
APPLYING UML FOR DESIGNING MULTIDIMENSIONAL DATABASES 

AND OLAP APPLICATIONS 

Name: Juan Trujillo 

Affiliation: Departamento de Lenguajes y Sistemas Informáticos, Universidad de 

Alicante 

Address: Campus de San Vicente del Raspeig, Ap. Correos 99, E-03080 Alicante, Spain 

Phone number: +34 965 90 34 00 ext. 2967 

Fax number: +34 965 90 93 26 

Email: jtrujillo@dlsi.ua.es 

 

Name: Il-Yeol Song 

Affiliation: College of Information Science and Technology, Drexel University 

Address: PA 19104, USA 

Phone number: +1 (215) 895-2489 

Fax number: +1 (215) 895-2494 

Email: songiy@drexel.edu 

 

Name: Sergio Luján-Mora 

Affiliation: Departamento de Lenguajes y Sistemas Informáticos, Universidad de 

Alicante 

Address: Campus de San Vicente del Raspeig, Ap. Correos 99, E-03080 Alicante, Spain 

Phone number: +34 965 90 34 00 ext. 2962 

Fax number: +34 965 90 93 26 

Email: slujan@dlsi.ua.es 



APPLYING UML FOR DESIGNING MULTIDIMENSIONAL DATABASES 

AND OLAP APPLICATIONS 

 

Multidimensional (MD) modeling is the basis for Data warehouses (DW), 

multidimensional databases (MDB) and On-Line Analytical Processing (OLAP) 

applications. In this chapter, we present how the Unified Modeling Language (UML) 

can be successfully used to represent both structural and dynamic properties of these 

systems at the conceptual level. The structure of the system is specified by means of a 

UML class diagram that considers the main properties of MD modeling with minimal 

use of constraints and extensions of the UML. If the system to be modeled is too 

complex, thereby leading us to a considerable number of classes and relationships, we 

sketch out how to use the package grouping mechanism provided by the UML to 

simplify the final model. Furthermore, we provide a UML-compliant class notation 

(called cube class) to represent OLAP initial user requirements. We also describe how 

we can use the UML state and interaction diagrams to model the behavior of a data 

warehouse system. We believe that our innovative approach provides a theoretical 

foundation for simplifying the conceptual design of multidimensional systems and our 

examples illustrate the use of our approach.  

 

Keywords: Data warehouses, multidimensional databases, OLAP, conceptual 

modeling, UML, object orientation 

 

INTRODUCTION 

 



It is widely accepted that DW, MDB and OLAP applications are based on 

multidimensional modeling. The benefit of using this MD modeling is two-fold. On one 

hand, the MD model is close to data analyzers’ way of thinking, therefore, it helps users 

understand data. On the other hand, the MD model supports performance improvement 

as its simple structure allows us to predict final users’ intentions. 

 

Some approaches have been proposed lately (presented in Section 3) to accomplish the 

conceptual design of these systems. Unfortunately, none of them has been accepted as a 

standard for DW conceptual modeling. These proposals try to represent main MD 

properties at the conceptual level with special emphasis on MD data structures. A 

conceptual modeling approach for DW, however, should also concern other relevant 

aspects such as initial user requirements, the behavior of the system (e.g. main 

operations to be accomplished on MD data structures), available data sources, and 

specific issues for automatic generation of the database schema and so on. We claim 

that object orientation with the UML provides an adequate notation for modeling every 

aspect of a DW system (MD data structures, the behavior of the system, etc.) from user 

requirements to implementation. 

 

In this chapter, we present an object-oriented (OO) approach to accomplish the 

conceptual modeling of DW, MDB and OLAP applications. Our approach introduces a 

set of minimal constraints and extensions of the UML (Booch, 1998; OMG, 2001) 

needed for an adequate representation of MD modeling properties. These extensions are 

based on the standard mechanisms provided by the UML to adapt to a specific method 

or model (e.g. constraints, tagged values). We also present how to group classes into 

packages to simplify the final model in case that the model becomes too complex due to 



the high number of classes. Furthermore, we provide a UML-compliant class notation to 

represent OLAP initial user requirements (called cube class). From these cube classes, 

we then describe the use of state and interaction diagrams to model the behavior of the 

system based on the applied OLAP operations. We also discuss issues such as 

identifying attributes and descriptor attributes that set the basis for an adequate semi-

automatic generation of a database schema and user requirements in a target commercial 

OLAP tool. Finally, we present a set of case studies to show the elegant way in which 

our proposal represents both structural and dynamic properties of MD modeling. 

 

The UML can also be used with powerful mechanisms such as the Object Constraint 

Language (OCL) (Warmer, 1998; OMG, 2001) and the Object Query Language (OQL) 

(Cattell, 2000) to embed DW constraints (e.g. additivity and derived attributes) and 

initial user requirements in the conceptual model. In this way, when we model a DW 

system, we can obtain simple yet powerful extended UML class diagrams that represent 

main MD properties at a conceptual level. We believe that our innovative approach 

provides a theoretical foundation for the possible use of OODB and ORDB for DW and 

OLAP applications. 

 

The remainder of this chapter is organized as follows: Section 2 details the major 

features of MD modeling that should be taken into account for a proper MD conceptual 

design. Section 3 summarizes the most relevant conceptual approaches proposed so far 

by the research community. In Section 4, we summarize how we use the UML to 

consider main MD properties at the conceptual level. In Section 5, we present a set of 

case studies taken from Kimball (Kimball, 2002) to show the benefit of our approach. 



Finally, Section 6 draws some conclusions and sketches some work that is currently 

being carried out. 

 

MULTIDIMENSIONAL MODELING PROPERTIES 

 

In MD modeling, information is structured into facts and dimensions. A fact is an item 

of interest for an enterprise, and is described through a set of attributes called measures 

or fact attributes (atomic or derived), which are contained in cells or points in the data 

cube. This set of measures is based on a set of dimensions that determine the granularity 

adopted for representing facts (i.e. the context in which facts are to be analyzed). 

Moreover, dimensions are also characterized by attributes, which are usually called 

dimension attributes. They are used for grouping, browsing, and constraining 

measures. 

 

Let us consider an example in which the fact is the product sales in a large store chain 

and the dimensions are as follows: product, store, customer and time. On the left hand 

side of Figure 1, we can observe a data cube typically used for representing a MD 

model. In this particular case, we have defined a cube for analyzing measures along the 

product, store and time dimensions. 

 

We note that a fact usually represents a many-to-many relationship between any of two 

dimensions.  For example, a product is sold in many stores and a store sells many 

products. We also assume that there is a many-to-one relationship between a fact and 

each particular dimension. For example, for each store there are many sale tickets, but 

each sale ticket belongs to only one store.  



 

Nevertheless, there are some cases in which a fact may be associated with a particular 

dimensions as a many-to-many relationship. For example, the fact product_sales is 

considered as a particular many-to-many relationship to the product dimension as one 

ticket may consist of more than one product even though every ticket is still purchased 

in only one store by one customer and at one time. 

 

With reference to measures, the concept of additivity or summaribility (Blaschka, 

1998; Golfarelli, 1998; Kimball, 2002; Trujillo, 2000; Tryfona, 1999) on measures 

along dimensions is crucial for MD data modeling. A measure is additive along a 

dimension if the SUM operator can be used to aggregate attribute values along all 

hierarchies defined on that dimension. The aggregation of some fact attributes (roll-up 

in OLAP terminology), however, might not be semantically meaningful for all measures 

along all dimensions. A measure is semi-additive if SUM operator can be applied to 

some dimensions, but not all the dimensions. A measure is non-additive if SUM 

operator cannot be applied to any dimension. In our example, number of clients 

(estimated by counting the number of purchased receipts for a given product, day and 

store) is not additive along the product dimension. Since the same ticket may include 

other products, adding up the number of clients along two or more products would lead 

to inconsistent results. However, other aggregation operators (e.g. SUM, AVG and 

MIN) could still be used along other dimensions such as time. Thus, number of clients is 

semi-additive.  An example of non-additive measures is interest rate. 

 



 

Figure 1: A data cube and classification hierarchies defined on dimensions 

 

Regarding dimensions, the classification hierarchies defined on certain dimension 

attributes are crucial because the subsequent data analysis will be addressed by these 

classification hierarchies. A dimension attribute may also be aggregated (related) to 

more than one hierarchy, therefore, multiple classification hierarchies and alternative 

path hierarchies are also relevant. For this reason, a common way of representing and 

considering dimensions with their classification hierarchies is by means of Directed 

Acyclic Graphs (DAG). 

 

On the right hand side of Figure 1, we can observe different classification hierarchies 

defined on the product, store and time dimensions. On the product dimension, we have 

considered a multiple classification hierarchy to be able to aggregate data values along 

two different hierarchy paths: (i) product, type, family, group and (ii) product, brand. 

There may exist attributes that are not used for aggregating purposes and provide 

features for other dimension attributes (e.g. product name). On the store dimension, we 

have defined an alternative classification hierarchy with two different paths that 

converge into the same hierarchy level: (i) store, city, province, state and (ii) store, 

sales_area, state. Finally, we have also defined another multiple classification hierarchy 



with the following paths on the time dimension: (i) time, month, semester, year and (ii) 

time, season. 

 

Nevertheless, classification hierarchies are not so simple in most cases. The concepts of 

strictness and completeness are quite important, not only for conceptual purposes, but 

also for further design steps of MD modeling (Tryfona, 1999). “Strictness” means that 

an object of a lower level in a hierarchy belongs to only one in a higher level, e.g. a 

province is only related to one state. “Completeness” means that all members belong to 

one higher-class object and that object consists of those members only. For example, 

suppose that the classification hierarchy between the state and province levels is 

“complete”. In this case, a state is formed by all the provinces recorded and all the 

provinces that form the state are recorded. 

 

OLAP scenarios sometimes become very large as the number of dimensions increases 

significantly, and therefore, this fact may lead to extremely sparse dimensions and data 

cubes. In this way, there are attributes that are normally valid for all elements within a 

dimension while others are only valid for a subset of elements (also known as the 

categorization of dimensions (Lehner, 1998; Tryfona, 1999)). For example, attributes 

alcohol percentage and volume would only be valid for drink products and will be 

“null” for food products. Thus, a proper MD data model should be able to consider 

attributes only when necessary, depending on the categorization of dimensions. 

 

Furthermore, let us suppose that apart from a high number of dimensions (e.g. 20) with 

their corresponding hierarchies, we have a considerable number of facts (e.g. 8) sharing 

dimensions and classification hierarchies. This system will lead us to a very complex 



design, thereby increasing the difficulty in reading the modeled system. Therefore, a 

MD conceptual model should also provide techniques to avoid flat diagrams, allowing 

us to group dimensions and facts to simplify the final model. 

 

Once the structure of the MD model has been defined, OLAP users usually define a set 

of initial user requirements as a starting point for the subsequent data analysis phase. 

From these initial requirements, users can apply a set of operations (usually called 

OLAP operations (Chaudhuri, 1997) to the MD view of data for further data analysis. 

These OLAP operations are usually as follows: roll-up (increasing the level of 

aggregation) and drill-down (decreasing the level of aggregation) along one or more 

classification hierarchies, slice-dice (selection and projection) and pivoting (re-orienting 

the MD view of data which also allows us to exchange dimensions for facts; i.e. 

symmetric treatment of facts and dimensions). 

 

Star Schema  

 

In this sub-section, we will summarize the star schema popularized by Kimball 

(Kimball, 2002) since it is the most well-known schema to represent MD properties in 

relational databases. 

 

Kimball claims that the star schema and its variants fact constellations schema and the 

snowflake schema are logical choices for MD modeling to be implemented in relational 

systems. We will briefly introduce this well-known approach using Sales Dimensional 

Model. 

 



Figure 2 shows an example of Kimball’s Sales Dimensional Model. In this model, the 

fact is the name of the middle box (Sales fact table).  Measures are the non-foreign keys 

in the fact table (dollars_sold, units_sold, and dollars_cost).  Dimensions are the boxes 

connected to the fact table in a one-to-many relationship (Time, Store, Product, 

Customer, and Promotion). Each dimension contains relevant attributes: day_of_week, 

week_number, and month in Time; store_name, address, district, and floor_type in 

Store, and so on. 

 

From Figure 2, we can easily see that there are many MD features that are not reflected 

in the Dimensional Model: Which are the classification hierarchies defined on 

dimensions? Can we use all aggregation operators on all measures along all 

dimensions? What are these classification hierarchies like? Non-strict, strict, complete, 

…? And many more. Therefore, we argue that for a proper DW and OLAP design, a 

conceptual MD model should be provided to better reflect user requirements and then, 

this conceptual model could be translated into a logical model for a later 

implementation. In this way, we can be sure that we are analyzing the real world as 

users perceive them.  

 

RELATED WORK 

 

Lately, several MD data models have been published. Some of them fall into the logical 

level (such as the well-known star-schema by R. Kimball (Kimball, 2002)). Others may 

be considered as formal models as they provide a formalism to consider main MD 

properties. A review of the most relevant logical and formal models can be found in 

(Blaschka, 1998; Abello, 2001). 



 

In this section, we will only make a brief reference to the most relevant models that we 

consider “pure” conceptual MD models. These models provide a high level of 

abstraction for the main MD modeling properties presented in Section 2 and are totally 

independent from implementation issues. These are as follows: The Dimensional-Fact 

(DF) model by Golfarelli (1998), The Multidimensional/ER (M/ER) model by Sapia 

(1998, 1999) and The starER model by Tryfona (1999). 

 

 

Figure 2: Sales Dimensional Model 

 

In Table 1, we provide the coverage degree of each above-mentioned conceptual model 

regarding the main MD properties described in the previous section. To start with, to the 

best of our knowledge, no proposal provides a grouping mechanism to avoid flat 



diagrams and to simplify the conceptual design when a system becomes complex due to 

a high number of dimensions and facts sharing dimensions and their corresponding 

hierarchies. Regarding facts, only the starER model considers many-to-many 

relationships between facts and particular dimensions by indicating the exact cardinality 

(multiplicity) between them. None of them considers derived measures or their 

derivation rules as part of the conceptual schema. The DF and the starER models 

consider the additivity of measures by explicitly representing the set of aggregation 

operators that can be applied on non-additive measures. With reference to dimensions, 

all of the models consider multiple and alternative path classification hierarchies by 

means of Directed Acyclic Graphs (DAG) defined on certain dimension attributes. 

However, only the starER model considers non-strict and complete classification 

hierarchies by specifying the exact cardinality between classification hierarchy levels. 

As both the M/ER and the starER models are extensions of the Entity Relationship (ER) 

model, it is easy for them to consider the categorization of dimensions by means of Is-a 

relationships. 

 

Multidimensional modeling properties Model 

 DF M/ER StarEr 

Structural level    

Facts    

    Many-to-many relationships with particular 

dimensions 

No No Yes 

    Atomic measures Yes Yes Yes 

    Derived measures No No No 

    Additivity Yes No Yes 



Dimensions    

    Multiple and alternative path classification 

hierarchies 

Yes Yes Yes 

    Nonstrict classification hierarchies No No Yes 

    Complete classification hierarchies No No Yes 

    Categorization of dimensions No Yes Yes 

Dynamic level    

Specifying initial user requirements Yes Yes No 

OLAP operations No Yes No 

Modeling system behavior No Yes No 

Graphical notation Yes Yes Yes 

Automatic generation into a target OLAP 

commercial tool 

No Yes No 

Table 1: Comparison of conceptual multidimensional models 

 

With reference to the dynamic level of MD modeling, the starER model is the only one 

that does not provide an explicit mechanism to represent initial user requirements. On 

the other hand, only the M/ER model provides a set of basic OLAP operations to be 

applied from these initial user requirements, and it models the behavior of the system by 

means of state diagrams. 

 

Finally, we note that all the models provide a graphical notation that facilitates the 

conceptual modeling task to the designer. On the other hand, only the M/ER model 

provides a framework for an automatic generation of the database schema into a target 

commercial OLAP tool (particularly into Informix Metacube and Cognos Powerplay). 



 

From Table 1, one may conclude that none of the current conceptual modeling 

approaches considers all MD properties at both the structural and dynamic levels. 

Therefore, we claim that a standard conceptual model is needed to consider all MD 

modeling properties at both the structural and dynamic levels. We argue that an OO 

approach with the UML is the right way of linking structural and dynamic level 

properties in an elegant way at the conceptual level. 

 

A NOVEL OO CONCEPTUAL MODELING APPROACH BASED ON THE 

UML 

 

In this section, we summarize how our OO MD model, based on a subset of the UML, 

can represent main structural aspects of MD modeling. A complete description of our 

approach can be found in (Trujillo, 2001). The main features considered are the many-

to-many relationships between facts and dimensions, degenerate dimensions, multiple 

and alternative path classification hierarchies, and non-strict and complete hierarchies. 

 

It is important to remark that if we are modeling complex and large DW systems, we are 

not restricted to use flat UML class diagrams. Instead, we can make use of the grouping 

mechanism provided by the UML called package to group classes together into higher 

level units to create different levels of abstraction, and therefore, simplifying the final 

model (Luján-Mora, 2002). In this way, a UML class diagram improves and simplifies 

the system specification accomplished by classic semantic data models such as the ER 

model. Furthermore, necessary operations and constraints (e.g. additivity rules) can be 

embedded in the class diagram by means of OCL expressions. 



 

In this approach, the main structural properties of MD models are specified by means of 

a UML class diagram in which the information is clearly separated into facts and 

dimensions. Dimensions and facts are represented by dimension classes and fact 

classes, respectively. Then, fact classes are specified as composite classes in shared 

aggregation relationships of n dimension classes. The flexibility of shared aggregation 

in the UML allows us to represent many-to-many relationships between facts and 

particular dimensions by indicating the 1..* cardinality on the dimension class role. In 

our example in Figure 3 (a), we can see how the fact class Sales has a many-to-one 

relationship with both dimension classes. 

 

By default, all measures in the fact class are considered additive. For nonadditive 

measures, additivity rules are defined as constraints and are included in the fact class. 

Furthermore, derived measures can also be explicitly considered (indicated by /) and 

their derivation rules are placed between braces near the fact class, as shown in Figure 3 

(a). 

 

This OO approach also allows us to define identifying attributes in the fact class, by 

placing the constraint {OID} next to an attribute name. In this way we can represent 

degenerate dimensions (Kimball, 2002; Giovinazzo, 2000), thereby representing other 

fact features in addition to the measures for analysis. For example, we could store the 

ticket number (ticket_num) and the line number (line_num) as degenerate dimensions, 

as reflected in Figure 3 (a). 

 



 

Figure 3: Multidimensional modeling using UML 

 

With respect to dimensions, every classification hierarchy level is specified by a class 

(called a base class). An association of classes specifies the relationships between two 

levels of a classification hierarchy. The only prerequisite is that these classes must 

define a Directed Acyclic Graph (DAG) rooted in the dimension class (constraint {dag} 

placed next to every dimension class). The DAG structure can represent both alternative 

path and multiple classification hierarchies. Every classification hierarchy level must 

have an identifying attribute (constraint {OID}) and a descriptor attribute (constraint 

{D}). A descriptor attribute will be used as the default label in the data analysis. These 

attributes are necessary for an automatic generation process into commercial OLAP 

tools, as these tools store the information in their metadata. The multiplicity 1 and 1..* 

defined in the target associated class role addresses the concepts of strictness and non-

strictness, respectively. Strictness means that an object at a hierarchy's lower level 

belongs to only one higher-level object (e.g., as one month can be related to more than 

one season, the relationship between them is non-strict). Moreover, defining the 

{completeness} constraint in the target associated class role addresses the completeness 

of a classification hierarchy (see an example in Figure 3 (b). By completeness we mean 

that all members belong to one higher-class object and that object consists of those 



members only. For example, all the recorded seasons form a year, and all the seasons 

that form the year have been recorded. Our approach assumes all classification 

hierarchies are non-complete by default. 

 

Finally, the categorization of dimensions, used to model additional features for a class's 

subtypes, is represented by means of generalization-specialization relationships. 

However, only the dimension class can belong to both a classification and a 

specialization hierarchy at the same time. An example of categorization for the Product 

dimension is shown in Figure 3 (c). 

 

Regarding dynamic properties, this approach allows us to specify initial user 

requirements by means of a UML-compliant class notation called cube class during 

analysis. Then, behavioral properties are mainly related to these cube classes that 

represent initial user requirements. From these cube classes, final users may start a 

navigational process by applying certain OLAP operations (roll-up, drill-down, etc.) in 

the further data analysis phase. These operations are closed as they generate another 

cube class as an output. Thus, we use state and interaction diagrams to model the 

behavior (evolution) of these cube classes based on the applied OLAP operation. These 

diagrams contain information about the most probable evolution of final user 

requirements from the specified initial user requirement. The information contained in 

these diagrams can be used by OLAP designers to predict user behaviors, and therefore, 

help them design a proper view maintenance policy. (See first case study in next section 

for further details on dynamic properties). 

 



CASE STUDIES 

 

The aim of this section is to exemplify the usage of our conceptual modeling approach 

on modeling MD databases. We have selected three different examples taken from 

Kimball’s book (Kimball, 2002), each of which introduces a new particular modeling 

feature: a warehouse, a large bank, and a college course. Due to the lack of space, we 

will only apply our complete modeling approach for the first example: we will apply all 

of the diagrams we use for modeling a DW (package diagrams, class diagrams, 

interaction diagrams, etc.). For the rest of the examples, due to space constraints, we 

will only focus on representing the structural properties of MD modeling by specifying 

the corresponding UML class diagram. This class diagram is the key one in our 

approach since the rest of diagrams can be easily obtained from it.  

 

The warehouse 

 

This example explores three inventory models of a warehouse. The first one is the 

inventory snapshot, where the inventory levels are measured every day and are placed in 

separate records in the database. The second model is the delivery status model, which 

contains one record for each delivery to the warehouse and the disposition of all the 

items is registered until they have left the warehouse. Finally, the third inventory model 

is the transaction model, which records every change of the status of delivery products 

as they arrive at the warehouse, are processed into the warehouse, etc. 

 

This example introduces two important concepts: the semiadditivity and the multistar 

model (also known as fact constellations). The former has already been introduced in 



Section 2 and refers to the fact that a measure cannot be summarized by using the sum 

function along a dimension. In this example, the inventory level (stock) of the 

warehouse is semiadditive, because it cannot be summed along time dimension, but it 

can be averaged along the same dimension. The multistar (fact constellations) concept 

refers to the fact that the same MD model has multiple facts. 

 

To start with, in our approach, we model multistar models by means of package 

diagrams. In this way, at the first level, we create a package diagram for each one of the 

facts considered in the model. At this level, connecting package diagrams means that a 

model will use elements (e.g. dimensions, hierarchies) defined in the other package. 

Figure 4 shows the first level of the model formed by three packages that represent the 

different star schemas in the case study.  

 

 

Figure 4: Level 1 of Inventory case study 

 

Then, we explore each package diagram at the second level to define packages for each 

one of the facts and dimensions defined in the corresponding package diagram. Figure 5 

shows the content of the package Inventory Snapshot Star at level 2. The fact package 

Inventory Snapshot Fact is represented in the middle of Figure 5, and the dimension 

packages (Product Dimension, Time Dimension, and Warehouse Dimension) are placed 

around the fact package. As can be seen, a dependency is drawn from the fact package 

to each one of the dimension packages, because the fact package comprises the whole 

definition of the star schema. At level 2, it is possible to create a dependency from a fact 



package to a dimension package or between dimension packages (when they share some 

hierarchy levels), but not from a dimension package to a fact package. 

 

 

Figure 5: Level 2 of Inventory Snapshot 

Star 

 

Figure 6: Level 2 of Inventory Transaction Star 

 

 

Figure 6 shows the content of the package Inventory Transaction Star at level 2. As in 

the Inventory Snapshot Star, the fact package is placed in the middle of the figure and 

the dimension packages are placed around the fact package in a star fashion. Three 

dimension packages (Product Dimension, Time Dimension, and Warehouse Dimension) 

have been previously defined in the Inventory Snapshot Star (Figure 5), and they are 

imported in this package. Therefore, the name of the package where they have been 

previously defined appears below the package name (from Inventory Snapshot Star).  

 

The content of the dimension and fact packages is represented at level 3. The diagrams 

at this level are only comprised of classes and associations among them. For example, 

Figure 7 shows the content of the package Warehouse Dimension at level 3. In a 

dimension package, a class is drawn for the dimension class (Warehouse) and a class for 

each classification hierarchy level (ZIP, City, County, State, SubRegion, and Region). 

For the sake of simplicity, the methods of each class have not been depicted in the 

figure. As can be seen in Figure 7, Warehouse presents alternative path classification 

hierarchies: (i) ZIP, City, County, State, and (ii) SubRegion, Region, State. 



 

 

Figure 7: Level 3 of Warehouse Dimension 

 

Finally, Figure 8 shows the content of the package Inventory Snapshot Fact. In this 

package, the whole star schema is displayed: the fact class (Inventory Snapshot) is 

defined and the dimensions with their corresponding hierarchy levels are imported from 

the dimension packages. To avoid unnecessary details, we have hidden the attributes 

and methods of dimensions and hierarchy levels, but the measures of the fact are shown 

as attributes of the fact class: four atomic measures (quantity_on_hand, 

quantity_shipped, value_at_cost, and value_at_LSP), and three derived measures 

(number_of_turns, gross_profit, and gross_margin). The definition of the derived 

measures is included in the model by means of derivation rules. Regarding the 

additivity of the measures, only quanty_on_hand is semiadditive; because of this, an 

additivity rule has been added to the model. Finally, Warehouse presents alternative 

path classification hierarchies and Time and Product present multiple classification 

hierarchies, as can be seen in Figure 8. 

 



 

Figure 8: Level 3 of Inventory Snapshot Fact 

 

Regarding the dynamic part of the model, initial user requirements are specified by 

means of a UML-compliant class notation called cube class (CC). A CC is structured 

into three sections: measures, to specify which fact attributes are analyzed; slice, to 

express constraints in terms of filters; and dice, to define grouping conditions of the 

data.  

 

Let us suppose the following initial user requirement on the MD model specified by the 

UML class diagram of Figure 8: ‘We wish to analyze the quantity_on_hand of products 

where the group of products is “Grocery” and the warehouse state is “Valencia” 

grouped according to the product subgroup and the warehouse region and subregion’. 

On the left hand side of Figure 9, we can observe the graphical notation of the CC that 

corresponds to this requirement. The measure to be analyzed (quantity_on_hand) is 



specified in the measure area. Constraints defined on dimension classification hierarchy 

levels (group and state) are included in the slice area, while classification hierarchy 

levels along which we are interested in analyzing measures (subgroup, region, and 

subregion) are included in the dice area. Finally, the available OLAP operations are 

specified in the CO (Cube Operations) section (in this example the CO are omitted to 

avoid unnecessary detail). 

 

 

Figure 9: An example of initial user requirement 

 

We should point out that this graphical notation of the cube class aims at facilitating the 

definition of initial user requirements to non-expert UML or databases users. In a more 

formal way, every one of these cube classes has its underlying OQL specification. 

Moreover, an expert user can directly define cube classes by specifying the OQL 

sentences. On the right hand side of Figure 9, we have sketched how the cube class 

example definition could be specified in OQL syntax. 

 

As discussed in Section 4, we use the state and interaction diagrams provided by the 

UML to model the behavior (evolution) of these cube classes based on the applied 

OLAP operation. Regarding state diagrams, one state diagram is defined for each 

initial cube class.  The diagram specifies that certain OLAP operations lead users to 



cube classes that allow them to analyze the same data (the same measures along the 

same dimensions) in different ways. In these diagrams, each classification hierarchy 

level defined on a dimension included in the Dice area is considered as a valid state. 

Every one of these valid states will be a new cube class. Then, the provided OLAP 

operations allow us to navigate along the states to define new cube classes. For 

example, in Figure 10 we can see the corresponding state diagram of the cube class 

definition of Figure 9. It may be observed, for example, that roll-up and drill-down 

operations applied on the classification hierarchies levels defined on the Warehouse and 

Product dimensions will allow us to navigate up and down along the classification 

hierarchies defined in both dimensions. 

 

On the other hand, an interaction diagram can also be defined for each UML class 

diagram. In our approach, we have adopted sequence diagrams (Booch, 1998; OMG, 

2001) for their clarity and low complexity. This interaction diagram shows interactions 

among cube classes, changed by OLAP operations such as rotate, pivot, slice, or dice. 

Thus, we can specify that certain OLAP operations (e.g. dice) lead users to cube classes 

which will show completely different data. Then, these new cube classes represent the 

most probable new requirements a final user wish to execute. In Figure 11, we can see 

an example of interaction diagram, in which we have considered three cube classes that 

specify initial user requirements. Then, we have defined the OLAP operations needed to 

switch between these cube classes.  

 



 

Figure 10: An example of state diagram 

 

 

Figure 11: An example of interaction diagram 

 

A large bank 

 



In this example, a DW for a large bank is presented. The bank offers a significant 

portfolio of financial services: checking accounts, savings accounts, mortgage loans, 

safe deposit boxes, and so on. 

 

This example introduces the following concepts: 

 

 Heterogeneous dimension: a dimension that describes a large number of 

heterogeneous items with different attributes. Kimball’s recommended 

technique is “to create a core fact table and a core dimension table in order to 

allow queries to cross the disparate types and to create a custom fact table and a 

custom dimension table for querying each individual type in depth”. However, 

our conceptual MD approach can provide an elegant and simple solution to this 

problem, thanks to the categorization of dimensions. 

 Categorization of dimensions: it allows us to model additional features for a 

dimension’s subtypes. 

 Shared classification hierarchies between dimensions: our approach allows two 

or more dimensions to share some levels of their classification hierarchies.  

 

Figure 12 represents the level 1, which comprises five star packages: Saving Accounts 

Star, Personal Loans Star, Investment Loans Star, Safe Deposit Boxes Star, and 

Mortgage Loans Star. From now, we will only center on the Mortgage Loans Star. The 

corresponding level 2 of this star package is depicted in Figure 13.  

 



 

Figure 12: Level 1 

 

Figure 13: Level 2 of Mortgage Loans Star 

 

Level 3 of Mortgage Loans Fact is shown in Figure 14. To avoid unnecessarily 

complicating the figure, three of the dimensions (Account, Time, and Status) with their 

corresponding hierarchies are not represented. Moreover, the attributes of the 

represented hierarchy levels have been omitted. The fact class (Mortgage Loans) 

contains four attributes that represent the measures: total, balance, and payment_number 

are atomic; whereas debt is derived (the corresponding derivation rule is placed next to 

the fact class). Regarding the additivity of the measures, none of the measures is 

additive, consequently, the additivity rules are also placed next to the fact class. 

 

In this example, the dimensions present two special characteristics. On one hand, 

Branch and Customer share some hierarchy levels: ZIP, City, County, and State. On the 

other hand, Product dimension has a generalization-specialization hierarchy. This kind 

of hierarchy allows us to easily deal with heterogeneous dimensions: the different items 

can be grouped together in different categorization levels depending on their properties. 

 



 

Figure 14: Level 3 of Mortgage Loans Fact 

 

The college course 

 

This example introduces the concept of factless fact table (FFT): fact tables for which 

there are no measured facts. Kimball distinguishes two major variations of FFT: event 

tracking tables ant coverage tables. In this example we will focus on the first type. 

 

Event tracking tables are used when a large number of events need to be recorded as a 

number of dimensional entities coming together simultaneously. In this example, we 

will model daily class attendance at a college. In Figure 15 and Figure 16, level 1 and 

level 2 of this model are depicted respectively. In this case, level 1 only contains one 

star package. 

 



 

Figure 15: Level 1 

 

Figure 16: Level 2 of College Course Star 

 

Figure 17 shows level 3 of College Course Fact. For the sake of simplicity, the 

attributes and methods of every class have not been depicted in the figure. As it can be 

seen, the fact class College Course contains no measures because it is a FFT. In FFT, 

the majority of the questions that users create imply counting the number of records that 

satisfy a constraint, such as which facilities were used most heavily? Or, which courses 

were the least attended? 

 

Regarding the dimensions, Course and Time present multiple classification hierarchies, 

Professor and Student share some hierarchy levels, and Facility presents a 

categorization hierarchy. 

 



 

Figure 17: Level 3 of College Course Star 

 

CONCLUSIONS 

 

In this chapter, we have presented an OO conceptual modeling approach, based on the 

UML, to properly design DWs, MD databases and OLAP applications. Structural 

aspects of MD modeling are easily specified by means of a UML class diagram in 

which classes are related through association and shared aggregation relationships. In 

this context, thanks to the flexibility of the power of the UML, all the semantics 

required for a proper MD conceptual modeling are considered, such as many-to-many 

relationships between facts and particular dimensions, multiple path hierarchies of 

dimensions, the strictness and completeness of classification hierarchies, and 

categorization of dimension attributes. Regarding dynamic aspects, we provide a UML-

compliant class graphical notation (called cube classes) to specify initial user 

requirements at the conceptual level. We have also described how we use state and 

interaction diagrams to model the behavioral aspects of the system regarding these cube 



classes based on the set of the applied OLAP operations. Finally, we have selected three 

case studies from Kimball’s book and modeled them following our approach. This 

shows that our approach is a very easy-to-use yet powerful conceptual model that 

represents main structural and dynamic properties of MD modeling in an easy and 

elegant way.  

 

We are currently working on formally extending the UML with our conceptual 

modeling constructors. Furthermore, we are also considering the automatic 

implementation of a MD model from our approach into object-oriented and object-

relational databases. 


