternative path and multiple classi�cation hier-
archies. Every classi�cation hierarchy level must have an identifying attribute
(constraint {OID}) and a descriptor attribute (constraint {D}). These attributes
are necessary for an automatic generation process into commercial OLAP tools,
as these tools store this information in their metadata. The multiplicity 1 and
1..* de�ned in the target associated class role addresses the concepts of strict-
ness and non-strictness. In addition, de�ning the {completeness} constraint in
the target associated class role addresses the completeness of a classi�cation hi-
erarchy. This approach considers all classi�cation hierarchies non-complete by
default.

The categorization of dimensions, used to model additional features for an
entity's subtypes, is considered by means of generalization-specialization rela-
tionships. However, only the dimension class can belong to both a classi�cation
and specialization hierarchy at the same time.

Regarding the dynamic part, this approach also provides a UML-compliant
class notation (called cube class) to specify initial user requirements. A cube
class is structured into three sections: measures, to specify which fact attributes
are analyzed; slice, to express constraints in terms of �lters; and dice, to de�ne
grouping conditions of the data. Later, a set of basic OLAP operations (e.g. roll-
up, drill-down, slice, etc.) is provided to accomplish the further data analysis
phase from these cube classes.

Finally, this approach provides a set of modules with adequate transformation
rules to export the accomplished conceptual MD model into a commercial OLAP
tool, which allows us to check the validity of the proposed approach.

3 XML Schema and XML Document

As said in the introduction, our goal is to provide a common standard format
to store and interchange conceptual MD models accomplished by the OO con-
ceptual approach. To achieve this goal, this section presents the XML Schema2

that allows us to structure XML documents that are instances of the MD models
together with all the MD expressiveness commented in Section 2.

3.1 XML Schema

The purpose of XML Schemas is to specify the structure of instance elements
together with the data type of each element/attribute. The motivation for XML
Schemas is the dissatisfaction with DTDs mainly due to their syntax and their
limited data type capability, not allowing us to de�ne new speci�c data types.
Therefore, XML Schemas are a tremendous advancement over DTDs, as they
allow us to create enhanced data types and valid references, they are written in
the same syntax as instance documents, they can de�ne multiple elements with
the same name but di�erent content (namespace), they can de�ne substitutable
elements, and many more features (sets, unique keys, nil content, etc.).

In [16] we presented a DTD to validate XML documents that stored the
conceptual MDmodels. In this section, we notably improve our previous proposal
by de�ning an XML Schema instead of the DTD. With respect to the structure
of an XML Schema, there are two main possibilities: �at and �Russian doll�
designs. The former is based on a �at catalog of all the elements available in the
instance document and, for each of them, lists of child elements and attributes.
We will use the later design as it allows us to de�ne each element and attribute
within its context in an embedded manner. In this sense, the representation
of the XML Schema as a tree structure is illustrated in Fig. 2 for the sake of
clearness and comprehension. As it can be observed, we denote every node of the
tree with a label. Then, every label has its correspondence with one element in
the XML Schema. Following a left-right path in the tree, we clearly identify all
the MD properties supported by the OO conceptual MD model. More precisely,
the root of the tree is tagged as golmodel and corresponds to the following
element de�nition

<!-- Main element (root) -->
<xsd:element name="GOLDMODEL">
<xsd:complexType>

<xsd:sequence>
<!-- First level: FACTCLASSES -->

<xsd:element name="FACTCLASSES">

2 The complete de�nition of the XML Schema has more than 300 lines and it is not
completely shown here due to space constraints.

Fig. 2. The XML Schema represented as a tree structure.

...
</xsd:element>

<!-- First level: DIMCLASSES -->
<xsd:element name="DIMCLASSES">
...
</xsd:element>

<!-- First level: CUBECLASSES -->
<xsd:element name="CUBECLASSES" minOccurs="0">
...
</xsd:element>

</xsd:sequence>
<!-- GOLDMODEL attributes-->

<xsd:attribute name="id" type="xsd:ID" use="required"/>
<xsd:attribute name="name" type="xsd:string" use="required"/>
<xsd:attribute name="showAtts" type="xsd:boolean" default="true"/>
<xsd:attribute name="showMethods" type="xsd:boolean" default="true"/>
<xsd:attribute name="creationDate" type="xsd:date"/>
<xsd:attribute name="lastModified" type="xsd:date"/>
<xsd:attribute name="description" type="xsd:string"/>
<xsd:attribute name="responsible" type="xsd:string"/>

</xsd:complexType>
</xsd:element>

while the child nodes of a node represent the subelements of an element in the
XML Schema3. Whether the subelements are optional is indicated by a dashed
line in the tree structure. Furthermore, to indicate the multiplicity (cardinality)
of the subelements, we use the standard modi�ers provided by the XML Schema
syntax: minOccurs and maxOccurs, corresponding to minimum and maximum
values for the lower and upper bounds respectively. By default, both modi�ers
have the value 1, but if this value changes, then it is explicitly de�ned in the
schema, as can be seen in Fig. 2. Furthermore, we de�ne additional tags (in
plural form) in order to group common elements together, so that they can be
exploited to provide optimum and correct comprehension of the model, e.g. tags
in plural like factclasses or dimclasses.

As previously commented, one of the main advances of the XML Schemas
is that we can easily declare new data types to de�ne our own attributes and
elements. To achieve this, we give a name to the simpleType and complexType
elements of the XML Schema. The following fragment shows how the simple
data types Operator and Multiplicity are de�ned to be used later as types of
particular attributes, such as roleA, roleB or operator (notice that user-de�ned
data types are shadowed in Fig. 2):

<xsd:simpleType name="Operator"> <xsd:simpleType name="Multiplicity">
<xsd:restriction base="xsd:string"> <xsd:restriction base="xsd:string">

<xsd:enumeration value="eq"/> <xsd:enumeration value="0"/>
<xsd:enumeration value="lt"/> <xsd:enumeration value="1"/>
<xsd:enumeration value="gt"/> <xsd:enumeration value="M"/>
<xsd:enumeration value="let"/> <xsd:enumeration value="1..M"/>
<xsd:enumeration value="get"/> </xsd:restriction>
<xsd:enumeration value="noteq"/> </xsd:simpleType>
<xsd:enumeration value="like"/>
<xsd:enumeration value="notlike"/>
<xsd:enumeration value="in"/>
<xsd:enumeration value="notin"/>

</xsd:restriction>
</xsd:simpleType>

3 The attributes of the elements are not represented in the tree for the sake of sim-
plicity.

Within this XML Schema, fact classes labeled factclass in Fig. 2, may have
no fact attributes to consider fact-less fact tables, as can be observed in the
multiplicity (minOccurs="0") for the tag factatts:

<!-- Set of fact classes -->
<xsd:element name="FACTCLASSES">

<xsd:complexType> <xsd:sequence>
<xsd:element name="FACTCLASS" maxOccurs="unbounded">
<xsd:complexType> <xsd:sequence>

<!-- Set of fact attributes -->
<xsd:element name="FACTATTS" minOccurs="0">

<xsd:complexType> <xsd:sequence>
<xsd:element name="FACTATT" maxOccurs="unbounded">

<xsd:complexType> <xsd:sequence>
<xsd:element name="ADDITIVITY" minOccurs="0" maxOccurs="unbounded">
<xsd:complexType>

<!-- ADDITIVITY attributes -->
<xsd:attribute name="dimclass" type="xsd:IDREF" use="required"/>
<xsd:attribute name="isNOT" type="xsd:boolean" default="false"/>
<xsd:attribute name="isSUM" type="xsd:boolean" default="false"/>
<xsd:attribute name="isMAX" type="xsd:boolean" default="false"/>
<xsd:attribute name="isMIN" type="xsd:boolean" default="false"/>
<xsd:attribute name="isAVG" type="xsd:boolean" default="false"/>
<xsd:attribute name="isCOUNT" type="xsd:boolean"/>

</xsd:complexType> </xsd:element> </xsd:sequence>
<!-- FACTATT atributes -->
<xsd:attribute name="id" type="xsd:ID" use="required"/>
<xsd:attribute name="name" type="xsd:string" use="required"/>
...
<xsd:attribute name="derivationRule" type="xsd:string"/>

</xsd:complexType> </xsd:element> </xsd:sequence>
</xsd:complexType> </xsd:element>

<!-- Set of fact methods -->
<xsd:element name="METHODS" type="MethodsType" minOccurs="0"/>

<!-- Set of shared aggregations -->
<xsd:element name="SHAREDAGGS" minOccurs="0">

<xsd:complexType> <xsd:sequence>
<xsd:element name="SHAREDAGG" maxOccurs="unbounded">

<xsd:complexType>
<!-- SHAREDAGG attributes>
<xsd:attribute name="dimclass" type="xsd:IDREF" use="required"/>
<xsd:attribute name="name" type="xsd:string"/>
<xsd:attribute name="description" type="xsd:string"/>
<xsd:attribute name="roleA" type="Multiplicity" default="M"/>
<xsd:attribute name="roleB" type="Multiplicity" default="1"/>

</xsd:complexType> </xsd:element> </xsd:sequence>
</xsd:complexType> </xsd:element> </xsd:sequence>
<!-- FACTCLASS attributes --> ...

</xsd:complexType> </xsd:element> </xsd:sequence> </xsd:complexType> </xsd:element>

In case that fact attributes exist in the fact class, derivation rules can be de�ned
for these attributes by means of derivationRule in order to express calculated
measures. Additivity is also supported in terms of the element additivity along
with the information about how a measure is aggregated (isSUM, isMAX, etc.)
along a particular dimension. Notice at the end of the previous XML Schema
fragment how many-to-many relationships between facts and dimensions can
also be expressed by assigning the same value �M� to both attributes roleA and
roleB in the element sharedagg. The type of both attributes is Multiplicity,
previously de�ned in the XML Schema.

With respect to dimensions, the following fragment of the XML Schema
contains elements to express dimensions and classi�cation hierarchies by means
of association relationships:

<!-- Set of dimension classes -->
<xsd:element name="DIMCLASSES">

<xsd:complexType> <xsd:sequence>
<xsd:element name="DIMCLASS" maxOccurs="unbounded">

<xsd:complexType> <xsd:sequence>
<!-- Set of association levels -->

<xsd:element name="ASOCLEVELS" minOccurs="0">
<xsd:complexType> <xsd:sequence>
<xsd:element name="ASOCLEVEL" maxOccurs="unbounded">
<xsd:complexType> <xsd:sequence>

<!-- Set of dimension attributes -->
<xsd:element name="DIMATTS" type="DimattsType" minOccurs="0"/>

<!-- Set of association relationships -->
<xsd:element name="RELATIONASOCS" minOccurs="0">

<xsd:complexType> <xsd:sequence>
<xsd:element name="RELATIONASOC" maxOccurs="unbounded">
<xsd:complexType>

<xsd:attribute name="child" type="xsd:IDREF" use="required"/>
<xsd:attribute name="name" type="xsd:string"/>
<xsd:attribute name="description" type="xsd:string"/>
<xsd:attribute name="roleA" type="Multiplicity" default="1"/>
<xsd:attribute name="roleB" type="Multiplicity" default="M"/>
<xsd:attribute name="completeness" type="xsd:boolean"/>

</xsd:complexType> </xsd:element> </xsd:sequence>
</xsd:complexType> </xsd:element>

<!-- Set of dimension methods -->
<xsd:element name="METHODS" type="MethodsType" minOccurs="0"/>

</xsd:sequence>
<!-- METHODS attributes -->

</xsd:complexType> </xsd:element> </xsd:sequence>
</xsd:complexType> </xsd:element>
<!-- DIMCLASS attributes-->
<xsd:attribute name="id" type="xsd:ID" use="required"/>
<xsd:attribute name="name" type="xsd:string" use="required"/>
<xsd:attribute name="caption" type="xsd:string"/>
<xsd:attribute name="description" type="xsd:string"/>
<xsd:attribute name="isTime" type="xsd:boolean" default="false"/>

</xsd:complexType> </xsd:element> </xsd:sequence> </xsd:complexType> </xsd:element>

Notice that attributes within these elements in the XML Schema allow us to
express all the MD properties of the model. In this way, non-strictness may be
de�ned by assigning the same value �M� to both attributes roleA and roleB in
the element relationasoc, along with completeness by means of the boolean
attribute completeness. Moreover, identifying and descriptor attributes within
dimensions can be de�ned using the attributes OID and D, respectively in dimatt.

Finally, information about valid references is provided to our XML Schema.
This is a very important feature, as we can determine which elements an element
is able to reference, thereby allowing the schema to be semantically correct (it
is similar to foreign keys in relational databases). It supposes an improvement
of our previous proposal [16], as DTD references are not selective and can be
applied to any element, although not being semantically correct. For example,
the following fragment ensures that the values of the attribute dimclass within
the additivity and sharedagg elements point to identi�er attributes (@id) in
dimclass elements:

<xsd:key name="DIMCLASSKey">
<xsd:selector xpath="DIMCLASSES/DIMCLASS"/>
<xsd:field xpath="@id"/>

</xsd:key>
<xsd:keyref name="additivityDIMCLASSKey" refer="DIMCLASSKey">
<xsd:selector xpath="FACTCLASSES/FACTCLASS/FACTATTS/FACTATT/ADDITIVITY"/>

<xsd:field xpath="@dimclass"/>
</xsd:keyref>
<xsd:keyref name="sharedaggDIMCLASSKey" refer="DIMCLASSKey">

<xsd:selector xpath="FACTCLASSES/FACTCLASS/SHAREDAGGS/SHAREDAGG"/>
<xsd:field xpath="@dimclass"/>

</xsd:keyref>

Fig. 3. An XML document generated by the CASE Tool.

3.2 XML Document

Once the speci�cation for the XML Schema is accomplished, XML documents
may be generated by the CASE tool to store instances of the OO conceptual
models, as re�ected in Fig. 3. On the other hand, Fig. 4 shows the presentation
of an XML document generated by the CASE tool in a popular web browser
(Microsoft Internet Explorer). This browser brings the possibility to validate an
XML document against a DTD, but not against an XML Schema; in addition,
the XML document is not presented in a �pretty� way.

To validate our XML Schema, we used IBM Schema Quality Checker 1.2.1.0034,
a program which takes one or more XML Schema �les, parses them and reports
any violation of rules and constraints de�ned in the W3C XML Schema speci-
�cation [8]. On the other hand, we also used Apache Xerces Java Parser 1.4.45

to validate XML documents against our XML Schema.

4 Available from http://www.alphaworks.ibm.com/tech/xmlsqc.
5 Available from http://xml.apache.org/xerces-j/index.html.

Fig. 4. An XML document displayed in Microsoft Internet Explorer without XSLT.

4 XSLT and the Web

Another relevant issue of our approach was to provide di�erent presentations of
the MD models in the web at a conceptual level. However, nowadays only some
web browsers partly support XML (Microsoft Internet Explorer 5, Netscape
Navigator 6). In addition to this inconvenience, XML documents only contain
data, so that no information about presentation aspects is included. To solve
this problem, XSL Formatting Objects6 (XSL FO) [17] is a recent technology
that allows us to de�ne the presentation for XML documents, although there is
no current browser that supports it. As a consequence, we are currently forced
to transform XML documents to HTML pages7 in order to publish them in the
web.

The best method to accomplish this task is the use of XSLT [9], as a language
for transforming XML documents into other XML documents. XSLT stylesheets
describe a set of patterns (templates) to match both elements and attributes
de�ned in an XML Schema, in order to apply speci�c transformations for each
considered match. Thanks to XSLT, the source document can be �ltered and
reordered in constructing the resulting output. Therefore, our XML documents

6 XSL FO describes how XML documents will look when displayed or printed.
7 Actually, the XML documents are transformed to XHTML 1.0. In addition, we also
use Cascading Style Sheets (CSS), because it gives us more control over how pages
are displayed.

Fig. 5. Generating di�erent presentations in HTML from the same MD model.

can be tailored to represent di�erent presentations of the same MD model using
one XSLT stylesheet for each presentation8.

As an example, Fig. 5 illustrates the overall transformation process for a
MD model composed of two fact classes sharing common dimensions. The MD
model is stored in an XML document and an XSLT stylesheet is provided to gen-
erate di�erent presentations of the MD model as di�erent HTML pages. These
presentations correspond to fact class 1 and 2 respectively and they only
contain relevant information about each fact class in the model, i.e. dimensions
in the MD model not belonging to a particular fact class are not shown in the
corresponding presentation.

In our work, we have used two di�erent XSLT processors: Microsoft XML
Core Services (MSXML) 4.09 (formerly known as the Microsoft XML Parser)
and Instant Saxon 6.510. Both of them are full compliance with XSLT 1.0.
However, Instant Saxon also allows the use of XSLT 1.111 features, including
xsl:script and xsl:document (this new instruction allows us to create di�er-
ent outputs from the same XML document). Therefore, we have considered two
approaches: one for version 1.0 that generates an only HTML page with internal
links, and the other for version 1.1 that has the bene�t of generating a collection
of HTML pages with links between them (the number of pages depends on the
number of fact classes and dimension classes de�ned in the model).

Due to space constraints, it is not possible to include the complete de�nition
of the XSLT stylesheet here. Therefore, we only exhibit some fragments of the

8 It can be also used an only XSLT stylesheet that receives a parameter.
9 The MSXML 4.0 features are available in Internet Explorer only via scripting. It can
be downloaded from http://msdn.microsoft.com.

10 Available from http://saxon.sourceforge.net.
11 The status of this version is �working draft�. Besides, XSLT 2.0 is in �requirements

working draft�.

XSLT. The �rst example shows the instructions that generate the HTML code
to display information about fact attributes (factatt):

<xsl:template match="FACTATT">
<tr bgcolor="#00ffff">

<td><xsl:value-of select="@name"/></td>
<td><xsl:value-of select="@atomic"/></td>
<td><xsl:value-of select="@type"/></td>
<td><xsl:value-of select="@description"/></td>
<td><xsl:value-of select="@initial"/></td>
<td><xsl:value-of select="@derivationRule"/></td>
<td><xsl:value-of select="@OID"/></td>

</tr>
</xsl:template>

Notice that XSLT instructions and HTML tags are intermingled. The XSLT
processor copies the HTML tags to the transformed document and interprets
any XSLT instruction encountered. Applied to this example, the value of the
attributes of the element factatt are inserted in the resulting document in
an HTML table; we can notice the attributes commented in Section 2: atomic,
derivation rule, OID, and so on.

As above commented, XSLT 1.1 allows us to create di�erent HTML outputs
and connect them from an only XML document. The following instructions show
how we create the links between the main page, the page that represents the MD
model, and the pages that correspond to the fact classes:

<xsl:template match="FACTCLASS">
<xsl:variable name="url" select="@id"/>
<tr>
<td></td>
<!-- The link to the fact class page -->
<td><xsl:value-of select="@name"/></td>
<td><xsl:value-of select="@description"/></td>

</tr>
<!-- New document -->
<xsl:document href="{$url}.html">
<html>
<head><title>Fact class: <xsl:value-of select="@name"/></title></head>
<body bgcolor="mintcream">

As we have de�ned the @id attribute of factclass as ID in the XML Schema,
and thus, it has a unique value:

� We store it in a variable:
<xsl:variable name="url" select="@id"/>

� We use it as the name of new documents:
<xsl:document href="{$url}.html">

� We use it as the target document in the links:

4.1 Managing the model in a web browser

The resulting HTML pages allow us to navigate through the di�erent presenta-
tions of the model on a web browser. All the information about the MD properties
of the model is represented in the HTML pages.

For example, in Fig. 6 we show an example of navigation for one of the
presentations. The �rst page is showed in Fig. 6.1 and contains the general
description of the model: name, creation date, last modi�ed, and the names of
the fact classes and dimension classes, which are active links.

Whenever it is possible, there is a link connecting di�erent pieces of informa-
tion. For example, if the fact class Sales is selected, the page showed in Fig. 6.2
is loaded. This page shows the information about the selected fact class: name,
measures, methods, and shared aggregations. In the example, Sales contains
three measures, inventory, num_ticket and qty, and the �rst one is an active
link because it has additivity rules. If this link is selected, a new �oating page
is showed (Fig. 6.3) with the corresponding additivity rule.

Finally, Fig. 6.4 shows the de�nition of the dimension class Time: attributes,
methods, association levels and categorization levels. In this example, this di-
mension class has two association levels: Month and Week, which are again active
links and allow us to continue exploring the model. This page can be reached
from pages in Fig. 6.1, 6.2, and 6.3, because there exists a relationship between
them.

6.1 6.2

6.3 6.4

Fig. 6. Model navigation in the web using a browser.

5 Conclusions

Multidimensional (MD) modeling is the foundation of data warehouses, MD
databases, and OLAP applications. We have presented how to manage the rep-
resentation, manipulation, and presentation of MD models accomplished by a
OO conceptual approach, based on UML, in XML documents. In this way, we are
able to consider the main MD properties from a conceptual level such as many-
to-many relationships between facts and dimensions, additivity, non-strictness
and so on.

To validate these XML documents, we have de�ned an XML Schema that
represents the structure of XML documents. The bene�t of this proposal is that
we make use of standard and recent technology, that is increasingly becoming
accepted, together with the task of MD modeling by means of the OO conceptual
approach.

Furthermore, we have provided XSLT stylesheets that allow us to generate
di�erent presentations on HTML pages of the same MD model. Therefore, man-
agement of di�erent presentations could be easily achieved. As an example of
the applicability of our proposal, these HTML pages can be used to document
the MD models in the web, with the advantages that it implies. Moreover, the
automatic generation of documentation avoids the problem of documentation
out of date. A CASE tool that gives support to all theoretical issues presented
in the paper has been developed.

6 Future Work

Due to the rapid evolution of the used technology, we are considering to adapt our
proposal to the new emerging standards. With respect to the presentation, XSL
FO can be used to specify in deeper detail the pagination, layout, and styling
information that will be applied to XML documents. However, to the best of our
knowledge, there are no current tools that completely provide support for XSL
FO.

From the architecture perspective, we run the transformation process using
a client-server technology, i.e. the XSLT stylesheet is applied to the XML docu-
ment in the server and the HTML is returned to the client browser. In the future,
when the browsers completely support XML and XSLT, the transformation will
be able to be performed in the browser. This last approach has the advantage
of removing some of the processing load from the server.

Finally, we are currently studying the Common Warehouse Metamodel [18]
as a common framework to easily interchange warehouse metadata between dis-
tributed heterogenous environments. This proposal provides designers and tools
with common de�nitions but lacks the complete set of information an existing
tool would need to fully operate. Therefore, another future research line would be
to extend the given de�nitions to provide the CASE tool with speci�c de�nitions
required for operation.

References

1. Golfarelli, M., Rizzi, S.: A methodological Framework for Data Warehouse De-
sign. In: Proc. of the ACM 1st Intl. Workshop on Data warehousing and OLAP
(DOLAP'98), Washington D.C., USA (1998) 3�9

2. Sapia, C., Blaschka, M., Hö�ing, G., Dinter, B.: Extending the E/R Model for
the Multidimensional Paradigm. In: Proc. of the 1st Intl. Workshop on Data
Warehouse and Data Mining (DWDM'98). Volume 1552 of LNCS., Springer-Verlag
(1998) 105�116

3. Trujillo, J., Gómez, J., Palomar, M.: Modeling the Behavior of OLAP Applications
Using an UML Compilant Approach. In: Proc. of the 1st Intl. Conf. On Advances in
Information Systems (ADVIS'00). Volume 1909 of LNCS., Springer-Verlag (2000)
14�23

4. Trujillo, J., Palomar, M., Gómez, J., Song, I.Y.: Designing Data Warehouses with
OO Conceptual Models. IEEE Computer, special issue on Data Warehouses 34
(2001) 66�75

5. Tryfona, N., Busborg, F., Christiansen, J.: starER: A Conceptual Model for Data
Warehouse Design. In: Proc. of the ACM 2nd Intl. Workshop on Data warehousing
and OLAP (DOLAP'99), Kansas City, Missouri, USA (1999)

6. Abelló, A., Samos, J., Saltor, F.: A Framework for the Classi�cation and Descrip-
tion of Multidimensional Data Models. In: Proc. of the 12th Intl. Conference on
Database and Expert Systems Applications (DEXA'01), Munich, Germany (2001)
668�677

7. World Wide Web Consortium (W3C): eXtensible Markup Language (XML) 1.0
(SE). Internet: http://www.w3.org/TR/2000/REC-xml-20001006 (2000)

8. World Wide Web Consortium (W3C): XML Schema. Internet:
http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/ (2001)

9. World Wide Web Consortium (W3C): XSL Transformations (XSLT) Version 1.0.
Internet: http://www.w3.org/TR/1999/REC-xslt-19991116 (1999)

10. Object Management Group (OMG): Uni�ed Modeling Language (UML). Internet:
http://www.omg.org/cgi-bin/doc?formal/01-09-67 (2001)

11. Pokorný, J.: Modelling Stars Using XML. In: Proc. of the ACM 4th Intl. Workshop
on Data warehousing and OLAP (DOLAP'01), Atlanta, GA USA (2001)

12. Golfarelli, M., Rizzi, S., Vrdoljak, B.: Data warehouse design from XML sources.
In: Proc. of the ACM 4th Intl. Workshop on Data warehousing and OLAP
(DOLAP'01), Atlanta, GA USA (2001)

13. Gergatsoulis, M., Stavrakas, Y., Karteris, D.: A Web-Based System for Handling
Multidimensional Information through MXML. In Albertas Caplinskas and Johann
Eder, ed.: Proc. of the 5th East European Conference on Advances in Databases
and Information Systems (ADBIS'01). Volume 2151 of LNCS., Vilnius, Lithuania,
Springer-Verlag (2001)

14. Giovinazzo, W.: Object-Oriented Data Warehouse Design. Building a star schema.
Prentice-Hall, New Jersey, USA (2000)

15. Kimball, R.: The data warehousing toolkit. 2 edn. John Wiley (1996)
16. Luján-Mora, S., Medina, E., Trujillo, J.: From Object-Oriented Conceptual Multi-

dimensional Modeling into XML. Technical report, DLSI - Univ. of Alicante (2001)
Internet: http://gplsi.dlsi.ua.es/almacenes/�les/oomd-mm-dtd.pdf.

17. World Wide Web Consortium (W3C): Extensible Stylesheet Language (XSL) 1.0.
Internet: http://www.w3.org/TR/2001/REC-xsl-20011015/ (2001)

18. Object Management Group (OMG): Common Warehouse Metamodel (CWM).
Internet: http://www.omg.org/cgi-bin/doc?ad/2001-02-01 (2000)

