
Extending the UML for Multidimensional

Modeling?

Sergio Luján-Mora1, Juan Trujillo1, and Il-Yeol Song2

1 Dept. de Lenguajes y Sistemas Informáticos

Universidad de Alicante (Spain)

{slujan,jtrujillo}@dlsi.ua.es
2 College of Information Science and Technology

Drexel University (USA)

songiy@drexel.edu

Abstract. Multidimensional (MD) modeling is the foundation of data

warehouses, MD databases, and On-Line Analytical Processing (OLAP)

applications. In the past few years, there have been some proposals for

representing the main MD properties at the conceptual level providing

their own notations. In this paper, we present an extension of the Uni-

�ed Modeling Language (UML), by means of stereotypes, to elegantly

represent main structural and dynamic MD properties at the conceptual

level. We make use of the Object Constraint Language (OCL) to specify

the constraints attached to the de�ned stereotypes, thereby avoiding an

arbitrary use of these stereotypes. The main advantage of our proposal

is that it is based on a well-known standard modeling language, thereby

designers can avoid learning a new speci�c notation or language for MD

systems. Finally, we show how to use these stereotypes in Rational Rose

2000 for MD modeling.

Keywords: UML, UML extensions, multidimensional modeling, OCL, Ra-
tional Rose

1 Introduction

Multidimensional (MD) modeling is the foundation of data warehouses (DW),
MD databases, and On-Line Analytical Processing (OLAP) applications. These
systems provide companies with many years of historical information for the
decision making process. Various approaches for the conceptual design of MD
systems have been proposed in the last few years such as [1][2][3][4][5] to represent
main MD structural and dynamic properties. These approaches provide their
own graphical notations, which forces designers to learn a new speci�c model
together with its corresponding MD modeling notation. Furthermore, none of
these approaches has been widely accepted as a standard conceptual model for

? This paper has been partially supported by the Spanish Ministery of Science and

Technology, project number TIC2001-3530-C02-02.

Sergio
5th International Conference on the Unified Modeling Language (UML 2002), p. 290-304: Lecture Notes in Computer Science 2460, Dresden (Germany), September 30 - October 4 2002.

MD modeling. Due to space constraints, we refer the reader to [6] for a detailed
comparison and discussion about most of these models.

On the other hand, the Uni�ed Modeling Language (UML) [7][8] has been
widely accepted as the standard object-oriented (OO) modeling language for
modeling various aspects of software systems. Therefore, any approach using the
UML will minimize the e�ort of developers to learn new notations or method-
ologies for every subsystem to be modeled. Following this consideration, we have
previously proposed in [5] an OO conceptual MD modeling approach, based on
the UML for a powerful conceptual MD modeling. This proposal considers ma-
jor relevant structural and dynamic MD properties at the conceptual level in an
elegant and easy way.

The UML is an extensible language, in the sense that it provides mecha-
nisms (stereotypes, tagged values, and constraints) to introduce new elements
for speci�c domains if necessary, such as web applications, database applications,
business modeling, software development processes, etc. [9,10]. A collection of
enhancements that extend an existing diagram type to support a new purpose
is called a pro�le.

In this paper, we present a UML pro�le for MD modeling based on our previ-
ously proposed approach [5], which easily and elegantly considers main MD prop-
erties at the conceptual level, such as the many-to-many relationships between
facts and dimensions, degenerate dimensions, multiple and alternative path clas-
si�cation hierarchies, and non-strict and complete hierarchies. Our extension uses
the Object Constraint Language (OCL) [8] for expressing well-formedness rules
of the new de�ned elements, thereby avoiding an arbitrary use of this extension.
Moreover, we program this extension in a well-known model-driven development
tool such as Rational Rose to show its applicability.

The remainder of this paper is structured as follows: Section 2 brie�y presents
other works related to extending the UML for database design. Section 3 intro-
duces the main MD concepts such as fact, dimension, and hierarchy level that
our approach comprises. Section 4 summarizes the UML Extensibility Mecha-
nism. Section 5 proposes the new UML extension for MD modeling. Section 6
shows how to use our MD extension in Rational Rose. Finally, Section 7 presents
the main conclusions and introduces our future work.

2 Related Work

In the past few years, some proposals to extend the UML for database design
have been presented, since the UML does not explicitly include a data model. In
[11], �...a pro�le that extends the existing class diagram de�nition to support per-
sistence modeling� is presented. This pro�le is intended to make objects persis-
tent in di�erent storages: �les, relational databases, object-relational databases,
etc. In [12], the Data Modeling pro�le for the UML is described, �...including de-
scriptions and examples for each concept including database, schema, table, key,
index, relationship, column, constraint and trigger�. In [10], the process of UML-
based database modeling and design is explained: it presents the UML Pro�le

for Database Design created by Rational Software Corporation. Finally, in [13]
an Object-Relational Database Design Methodology is presented. The method-
ology de�nes new UML stereotypes for Object-Relational Database Design and
proposes some guidelines to translate a UML schema into an object-relational
schema. However, these proposals do not re�ect the peculiarities of MD model-
ing. Therefore, in this paper we present a proposal to extend the UML for MD
modeling.

3 Object-Oriented Multidimensional Modeling

In this section, we summarize3 how an OO MD model, based on the UML,
can represent main structural and dynamic MD properties at the conceptual
level. Most of the MD features considered by this approach such as the many-to-
many relationships between facts and dimensions, degenerate dimensions, mul-
tiple and alternative path classi�cation hierarchies, and non-strict and complete
hierarchies are misinterpreted by most of the conceptual MD models. In the
approach proposed in this paper, the main structural properties of MD model-
ing are speci�ed by means of a UML class diagram in which the information is
clearly separated into facts and dimensions4.

Facts and dimensions are represented by fact classes and dimension classes,
respectively. Then, fact classes are speci�ed as composite classes in shared aggre-
gation relationships of n dimension classes. The �exibility of shared aggregation
in the UML allows us to represent many-to-many relationships between facts
and particular dimensions by indicating the 1..* cardinality on the dimension
class role. For example, in Fig. 1 (a), we can see how the fact class Sales has a
many-to-many relationship with the dimension class Product and a one-to-many
relationship with the dimension class Time.

By default, all measures in the fact class are considered additive. For nonad-
ditive measures, additivity rules are de�ned as constraints and are included in
the fact class. Furthermore, derived measures can also be explicitly considered
(indicated by /) and their derivation rules are placed between braces near the
fact class, as shown in Fig. 1 (a).

This OO approach also allows us to de�ne identifying attributes in the fact
class, by placing the constraint {OID} next to an attribute name. In this way
we can represent degenerate dimensions [14][15], thereby providing other fact
features in addition to the measures for analysis. For example, we could store
the ticket number (ticket_number) as a degenerate dimension, as re�ected in
Fig. 1 (a).

With respect to dimensions, every classi�cation hierarchy (Fig. 1 (b)) level
is speci�ed by a class (called a base class). An association of classes speci�es the
relationships between two levels of a classi�cation hierarchy. The only prereq-
uisite is that these classes must de�ne a Directed Acyclic Graph (DAG) rooted
in the dimension class (constraint {dag} placed next to every dimension class).

3 We refer the reader to [5] for a complete description of this approach.
4 It is not the scope of this paper to consider dynamic MD properties.

Fig. 1. Multidimensional modeling using the UML

The DAG structure can represent both alternative path and multiple classi�ca-
tion hierarchies. Every classi�cation hierarchy level must have an identifying at-
tribute (constraint {OID}) and a descriptor attribute5 (constraint {D}). These
attributes are necessary for an automatic generation process into commercial
relational OLAP (ROLAP) tools, as these tools need to store these attributes
in their metadata. The multiplicity 1 and 1..* de�ned in the target associated
class role addresses the concepts of strictness and non-strictness respectively.
Strictness means that an object at a hierarchy's lower level belongs to only one
higher-level object (e.g., as one month can be related to more than one sea-
son, the relationship between both of them is non-strict). Moreover, de�ning
the {completeness} constraint in the target associated class role addresses the
completeness of a classi�cation hierarchy (see an example in Fig. 1 (b)). By com-
pleteness we mean that all members belong to one higher-class object and that
object consists of those members only. For example, all the recorded seasons form
a year, and all the seasons that form the year have been recorded. Our approach
assumes all classi�cation hierarchies are non-complete by default.

The categorization of dimensions, used to model additional features for class's
subtypes, is considered by means of generalization-specialization relationships.
However, only the dimension class can belong to both a classi�cation and special-
ization hierarchy at the same time. An example of categorization for the Product
dimension can be observed in Fig. 1 (c).

4 UML Extensibility Mechanism

The UML Extensibility Mechanism package is the subpackage from the UML
metamodel that speci�es how speci�c UML model elements are customized and
extended with new semantics by using stereotypes, tagged values, and con-
straints. A coherent set of such extensions, de�ned for speci�c purposes, con-

5 A descriptor attribute will be used as the default label in the data analysis.

stitutes a UML pro�le. For example, the UML 1.4 [8] includes a standard pro�le
for modeling software development processes and another one for business mod-
eling.

A stereotype is a model element that de�nes additional values (based on
tagged values), additional constraints, and optionally a new graphical represen-
tation (an icon): a stereotype allows us to attach a new semantic meaning to a
model element. A stereotype is either represented as a string between a pair of
guillemots (� �) or rendered as a new icon.

A tagged value speci�es a new kind of property that may be attached to a
model element. A tagged value is rendered as a string enclosed by brackets ([])
and placed below the name of another element.

A constraint can be attached to any model element to re�ne its semantics.
As it is stated in [16], �A constraint is a restriction on one or more values of (part
of) an object-oriented model or system�. In the UML, a constraint is rendered
as a string between a pair of braces ({ }) and placed near the associated model
element. A constraint on a stereotype is interpreted as a constraint on all types
on which the stereotype is applied. A constraint can be de�ned by means of
an informal explanation or by means of OCL [16][8] expressions. The OCL is
a declarative language that allows software developers to write constraints over
object models.

5 UML Extension for Multidimensional Modeling

According to [9], �An extension to the UML begins with a brief description and
then lists and describes all of the stereotypes, tagged values, and constraints
of the extension. In addition to these elements, an extension contains a set of
well-formedness rules. These rules are used to determine whether a model is
semantically consistent with itself�. According to this quote, we de�ne our UML
extension for MD modeling following the schema shown in Table 1.

� Description: A little description of the extension in natural language.
� Prerequisite Extensions: It indicates whether the current extension needs the ex-

istence of previous extensions.
� Stereotypes: The de�nition of the stereotypes.
� Well-Formedness Rules: The static semantics of the metaclasses are de�ned as a

set of invariants de�ned by means of OCL expressions.
� Comments: Any additional comment, decision or example, usually written in natural

language.

Table 1. Extension de�nition schema

For the de�nition of the stereotypes and the tagged values, we follow the
structure of the examples included in the UML Speci�cation [8]. In Table 2 and

� Name: The name of the stereotype.
� Base class (also called Model class): The UML metamodel element that serves as

the base for the stereotype.
� Description: An informal description with possible explanatory comments.
� Icon: It is possible to de�ne a distinctive visual cue (an icon).

� Constraints: A list of constraints de�ned by means of OCL expressions associated
with the stereotype, with an informal explanation of the expressions.

� Tagged values: A list of all tagged values that are associated with the stereotype.

Table 2. Stereotype de�nition schema

� Name: The name of the tagged value.
� Type: The name of the type of the values that can be associated with the tagged

value.

� Multiplicity: The maximum number of values that may be associated with the
tagged value.

� Description: An informal description with possible explanatory comments.

Table 3. Tagged value de�nition schema

Table 3 we show the schemas followed in our de�nition of the stereotypes and
the tagged values, respectively.

Fig. 2. Extension of the UML with stereotypes

We have de�ned eight stereotypes: three specialize in the Class model ele-
ment, four specialize in the Attribute model element, and one specializes in the

Association model element. In Fig. 2, we have represented a portion of the UML
metamodel6 to show where our stereotypes �t.

Some issues of our MD approach, such as the derivation rule or the initial
value of an attribute, are not de�ned in our stereotypes because these concepts
have already been de�ned in the UML metamodel. We provide a list of these
concepts in Table 4.

Concept Comes from Description Used by

name ModelElement It is an identi�er for the Model-

Element

Base, Completeness,
Descriptor, Dimension,

DimensionAttribute,
Fact, FactAttribute,

OID

documentation Element It is a comment, description or

explanation of the Element to
which it is attached

Base, Completeness,

Descriptor, Dimension,
DimensionAttribute,

Fact, FactAttribute,
OID

type StructuralFeature Designates the classi�er whose
instances are values of the fea-

ture

Descriptor, Dimension-
Attribute, Fact-

Attribute, OID

initialValue Attribute An expression specifying the

value of the Attribute upon ini-
tialization

Descriptor, Dimension-

Attribute, Fact-
Attribute, OID

derived ModelElement A true value indicates that the
ModelElement can be completely

derived from other model ele-
ments and is therefore logically

redundant

Descriptor, Dimension-
Attribute, FactAttribute

Table 4. Concepts inherited from the UML metamodel

In the following, we present our extension following the extension de�nition
schema shown in Table 1.

5.1 Description

This extension to the UML de�nes a set of stereotypes, tagged values, and con-
straints that enable us to model MD models. The stereotypes are applied to
certain components that are particular to MD modeling, allowing us to repre-
sent them in the same model and on the same diagrams that describe the rest
of the system. The principal elements to MD modeling are the Fact class and
the Dimension class. A Fact class consists of OIDs and FactAttributes, whereas
a Dimension class consists of an OID, Descriptor, and DimensionAttributes.
Moreover, the hierarchy levels of a Dimension are represented by means of Base
classes. Finally, a Completeness association is de�ned.

6 All the metaclasses come from the Core Package, a subpackage of the Foundation

Package.

5.2 Prerequisite Extensions

No other extension to the language is required for the de�nition of this extension.

5.3 Stereotypes

Stereotypes of Class

� Name: Fact
� Base class: Class

� Description: Classes of this stereotype represent facts in a MD model

� Icon: Fig. 3 (a)

� Constraints:

� All attributes of a Fact must be OID or FactAttribute:

self.feature->select(oclIsKindOf(Attribute))->forAll(oclIsTypeOf(OID) or

oclIsTypeOf(FactAttribute))
� All associations of a Fact must be aggregations:

self.association->forAll(aggregation = #aggregate)
� A Fact can only be associated with Dimension classes:

self.allOppositeAssociationEnds->forAll(participant.oclIsTypeOf(Dimension))
� Tagged values: None

� Name: Dimension
� Base class: Class

� Description: Classes of this stereotype represent dimensions in a MD model

� Icon: Fig. 3 (b)

� Constraints:

� All attributes of a Dimension must be OID, Descriptor, or DimensionAttribute:

self.feature->select(oclIsKindOf(Attribute))->forAll(oclIsTypeOf(OID) or

oclIsTypeOf(Descriptor) or oclIsTypeOf(DimensionAttribute))

� All associations of a Dimension with a Fact must be aggregations at the end

of the Fact (the opposite end):

self.association.association->forAll(associationEnd.participant.oclIsTypeOf(Fact) im-

plies associationEnd.aggregation = #aggregate)

� All associations of a Dimension with a Fact must not be aggregations at the

end of the Dimension (the current end):

self.association.association->forAll(associationEnd.participant.oclIsTypeOf(Fact) im-

plies aggregation <> #aggregate)

� A Dimension cannot be associated with another Dimension:

self.allOppositeAssociationEnds->forAll(not participant.oclIsTypeOf(Dimension))
� Tagged values:

� isTime:

� Type: UML::Datatypes::Boolean

� Multiplicity: 1

� Description: Indicates whether the dimension represents a time dimension

or not

� Name: Base
� Base class: Class

� Description: Classes of this stereotype represent dimension hierarchy levels in a

MD model

� Icon: Fig. 3 (c)

� Constraints:

� All attributes of a Base must be OID, Descriptor, or DimensionAttribute:

self.feature->select(oclIsKindOf(Attribute))->forAll(oclIsTypeOf(OID) or

oclIsTypeOf(Descriptor) or oclIsTypeOf(DimensionAttribute))

� A Base must have an OID attribute and a Descriptor attribute:

self.feature->select(oclIsKindOf(Attribute))->exist(oclIsTypeOf(OID)) and

self.feature->select(oclIsKindOf(Attribute))->exist(oclIsTypeOf(Descriptor))

� A Base can only be associated with another Base or another Dimension:

self.allOppositeAssociationEnds->forAll(participant.oclIsTypeOf(Base) or partici-

pant.oclIsTypeOf(Dimension))

� A Base can only be child in one generalization:

self.generalization->size <= 1

� A Base cannot simultaneously belong to a generalization/specialization hier-

archy and an association hierarchy:

(self.generalization->size > 0 or self.specialization->size > 0) implies

(self.association->size = 0)

� Tagged values: None

Fact Dimension Base

(a) (b) (c)

Fig. 3. Stereotype icons

Stereotypes of Attribute

� Name: OID

� Base class: Attribute

� Description: Attributes of this stereotype represent OID attributes of Fact, Dimen-

sion or Base classes in a MD model7

� Icon: Fig. 4 (a)

� Constraints:

� An OID cannot be derived:

not self.derived

� Tagged values: None

� Name: FactAttribute

7 See Section 3 or [5] for further information on OID and Descriptor attributes.

� Base class: Attribute
� Description: Attibutes of this stereotype represent attributes of Fact classes in a

MD model
� Icon: Fig. 4 (b)
� Constraints:

� A FactAttribute can only belong to a Fact:

self.owner.oclIsTypeOf(Fact)
� If a FactAttribute is derived, then it needs a derivation rule (an OCL expres-

sion):

self.derived implies self.derivationRule.oclIsTypeOf(OclExpression)
� Tagged values:

� derivationRule:
� Type: UML::Datatypes::String

� Multiplicity: 1

� Description: If the attribute is derived, this tagged value represents the

derivation rule

� Name: Descriptor
� Base class: Attribute
� Description: Attributes of this stereotype represent descriptor attributes of Dimen-

sion or Base classes in a MD model
� Icon: Fig. 4 (c)
� Constraints:

� A Descriptor can only belong to a Dimension or Base:

self.owner.oclIsTypeOf(Dimension) or self.owner.oclIsTypeOf(Base)
� If a Descriptor is derived, then it needs a derivation rule (an OCL expression):

self.derived implies self.derivationRule.oclIsTypeOf(OclExpression)
� Tagged values:

� derivationRule:
� Type: UML::Datatypes::String

� Multiplicity: 1

� Description: If the attribute is derived, this value represents the derivation

rule

� Name: DimensionAttribute
� Base class: Attribute
� Description: Attributes of this stereotype represent attributes of Dimension or Base

classes in a MD model
� Icon: Fig. 4 (d)
� Constraints:

� A DimensionAttribute can only belong to a Dimension or Base:

self.owner.oclIsTypeOf(Dimension) or self.owner.oclIsTypeOf(Base)
� If a DimensionAttribute is derived, then it needs a derivation rule (an OCL

expression):

self.derived implies self.derivationRule.oclIsTypeOf(OclExpression)
� Tagged values:

� derivationRule:
� Type: UML::Datatypes::String

� Multiplicity: 1

� Description: If the attribute is derived, this value represents the derivation

rule

OID Fact Descriptor Dimension

Attribute Attribute

(a) (b) (c) (d)

Fig. 4. Stereotype icons

Stereotype of Association

� Name: Completeness
� Base class: Association

� Description: Associations of this stereotype represent complete associations8

� Icon: None

� Constraints:

� The ends of a Completeness association can only be Dimension or Base classes:

self.associationEnd.participant->forAll(oclIsTypeOf(Dimension) or oclIsTypeOf(Base))
� Tagged values: None

5.4 Well-Formedness Rules

Namespace

� All the classes in a MD model must be Fact, Dimension, or Base:9

self.allContents->forAll(oclIsKindOf(Class) implies (oclIsTypeOf(Fact) or

oclIsTypeOf(Dimension) or oclIsTypeOf(Base)))

5.5 Comments

Next, we summarize the UML elements we have just used or de�ned to consider
the main relevant MD properties:

� Facts and dimensions: they are represented by means of Fact and Dimension
stereotypes.

� Many-to-many relationships: thanks to the �exibility of the shared-aggregation
relationships, we can consider many-to-many relationships between facts and
particular dimensions by means of the 1..* cardinality on the dimension class
role.

� Derived measures: they are represented by means of derived attributes from
the UML metamodel and the tagged value derivationRule we have de�ned
in the Descriptor, DimensionAttribute, and FactAttribute stereotypes.

8 A complete association means that all members belong to one higher-class object

and that object consists of those members only.
9 allContents is an additional operation de�ned in the UML speci�cation [8]: �The

operation allContents results in a Set containing all ModelElements contained by

the Namespace�.

� Additivity: all FactAttributes are considered additive by default. For nonad-
ditive FactAttributes, their additivity rules are de�ned as constraints placed
near the corresponding Fact class.

� Classi�cation hierarchies: they are considered by means of the association
between Dimension and Base stereotypes.

� Strictness: the multiplicity 1 and 1..* de�ned in the target associated class
role of a classi�caton hierarchy address the concepts of strictness and non-
strictness.

� Completeness: the stereotype Completeness addresses the completeness of a
classi�cation hierarchy.

� Categorizing dimensions: we use generalization-specialization relationships
to categorize a Dimension.

6 Using Multidimensional Modeling in Rational Rose

Rational Rose (RR) is one of the most well-known visual modeling tools. RR is
extensible by means of add-ins, which allows to package customizations and au-

tomation of several RR features through the Rose Extensibility Interface (REI)
[17] into one component. An add-in is a collection of some combination of the
following: main menu items, shortcut menu items, custom speci�cations, prop-
erties (UML tagged values), data types, UML stereotypes, online help, context-

sensitive help, and event handling.

In this section, we present an add-in we have developed, which allows us to
use the extension we have de�ned in RR. Therefore, we can use this tool to easily
accomplish MD conceptual models.

Our add-in customizes the following elements:

� Stereotypes: We have de�ned the stereotypes by means of a stereotype con-
�guration �le.

� Properties: We have de�ned the tagged values by means of a property con-
�guration �le.

� Menu item: We have added the new menu item MD Validate in the menu
Tools by means of a menu con�guration �le. This menu item runs a Rose
script that validates a MD model: our script checks all the constraints we
have presented in Section 5.

The best way to understand our extension is to show a tangible example.
Fig. 5 shows a MD conceptual model of the well-known example �Grocery� as
described in Chapter 2 of [15]. This example contains one Fact class, Sales, and
four Dimension classes: Time, Product, Store, and Promotion. Every classi�cation
hierarchy level of a Dimension class is represented by a Base class. For example,
the classi�cation hierarchy of Time comprises the following Base classes: Month,
Quarter, Semester, Year, and Season. For the sake of clarity, we do not show all
the attributes: only the attributes of Sales and Product are displayed. We can
also notice that a stereotype can be displayed in di�erent manners in RR: Sales

Fig. 5. Multidimensional modeling using Rational Rose

and Product are displayed using the stereotype icon inside the class, whereas the
rest of elements are displayed using the stereotype icon.

To graphically distinguish the model elements of di�erent stereotypes, each
stereotype can have a graphical representation. Thus, we have provided all the
needed icons concerning these graphical stereotype representations to facilitate
their use. These icons together with all issues concerning our MD stereotypes are
included in a stereotype con�guration �le (not shown due to space constraints).

Finally, an add-in can also extend or customize RR menus by means of a menu

con�guration �le. We only add a new menu item called MD Validate in the Tools
menu. This new menu item executes a Rose script that validates the correctness
of a MD model: it checks all the OCL constraints we have presented in Section
5. For example, a fragment of this script is shown in Fig. 6. In this fragment
we can notice the function VAssociationFact, which validates the associations of
a Fact. It checks the OCL constraints we have previously presented in the Fact
stereotype:

� All associations of a Fact must be aggregations.

� A Fact can only be associated with Dimension classes.

Fig. 6. Validation script for Rational Rose

7 Conclusions and Future Work

In this paper, we have presented an extension of the UML that allows us to rep-
resent the major relevant structural MD properties at the conceptual level. This
extension contains the needed stereotypes, tagged values and constraints for a
complete and powerful MD modeling. We have used the OCL to specify the con-
straints attached to these new de�ned elements, thereby avoiding an arbitrary
use of them. We have also programmed this extension in a well-known visual
modeling tool, Rational Rose. The main relevant advantage of this approach
is that it uses the UML, a widely-accepted object-oriented modeling language,
which saves developers from learning a new model and its corresponding nota-
tions for speci�c MD modeling. Furthermore, the UML allows us to represent
some MD properties that are hardly considered by other conceptual MD pro-
posals.

We are currently working on de�ning a methodology for MD modeling based
on the extension presented in this paper. This methodology will explicitly con-
sider all underlying design guidelines that are hidden under every de�ned new
MD element. Furthermore, in this UML extension we are also considering new
stereotypes regarding object-oriented and object-relational databases for an au-
tomatic generation of the database schema into these kinds of databases.

References

1. Golfarelli, M., Rizzi, S.: A methodological Framework for Data Warehouse De-

sign. In: Proc. of the ACM 1st Intl. Workshop on Data warehousing and OLAP

(DOLAP'98). (1998) 3�9

2. Sapia, C., Blaschka, M., Hö�ing, G., Dinter, B.: Extending the E/R Model for

the Multidimensional Paradigm. In: Proc. of the 1st Intl. Workshop on Data

Warehouse and Data Mining (DWDM'98). Volume 1552 of LNCS., Springer-Verlag

(1998) 105�116

3. Tryfona, N., Busborg, F., Christiansen, J.: starER: A Conceptual Model for Data

Warehouse Design. In: Proc. of the ACM 2nd Intl. Workshop on Data warehousing

and OLAP (DOLAP'99). (1999)

4. Husemann, B., Lechtenborger, J., Vossen, G.: Conceptual Data Warehouse Design.

In: Proc. of the 2nd Intl. Workshop on Design and Management of DataWarehouses

(DMDW'00), Stockholm, Sweden (2000)

5. Trujillo, J., Palomar, M., Gómez, J., Song, I.Y.: Designing Data Warehouses with

OO Conceptual Models. IEEE Computer, special issue on Data Warehouses 34

(2001) 66�75

6. Abelló, A., Samos, J., Saltor, F.: A Framework for the Classi�cation and Descrip-

tion of Multidimensional Data Models. In: Proc. of the 12th Intl. Conference on

Database and Expert Systems Applications (DEXA'01), Munich, Germany (2001)

668�677

7. Booch, G., Rumbaugh, J., Jacobson, I.: The Uni�ed Modeling Language: User

Guide. Object Technology Series. Addison-Wesley (1999)

8. Object Management Group (OMG): Uni�ed Modeling Language Speci�cation 1.4.

Internet: http://www.omg.org/cgi-bin/doc?formal/01-09-67 (2001)

9. Conallen, J.: Building Web Applications with UML. Object Technology Series.

Addison-Wesley (2000)

10. Naiburg, E., Maksimchuk, R.: UML for Database Design. Object Technology

Series. Addison-Wesley (2001)

11. Ambler, S.: Persistence Modeling in the UML. Software Development Online.

Internet: http://www.sdmagazine.com/documents/s=755/sdm9908q/ (1999)

12. Rational Software Corporation: The UML and Data Modeling. Internet:

http://www.rational.com/media/whitepapers/Tp180.PDF (2000)

13. Marcos, E., Vela, B., Cavero, J.M.: Extending UML for Object-Relational Database

Design. In: Proc. of the 4th Intl. Conference UML 2001. Volume 2185 of LNCS.,

Springer-Verlag (2001) 225�239

14. Giovinazzo, W.: Object-Oriented Data Warehouse Design. Building a star schema.

Prentice-Hall, New Jersey, USA (2000)

15. Kimball, R.: The data warehousing toolkit. 2 edn. John Wiley (1996)

16. Warmer, J., Kleppe, A.: The Object Constraint Language. Precise Modeling with

UML. Object Technology Series. Addison-Wesley (1998)

17. Rational Software Corporation: Using the Rose Extensibility Interface. Rational

Software Corporation (2001)

