
APPLYING UML FOR DESIGNING MULTIDIMENSIONAL DATABASES

AND OLAP APPLICATIONS

Name: Juan Trujillo

Affiliation: Departamento de Lenguajes y Sistemas Informáticos, Universidad de

Alicante

Address: Campus de San Vicente del Raspeig, Ap. Correos 99, E-03080 Alicante, Spain

Phone number: +34 965 90 34 00 ext. 2967

Fax number: +34 965 90 93 26

Email: jtrujillo@dlsi.ua.es

Name: Il-Yeol Song

Affiliation: College of Information Science and Technology, Drexel University

Address: PA 19104, USA

Phone number: +1 (215) 895-2489

Fax number: +1 (215) 895-2494

Email: songiy@drexel.edu

Name: Sergio Luján-Mora

Affiliation: Departamento de Lenguajes y Sistemas Informáticos, Universidad de

Alicante

Address: Campus de San Vicente del Raspeig, Ap. Correos 99, E-03080 Alicante, Spain

Phone number: +34 965 90 34 00 ext. 2962

Fax number: +34 965 90 93 26

Email: slujan@dlsi.ua.es

APPLYING UML FOR DESIGNING MULTIDIMENSIONAL DATABASES

AND OLAP APPLICATIONS

Multidimensional (MD) modeling is the basis for Data warehouses (DW),

multidimensional databases (MDB) and On-Line Analytical Processing (OLAP)

applications. In this chapter, we present how the Unified Modeling Language (UML)

can be successfully used to represent both structural and dynamic properties of these

systems at the conceptual level. The structure of the system is specified by means of a

UML class diagram that considers the main properties of MD modeling with minimal

use of constraints and extensions of the UML. If the system to be modeled is too

complex, thereby leading us to a considerable number of classes and relationships, we

sketch out how to use the package grouping mechanism provided by the UML to

simplify the final model. Furthermore, we provide a UML-compliant class notation

(called cube class) to represent OLAP initial user requirements. We also describe how

we can use the UML state and interaction diagrams to model the behavior of a data

warehouse system. We believe that our innovative approach provides a theoretical

foundation for simplifying the conceptual design of multidimensional systems and our

examples illustrate the use of our approach.

Keywords: Data warehouses, multidimensional databases, OLAP, conceptual

modeling, UML, object orientation

INTRODUCTION

It is widely accepted that DW, MDB and OLAP applications are based on

multidimensional modeling. The benefit of using this MD modeling is two-fold. On one

hand, the MD model is close to data analyzers’ way of thinking, therefore, it helps users

understand data. On the other hand, the MD model supports performance improvement

as its simple structure allows us to predict final users’ intentions.

Some approaches have been proposed lately (presented in Section 3) to accomplish the

conceptual design of these systems. Unfortunately, none of them has been accepted as a

standard for DW conceptual modeling. These proposals try to represent main MD

properties at the conceptual level with special emphasis on MD data structures. A

conceptual modeling approach for DW, however, should also concern other relevant

aspects such as initial user requirements, the behavior of the system (e.g. main

operations to be accomplished on MD data structures), available data sources, and

specific issues for automatic generation of the database schema and so on. We claim

that object orientation with the UML provides an adequate notation for modeling every

aspect of a DW system (MD data structures, the behavior of the system, etc.) from user

requirements to implementation.

In this chapter, we present an object-oriented (OO) approach to accomplish the

conceptual modeling of DW, MDB and OLAP applications. Our approach introduces a

set of minimal constraints and extensions of the UML (Booch, 1998; OMG, 2001)

needed for an adequate representation of MD modeling properties. These extensions are

based on the standard mechanisms provided by the UML to adapt to a specific method

or model (e.g. constraints, tagged values). We also present how to group classes into

packages to simplify the final model in case that the model becomes too complex due to

the high number of classes. Furthermore, we provide a UML-compliant class notation to

represent OLAP initial user requirements (called cube class). From these cube classes,

we then describe the use of state and interaction diagrams to model the behavior of the

system based on the applied OLAP operations. We also discuss issues such as

identifying attributes and descriptor attributes that set the basis for an adequate semi-

automatic generation of a database schema and user requirements in a target commercial

OLAP tool. Finally, we present a set of case studies to show the elegant way in which

our proposal represents both structural and dynamic properties of MD modeling.

The UML can also be used with powerful mechanisms such as the Object Constraint

Language (OCL) (Warmer, 1998; OMG, 2001) and the Object Query Language (OQL)

(Cattell, 2000) to embed DW constraints (e.g. additivity and derived attributes) and

initial user requirements in the conceptual model. In this way, when we model a DW

system, we can obtain simple yet powerful extended UML class diagrams that represent

main MD properties at a conceptual level. We believe that our innovative approach

provides a theoretical foundation for the possible use of OODB and ORDB for DW and

OLAP applications.

The remainder of this chapter is organized as follows: Section 2 details the major

features of MD modeling that should be taken into account for a proper MD conceptual

design. Section 3 summarizes the most relevant conceptual approaches proposed so far

by the research community. In Section 4, we summarize how we use the UML to

consider main MD properties at the conceptual level. In Section 5, we present a set of

case studies taken from Kimball (Kimball, 2002) to show the benefit of our approach.

Finally, Section 6 draws some conclusions and sketches some work that is currently

being carried out.

MULTIDIMENSIONAL MODELING PROPERTIES

In MD modeling, information is structured into facts and dimensions. A fact is an item

of interest for an enterprise, and is described through a set of attributes called measures

or fact attributes (atomic or derived), which are contained in cells or points in the data

cube. This set of measures is based on a set of dimensions that determine the granularity

adopted for representing facts (i.e. the context in which facts are to be analyzed).

Moreover, dimensions are also characterized by attributes, which are usually called

dimension attributes. They are used for grouping, browsing, and constraining

measures.

Let us consider an example in which the fact is the product sales in a large store chain

and the dimensions are as follows: product, store, customer and time. On the left hand

side of Figure 1, we can observe a data cube typically used for representing a MD

model. In this particular case, we have defined a cube for analyzing measures along the

product, store and time dimensions.

We note that a fact usually represents a many-to-many relationship between any of two

dimensions. For example, a product is sold in many stores and a store sells many

products. We also assume that there is a many-to-one relationship between a fact and

each particular dimension. For example, for each store there are many sale tickets, but

each sale ticket belongs to only one store.

Nevertheless, there are some cases in which a fact may be associated with a particular

dimensions as a many-to-many relationship. For example, the fact product_sales is

considered as a particular many-to-many relationship to the product dimension as one

ticket may consist of more than one product even though every ticket is still purchased

in only one store by one customer and at one time.

With reference to measures, the concept of additivity or summaribility (Blaschka,

1998; Golfarelli, 1998; Kimball, 2002; Trujillo, 2000; Tryfona, 1999) on measures

along dimensions is crucial for MD data modeling. A measure is additive along a

dimension if the SUM operator can be used to aggregate attribute values along all

hierarchies defined on that dimension. The aggregation of some fact attributes (roll-up

in OLAP terminology), however, might not be semantically meaningful for all measures

along all dimensions. A measure is semi-additive if SUM operator can be applied to

some dimensions, but not all the dimensions. A measure is non-additive if SUM

operator cannot be applied to any dimension. In our example, number of clients

(estimated by counting the number of purchased receipts for a given product, day and

store) is not additive along the product dimension. Since the same ticket may include

other products, adding up the number of clients along two or more products would lead

to inconsistent results. However, other aggregation operators (e.g. SUM, AVG and

MIN) could still be used along other dimensions such as time. Thus, number of clients is

semi-additive. An example of non-additive measures is interest rate.

Figure 1: A data cube and classification hierarchies defined on dimensions

Regarding dimensions, the classification hierarchies defined on certain dimension

attributes are crucial because the subsequent data analysis will be addressed by these

classification hierarchies. A dimension attribute may also be aggregated (related) to

more than one hierarchy, therefore, multiple classification hierarchies and alternative

path hierarchies are also relevant. For this reason, a common way of representing and

considering dimensions with their classification hierarchies is by means of Directed

Acyclic Graphs (DAG).

On the right hand side of Figure 1, we can observe different classification hierarchies

defined on the product, store and time dimensions. On the product dimension, we have

considered a multiple classification hierarchy to be able to aggregate data values along

two different hierarchy paths: (i) product, type, family, group and (ii) product, brand.

There may exist attributes that are not used for aggregating purposes and provide

features for other dimension attributes (e.g. product name). On the store dimension, we

have defined an alternative classification hierarchy with two different paths that

converge into the same hierarchy level: (i) store, city, province, state and (ii) store,

sales_area, state. Finally, we have also defined another multiple classification hierarchy

with the following paths on the time dimension: (i) time, month, semester, year and (ii)

time, season.

Nevertheless, classification hierarchies are not so simple in most cases. The concepts of

strictness and completeness are quite important, not only for conceptual purposes, but

also for further design steps of MD modeling (Tryfona, 1999). “Strictness” means that

an object of a lower level in a hierarchy belongs to only one in a higher level, e.g. a

province is only related to one state. “Completeness” means that all members belong to

one higher-class object and that object consists of those members only. For example,

suppose that the classification hierarchy between the state and province levels is

“complete”. In this case, a state is formed by all the provinces recorded and all the

provinces that form the state are recorded.

OLAP scenarios sometimes become very large as the number of dimensions increases

significantly, and therefore, this fact may lead to extremely sparse dimensions and data

cubes. In this way, there are attributes that are normally valid for all elements within a

dimension while others are only valid for a subset of elements (also known as the

categorization of dimensions (Lehner, 1998; Tryfona, 1999)). For example, attributes

alcohol percentage and volume would only be valid for drink products and will be

“null” for food products. Thus, a proper MD data model should be able to consider

attributes only when necessary, depending on the categorization of dimensions.

Furthermore, let us suppose that apart from a high number of dimensions (e.g. 20) with

their corresponding hierarchies, we have a considerable number of facts (e.g. 8) sharing

dimensions and classification hierarchies. This system will lead us to a very complex

design, thereby increasing the difficulty in reading the modeled system. Therefore, a

MD conceptual model should also provide techniques to avoid flat diagrams, allowing

us to group dimensions and facts to simplify the final model.

Once the structure of the MD model has been defined, OLAP users usually define a set

of initial user requirements as a starting point for the subsequent data analysis phase.

From these initial requirements, users can apply a set of operations (usually called

OLAP operations (Chaudhuri, 1997) to the MD view of data for further data analysis.

These OLAP operations are usually as follows: roll-up (increasing the level of

aggregation) and drill-down (decreasing the level of aggregation) along one or more

classification hierarchies, slice-dice (selection and projection) and pivoting (re-orienting

the MD view of data which also allows us to exchange dimensions for facts; i.e.

symmetric treatment of facts and dimensions).

Star Schema

In this sub-section, we will summarize the star schema popularized by Kimball

(Kimball, 2002) since it is the most well-known schema to represent MD properties in

relational databases.

Kimball claims that the star schema and its variants fact constellations schema and the

snowflake schema are logical choices for MD modeling to be implemented in relational

systems. We will briefly introduce this well-known approach using Sales Dimensional

Model.

Figure 2 shows an example of Kimball’s Sales Dimensional Model. In this model, the

fact is the name of the middle box (Sales fact table). Measures are the non-foreign keys

in the fact table (dollars_sold, units_sold, and dollars_cost). Dimensions are the boxes

connected to the fact table in a one-to-many relationship (Time, Store, Product,

Customer, and Promotion). Each dimension contains relevant attributes: day_of_week,

week_number, and month in Time; store_name, address, district, and floor_type in

Store, and so on.

From Figure 2, we can easily see that there are many MD features that are not reflected

in the Dimensional Model: Which are the classification hierarchies defined on

dimensions? Can we use all aggregation operators on all measures along all

dimensions? What are these classification hierarchies like? Non-strict, strict, complete,

…? And many more. Therefore, we argue that for a proper DW and OLAP design, a

conceptual MD model should be provided to better reflect user requirements and then,

this conceptual model could be translated into a logical model for a later

implementation. In this way, we can be sure that we are analyzing the real world as

users perceive them.

RELATED WORK

Lately, several MD data models have been published. Some of them fall into the logical

level (such as the well-known star-schema by R. Kimball (Kimball, 2002)). Others may

be considered as formal models as they provide a formalism to consider main MD

properties. A review of the most relevant logical and formal models can be found in

(Blaschka, 1998; Abello, 2001).

In this section, we will only make a brief reference to the most relevant models that we

consider “pure” conceptual MD models. These models provide a high level of

abstraction for the main MD modeling properties presented in Section 2 and are totally

independent from implementation issues. These are as follows: The Dimensional-Fact

(DF) model by Golfarelli (1998), The Multidimensional/ER (M/ER) model by Sapia

(1998, 1999) and The starER model by Tryfona (1999).

Figure 2: Sales Dimensional Model

In Table 1, we provide the coverage degree of each above-mentioned conceptual model

regarding the main MD properties described in the previous section. To start with, to the

best of our knowledge, no proposal provides a grouping mechanism to avoid flat

diagrams and to simplify the conceptual design when a system becomes complex due to

a high number of dimensions and facts sharing dimensions and their corresponding

hierarchies. Regarding facts, only the starER model considers many-to-many

relationships between facts and particular dimensions by indicating the exact cardinality

(multiplicity) between them. None of them considers derived measures or their

derivation rules as part of the conceptual schema. The DF and the starER models

consider the additivity of measures by explicitly representing the set of aggregation

operators that can be applied on non-additive measures. With reference to dimensions,

all of the models consider multiple and alternative path classification hierarchies by

means of Directed Acyclic Graphs (DAG) defined on certain dimension attributes.

However, only the starER model considers non-strict and complete classification

hierarchies by specifying the exact cardinality between classification hierarchy levels.

As both the M/ER and the starER models are extensions of the Entity Relationship (ER)

model, it is easy for them to consider the categorization of dimensions by means of Is-a

relationships.

Multidimensional modeling properties Model

 DF M/ER StarEr

Structural level

Facts

 Many-to-many relationships with particular

dimensions

No No Yes

 Atomic measures Yes Yes Yes

 Derived measures No No No

 Additivity Yes No Yes

Dimensions

 Multiple and alternative path classification

hierarchies

Yes Yes Yes

 Nonstrict classification hierarchies No No Yes

 Complete classification hierarchies No No Yes

 Categorization of dimensions No Yes Yes

Dynamic level

Specifying initial user requirements Yes Yes No

OLAP operations No Yes No

Modeling system behavior No Yes No

Graphical notation Yes Yes Yes

Automatic generation into a target OLAP

commercial tool

No Yes No

Table 1: Comparison of conceptual multidimensional models

With reference to the dynamic level of MD modeling, the starER model is the only one

that does not provide an explicit mechanism to represent initial user requirements. On

the other hand, only the M/ER model provides a set of basic OLAP operations to be

applied from these initial user requirements, and it models the behavior of the system by

means of state diagrams.

Finally, we note that all the models provide a graphical notation that facilitates the

conceptual modeling task to the designer. On the other hand, only the M/ER model

provides a framework for an automatic generation of the database schema into a target

commercial OLAP tool (particularly into Informix Metacube and Cognos Powerplay).

From Table 1, one may conclude that none of the current conceptual modeling

approaches considers all MD properties at both the structural and dynamic levels.

Therefore, we claim that a standard conceptual model is needed to consider all MD

modeling properties at both the structural and dynamic levels. We argue that an OO

approach with the UML is the right way of linking structural and dynamic level

properties in an elegant way at the conceptual level.

A NOVEL OO CONCEPTUAL MODELING APPROACH BASED ON THE

UML

In this section, we summarize how our OO MD model, based on a subset of the UML,

can represent main structural aspects of MD modeling. A complete description of our

approach can be found in (Trujillo, 2001). The main features considered are the many-

to-many relationships between facts and dimensions, degenerate dimensions, multiple

and alternative path classification hierarchies, and non-strict and complete hierarchies.

It is important to remark that if we are modeling complex and large DW systems, we are

not restricted to use flat UML class diagrams. Instead, we can make use of the grouping

mechanism provided by the UML called package to group classes together into higher

level units to create different levels of abstraction, and therefore, simplifying the final

model (Luján-Mora, 2002). In this way, a UML class diagram improves and simplifies

the system specification accomplished by classic semantic data models such as the ER

model. Furthermore, necessary operations and constraints (e.g. additivity rules) can be

embedded in the class diagram by means of OCL expressions.

In this approach, the main structural properties of MD models are specified by means of

a UML class diagram in which the information is clearly separated into facts and

dimensions. Dimensions and facts are represented by dimension classes and fact

classes, respectively. Then, fact classes are specified as composite classes in shared

aggregation relationships of n dimension classes. The flexibility of shared aggregation

in the UML allows us to represent many-to-many relationships between facts and

particular dimensions by indicating the 1..* cardinality on the dimension class role. In

our example in Figure 3 (a), we can see how the fact class Sales has a many-to-one

relationship with both dimension classes.

By default, all measures in the fact class are considered additive. For nonadditive

measures, additivity rules are defined as constraints and are included in the fact class.

Furthermore, derived measures can also be explicitly considered (indicated by /) and

their derivation rules are placed between braces near the fact class, as shown in Figure 3

(a).

This OO approach also allows us to define identifying attributes in the fact class, by

placing the constraint {OID} next to an attribute name. In this way we can represent

degenerate dimensions (Kimball, 2002; Giovinazzo, 2000), thereby representing other

fact features in addition to the measures for analysis. For example, we could store the

ticket number (ticket_num) and the line number (line_num) as degenerate dimensions,

as reflected in Figure 3 (a).

Figure 3: Multidimensional modeling using UML

With respect to dimensions, every classification hierarchy level is specified by a class

(called a base class). An association of classes specifies the relationships between two

levels of a classification hierarchy. The only prerequisite is that these classes must

define a Directed Acyclic Graph (DAG) rooted in the dimension class (constraint {dag}

placed next to every dimension class). The DAG structure can represent both alternative

path and multiple classification hierarchies. Every classification hierarchy level must

have an identifying attribute (constraint {OID}) and a descriptor attribute (constraint

{D}). A descriptor attribute will be used as the default label in the data analysis. These

attributes are necessary for an automatic generation process into commercial OLAP

tools, as these tools store the information in their metadata. The multiplicity 1 and 1..*

defined in the target associated class role addresses the concepts of strictness and non-

strictness, respectively. Strictness means that an object at a hierarchy's lower level

belongs to only one higher-level object (e.g., as one month can be related to more than

one season, the relationship between them is non-strict). Moreover, defining the

{completeness} constraint in the target associated class role addresses the completeness

of a classification hierarchy (see an example in Figure 3 (b). By completeness we mean

that all members belong to one higher-class object and that object consists of those

members only. For example, all the recorded seasons form a year, and all the seasons

that form the year have been recorded. Our approach assumes all classification

hierarchies are non-complete by default.

Finally, the categorization of dimensions, used to model additional features for a class's

subtypes, is represented by means of generalization-specialization relationships.

However, only the dimension class can belong to both a classification and a

specialization hierarchy at the same time. An example of categorization for the Product

dimension is shown in Figure 3 (c).

Regarding dynamic properties, this approach allows us to specify initial user

requirements by means of a UML-compliant class notation called cube class during

analysis. Then, behavioral properties are mainly related to these cube classes that

represent initial user requirements. From these cube classes, final users may start a

navigational process by applying certain OLAP operations (roll-up, drill-down, etc.) in

the further data analysis phase. These operations are closed as they generate another

cube class as an output. Thus, we use state and interaction diagrams to model the

behavior (evolution) of these cube classes based on the applied OLAP operation. These

diagrams contain information about the most probable evolution of final user

requirements from the specified initial user requirement. The information contained in

these diagrams can be used by OLAP designers to predict user behaviors, and therefore,

help them design a proper view maintenance policy. (See first case study in next section

for further details on dynamic properties).

CASE STUDIES

The aim of this section is to exemplify the usage of our conceptual modeling approach

on modeling MD databases. We have selected three different examples taken from

Kimball’s book (Kimball, 2002), each of which introduces a new particular modeling

feature: a warehouse, a large bank, and a college course. Due to the lack of space, we

will only apply our complete modeling approach for the first example: we will apply all

of the diagrams we use for modeling a DW (package diagrams, class diagrams,

interaction diagrams, etc.). For the rest of the examples, due to space constraints, we

will only focus on representing the structural properties of MD modeling by specifying

the corresponding UML class diagram. This class diagram is the key one in our

approach since the rest of diagrams can be easily obtained from it.

The warehouse

This example explores three inventory models of a warehouse. The first one is the

inventory snapshot, where the inventory levels are measured every day and are placed in

separate records in the database. The second model is the delivery status model, which

contains one record for each delivery to the warehouse and the disposition of all the

items is registered until they have left the warehouse. Finally, the third inventory model

is the transaction model, which records every change of the status of delivery products

as they arrive at the warehouse, are processed into the warehouse, etc.

This example introduces two important concepts: the semiadditivity and the multistar

model (also known as fact constellations). The former has already been introduced in

Section 2 and refers to the fact that a measure cannot be summarized by using the sum

function along a dimension. In this example, the inventory level (stock) of the

warehouse is semiadditive, because it cannot be summed along time dimension, but it

can be averaged along the same dimension. The multistar (fact constellations) concept

refers to the fact that the same MD model has multiple facts.

To start with, in our approach, we model multistar models by means of package

diagrams. In this way, at the first level, we create a package diagram for each one of the

facts considered in the model. At this level, connecting package diagrams means that a

model will use elements (e.g. dimensions, hierarchies) defined in the other package.

Figure 4 shows the first level of the model formed by three packages that represent the

different star schemas in the case study.

Figure 4: Level 1 of Inventory case study

Then, we explore each package diagram at the second level to define packages for each

one of the facts and dimensions defined in the corresponding package diagram. Figure 5

shows the content of the package Inventory Snapshot Star at level 2. The fact package

Inventory Snapshot Fact is represented in the middle of Figure 5, and the dimension

packages (Product Dimension, Time Dimension, and Warehouse Dimension) are placed

around the fact package. As can be seen, a dependency is drawn from the fact package

to each one of the dimension packages, because the fact package comprises the whole

definition of the star schema. At level 2, it is possible to create a dependency from a fact

package to a dimension package or between dimension packages (when they share some

hierarchy levels), but not from a dimension package to a fact package.

Figure 5: Level 2 of Inventory Snapshot

Star

Figure 6: Level 2 of Inventory Transaction Star

Figure 6 shows the content of the package Inventory Transaction Star at level 2. As in

the Inventory Snapshot Star, the fact package is placed in the middle of the figure and

the dimension packages are placed around the fact package in a star fashion. Three

dimension packages (Product Dimension, Time Dimension, and Warehouse Dimension)

have been previously defined in the Inventory Snapshot Star (Figure 5), and they are

imported in this package. Therefore, the name of the package where they have been

previously defined appears below the package name (from Inventory Snapshot Star).

The content of the dimension and fact packages is represented at level 3. The diagrams

at this level are only comprised of classes and associations among them. For example,

Figure 7 shows the content of the package Warehouse Dimension at level 3. In a

dimension package, a class is drawn for the dimension class (Warehouse) and a class for

each classification hierarchy level (ZIP, City, County, State, SubRegion, and Region).

For the sake of simplicity, the methods of each class have not been depicted in the

figure. As can be seen in Figure 7, Warehouse presents alternative path classification

hierarchies: (i) ZIP, City, County, State, and (ii) SubRegion, Region, State.

Figure 7: Level 3 of Warehouse Dimension

Finally, Figure 8 shows the content of the package Inventory Snapshot Fact. In this

package, the whole star schema is displayed: the fact class (Inventory Snapshot) is

defined and the dimensions with their corresponding hierarchy levels are imported from

the dimension packages. To avoid unnecessary details, we have hidden the attributes

and methods of dimensions and hierarchy levels, but the measures of the fact are shown

as attributes of the fact class: four atomic measures (quantity_on_hand,

quantity_shipped, value_at_cost, and value_at_LSP), and three derived measures

(number_of_turns, gross_profit, and gross_margin). The definition of the derived

measures is included in the model by means of derivation rules. Regarding the

additivity of the measures, only quanty_on_hand is semiadditive; because of this, an

additivity rule has been added to the model. Finally, Warehouse presents alternative

path classification hierarchies and Time and Product present multiple classification

hierarchies, as can be seen in Figure 8.

Figure 8: Level 3 of Inventory Snapshot Fact

Regarding the dynamic part of the model, initial user requirements are specified by

means of a UML-compliant class notation called cube class (CC). A CC is structured

into three sections: measures, to specify which fact attributes are analyzed; slice, to

express constraints in terms of filters; and dice, to define grouping conditions of the

data.

Let us suppose the following initial user requirement on the MD model specified by the

UML class diagram of Figure 8: ‘We wish to analyze the quantity_on_hand of products

where the group of products is “Grocery” and the warehouse state is “Valencia”

grouped according to the product subgroup and the warehouse region and subregion’.

On the left hand side of Figure 9, we can observe the graphical notation of the CC that

corresponds to this requirement. The measure to be analyzed (quantity_on_hand) is

specified in the measure area. Constraints defined on dimension classification hierarchy

levels (group and state) are included in the slice area, while classification hierarchy

levels along which we are interested in analyzing measures (subgroup, region, and

subregion) are included in the dice area. Finally, the available OLAP operations are

specified in the CO (Cube Operations) section (in this example the CO are omitted to

avoid unnecessary detail).

Figure 9: An example of initial user requirement

We should point out that this graphical notation of the cube class aims at facilitating the

definition of initial user requirements to non-expert UML or databases users. In a more

formal way, every one of these cube classes has its underlying OQL specification.

Moreover, an expert user can directly define cube classes by specifying the OQL

sentences. On the right hand side of Figure 9, we have sketched how the cube class

example definition could be specified in OQL syntax.

As discussed in Section 4, we use the state and interaction diagrams provided by the

UML to model the behavior (evolution) of these cube classes based on the applied

OLAP operation. Regarding state diagrams, one state diagram is defined for each

initial cube class. The diagram specifies that certain OLAP operations lead users to

cube classes that allow them to analyze the same data (the same measures along the

same dimensions) in different ways. In these diagrams, each classification hierarchy

level defined on a dimension included in the Dice area is considered as a valid state.

Every one of these valid states will be a new cube class. Then, the provided OLAP

operations allow us to navigate along the states to define new cube classes. For

example, in Figure 10 we can see the corresponding state diagram of the cube class

definition of Figure 9. It may be observed, for example, that roll-up and drill-down

operations applied on the classification hierarchies levels defined on the Warehouse and

Product dimensions will allow us to navigate up and down along the classification

hierarchies defined in both dimensions.

On the other hand, an interaction diagram can also be defined for each UML class

diagram. In our approach, we have adopted sequence diagrams (Booch, 1998; OMG,

2001) for their clarity and low complexity. This interaction diagram shows interactions

among cube classes, changed by OLAP operations such as rotate, pivot, slice, or dice.

Thus, we can specify that certain OLAP operations (e.g. dice) lead users to cube classes

which will show completely different data. Then, these new cube classes represent the

most probable new requirements a final user wish to execute. In Figure 11, we can see

an example of interaction diagram, in which we have considered three cube classes that

specify initial user requirements. Then, we have defined the OLAP operations needed to

switch between these cube classes.

Figure 10: An example of state diagram

Figure 11: An example of interaction diagram

A large bank

In this example, a DW for a large bank is presented. The bank offers a significant

portfolio of financial services: checking accounts, savings accounts, mortgage loans,

safe deposit boxes, and so on.

This example introduces the following concepts:

 Heterogeneous dimension: a dimension that describes a large number of

heterogeneous items with different attributes. Kimball’s recommended

technique is “to create a core fact table and a core dimension table in order to

allow queries to cross the disparate types and to create a custom fact table and a

custom dimension table for querying each individual type in depth”. However,

our conceptual MD approach can provide an elegant and simple solution to this

problem, thanks to the categorization of dimensions.

 Categorization of dimensions: it allows us to model additional features for a

dimension’s subtypes.

 Shared classification hierarchies between dimensions: our approach allows two

or more dimensions to share some levels of their classification hierarchies.

Figure 12 represents the level 1, which comprises five star packages: Saving Accounts

Star, Personal Loans Star, Investment Loans Star, Safe Deposit Boxes Star, and

Mortgage Loans Star. From now, we will only center on the Mortgage Loans Star. The

corresponding level 2 of this star package is depicted in Figure 13.

Figure 12: Level 1

Figure 13: Level 2 of Mortgage Loans Star

Level 3 of Mortgage Loans Fact is shown in Figure 14. To avoid unnecessarily

complicating the figure, three of the dimensions (Account, Time, and Status) with their

corresponding hierarchies are not represented. Moreover, the attributes of the

represented hierarchy levels have been omitted. The fact class (Mortgage Loans)

contains four attributes that represent the measures: total, balance, and payment_number

are atomic; whereas debt is derived (the corresponding derivation rule is placed next to

the fact class). Regarding the additivity of the measures, none of the measures is

additive, consequently, the additivity rules are also placed next to the fact class.

In this example, the dimensions present two special characteristics. On one hand,

Branch and Customer share some hierarchy levels: ZIP, City, County, and State. On the

other hand, Product dimension has a generalization-specialization hierarchy. This kind

of hierarchy allows us to easily deal with heterogeneous dimensions: the different items

can be grouped together in different categorization levels depending on their properties.

Figure 14: Level 3 of Mortgage Loans Fact

The college course

This example introduces the concept of factless fact table (FFT): fact tables for which

there are no measured facts. Kimball distinguishes two major variations of FFT: event

tracking tables ant coverage tables. In this example we will focus on the first type.

Event tracking tables are used when a large number of events need to be recorded as a

number of dimensional entities coming together simultaneously. In this example, we

will model daily class attendance at a college. In Figure 15 and Figure 16, level 1 and

level 2 of this model are depicted respectively. In this case, level 1 only contains one

star package.

Figure 15: Level 1

Figure 16: Level 2 of College Course Star

Figure 17 shows level 3 of College Course Fact. For the sake of simplicity, the

attributes and methods of every class have not been depicted in the figure. As it can be

seen, the fact class College Course contains no measures because it is a FFT. In FFT,

the majority of the questions that users create imply counting the number of records that

satisfy a constraint, such as which facilities were used most heavily? Or, which courses

were the least attended?

Regarding the dimensions, Course and Time present multiple classification hierarchies,

Professor and Student share some hierarchy levels, and Facility presents a

categorization hierarchy.

Figure 17: Level 3 of College Course Star

CONCLUSIONS

In this chapter, we have presented an OO conceptual modeling approach, based on the

UML, to properly design DWs, MD databases and OLAP applications. Structural

aspects of MD modeling are easily specified by means of a UML class diagram in

which classes are related through association and shared aggregation relationships. In

this context, thanks to the flexibility of the power of the UML, all the semantics

required for a proper MD conceptual modeling are considered, such as many-to-many

relationships between facts and particular dimensions, multiple path hierarchies of

dimensions, the strictness and completeness of classification hierarchies, and

categorization of dimension attributes. Regarding dynamic aspects, we provide a UML-

compliant class graphical notation (called cube classes) to specify initial user

requirements at the conceptual level. We have also described how we use state and

interaction diagrams to model the behavioral aspects of the system regarding these cube

classes based on the set of the applied OLAP operations. Finally, we have selected three

case studies from Kimball’s book and modeled them following our approach. This

shows that our approach is a very easy-to-use yet powerful conceptual model that

represents main structural and dynamic properties of MD modeling in an easy and

elegant way.

We are currently working on formally extending the UML with our conceptual

modeling constructors. Furthermore, we are also considering the automatic

implementation of a MD model from our approach into object-oriented and object-

relational databases.

