
Automatically Generating Database Schemas into OLAP Tools from
Object-Oriented Conceptual Models∗

Juan Trujillo and Sergio Luján-Mora
Departamento de Lenguajes y Sistemas Informáticos

Universidad de Alicante
Ap. correos 99. E-03080. Spain
{jtrujillo,slujan}@dlsi.ua.es

Abstract

Graphical conceptual models for OLAP applications
should semi-automatically generate the database schema
and the multidimensional (MD) model for a specific tar-
get commercial OLAP tool. However, this generation pro-
cess is not immediate as the semantics represented by these
conceptual models are different from those considered by
the underlying MD models of OLAP tools. In this pa-
per, we present an overview of this generation process
from graphical conceptual modeling into target commer-
cial OLAP tools. The conceptual model is accomplished
by using an object-oriented approach, based on the Uni-
fied Modeling Language (UML), that allows us to represent
both the MD model and initial users’ requirements at the
conceptual level. In this generation process, some seman-
tics represented in the conceptual model are transformed
into those considered by the underlying MD model of the
target OLAP tool.

1. Introduction

OLAP tools, based on the multidimensional (MD)
model, are the most popular front-end tools to analyze data
in data warehouses. These tools consider the implementa-
tion of the MD model from two different perspectives: the
structural part and the dynamic part. The former refers to
the structures that form the database schema to house MD
data and, the underlying MD model that provides the OLAP
tool to consider the MD semantics (e.g. facts, fact attributes,
dimensions, hierarchy paths, etc.). The dynamic part refers
to the definition of final users’ requirements and OLAP op-

∗This paper has been partly supported by the Spanish Ministery of Sci-
ence and Technology, project number TIC2001-3530-C02-02.

erations1 to further analyze data.
These OLAP tools are mainly MOLAP (Multidimen-

sional OLAP) or ROLAP (Relational OLAP) depending
on the kind of structures used to implement the database
schema of the MD model. Each commercial OLAP tool
provides its own MD model to consider the main semantics
and concepts of MD modeling. As a consequence, differ-
ent OLAP tools consider different semantics and properties
of the MD model. These tools provide a graphical user in-
terface to define the MD model from the structures (multi-
dimensional vectors or relational tables) that form the MD
database schema. Therefore, they first require the database
schema be defined. Once both the database schema and
the MD model have been defined, an easy point-and-click
graphical user interface allows to define initial users’ re-
quirements.

On the other hand, several proposals have lately been
made to accomplish the graphical conceptual design of
OLAP applications [1, 3, 7, 9]. Ideally, within the con-
text of OLAP applications, these graphical proposals should
semi-automatically generate the implementation of the MD
model to be directly queried in an OLAP commercial tool.
To do this, the generation process should generate the im-
plementation of the needed elements regarding the struc-
tural and dynamic parts as above-described.

To the best of our knowledge, the work presented by
Hahnet al. in [4] is the only one in considering this semi-
automatic generation process with outstanding results. In
this process, only the implementation of the underlying MD
model into the target OLAP tool is taken into consideration.
As pointed out in [4], the semantics and concepts consid-
ered by the different MD models of OLAP commercial tools
are different from those considered by the graphical con-
ceptual approaches above-presented. Therefore, it is nec-
essary to transform some semantics and properties in the

1Each OLAP tool will provide the set of OLAP operations that can be
applied from initial users’ requirements.



generation process trying to preserve their initial semantics
as much as possible.

In this context, the GOLD model [9] is an object-oriented
(OO) conceptual model to accomplish the conceptual de-
sign of both the structural and dynamic parts of OLAP
applications. To facilitate the use of the modeling con-
structors, the model provides a Unified Modeling Language
(UML) [6] compliant graphical notation in which each
modeling constructor has its corresponding graphical nota-
tion. This fact allows the designer to accomplish a correct
conceptual design without the need of parsing the graphical
notation.

In this paper, we present how to semi-automatically gen-
erate the implementation of the structural part from a GOLD
model into Informix Metacube2 (IM). The process first gen-
erates the star schema that will house the MD data and, sec-
ondly, the corresponding MD model of IM from the GOLD
modeling constructors used in the conceptual design. Nev-
ertheless, some of the constructors do not have their corre-
sponding representation into IM and, therefore, some are ig-
nored while others are transformed trying to preserve their
initial semantics as much as possible. Due to space con-
straints, we have left the dynamic part for a future paper.

The remainder of this paper is organized as follows. Sec-
tion 2 summarizes how to accomplish the conceptual mod-
eling of the structural part of OLAP applications with the
GOLD model. Section 3 presents how IM stores informa-
tion about its underlying MD model. Section 4 describes
the generation process of the structural part from a GOLD
model into IM. Finally, in Section 5, we present the conclu-
sions and sketch some works that are currently being carried
out.

2. OO Multidimensional Modeling

In this section, we summarize3 how an OO MD model,
based on the UML, can represent main structural and dy-
namic MD properties at the conceptual level. Most of the
MD features considered by this approach such as the many-
to-many relationships between facts and dimensions, de-
generate dimensions, multiple and alternative path classifi-
cation hierarchies, and non-strict and complete hierarchies
are misunderstood by most of the conceptual MD models.
In this approach, the main structural properties of MD mod-
eling are specified by means of a UML class diagram in
which the information is clearly separated into facts and di-
mensions.

Facts and dimensions are represented byfact classesand
dimension classes, respectively. Then, fact classes are spec-
ified as composite classes in shared aggregation relation-

2We have chosen this tool as it is one of the most leading ROLAP prod-
ucts.

3We refer the reader to [9] for a complete description of this approach.

Figure 1. Multidimensional modeling using
the UML

ships ofn dimension classes. The flexibility of shared ag-
gregation in the UML allows us to representmany-to-many
relationships between facts and particular dimensions by in-
dicating the 1..* cardinality on the dimension class role. For
example, in Figure 1 (a), we can see how the fact class
Sales has a many-to-many relationship with the dimension
classProduct and a one-to-many relationship with the di-
mension classTime.

By default, all measures in the fact class are considered
additive. For nonadditive measures, additive rules are de-
fined as constraints and are included in the fact class. Fur-
thermore, derived measures can also be explicitly consid-
ered (indicated by/ ) and their derivation rules are placed
between braces near the fact class, as shown in Figure 1 (a).

This OO approach also allows us to define identifying
attributes in the fact class, by placing the constraint{OID}
next to an attribute name. In this way we can represent
degenerate dimensions[2][5], thereby providing other fact
features in addition to the measures for analysis. For exam-
ple, we could store the ticket number (ticket number) as a
degenerate dimension, as reflected in Figure 1 (a).

With respect to dimensions, everyclassification hierar-
chylevel is specified by a class (called abase class). An as-
sociation of classes specifies the relationships between two
levels of a classification hierarchy. The only prerequisite
is that these classes must define a Directed Acyclic Graph
(DAG) rooted in the dimension class (constraint{dag}
placed next to every dimension class). The DAG struc-
ture can represent both alternative path and multiple clas-
sification hierarchies. Every classification hierarchy level
must have anidentifyingattribute (constraint{OID}) and a
descriptorattribute4 (constraint{D}). These attributes are
necessary for an automatic generation process into commer-
cial relational OLAP (ROLAP) tools, as these tools need to
store these attributes in their metadata. The multiplicity1
and1..* defined in the target associated class role addresses
the concepts ofstrictnessand non-strictnessrespectively.
Strictness means that an object at a hierarchy’s lower level

4A descriptor attribute will be used as the default label in the data anal-
ysis.



belongs to only one higher-level object (e.g., as onemonth
can be related to more than oneseason, the relationship
between both of them is non-strict). Moreover, defining the
{completeness} constraint in the target associated class role
addresses the completeness of a classification hierarchy (see
an example in Figure 1 (b)). By completeness we mean that
all members belong to one higher-class object and that ob-
ject consists of those members only. For example, all the
recordedseasons form a year, and all theseasons that
form theyear have been recorded. Our approach assumes
all classification hierarchies are non-complete by default.

The categorization of dimensions, used to model addi-
tional features for class’s subtypes, is considered by means
of generalization-specialization relationships. However,
only the dimension class can belong to both a classifica-
tion and specialization hierarchy at the same time. An ex-
ample of categorization for theProduct dimension can be
observed in Figure 1 (c).

3. Informix Metacube

In this section, we will present how Informix Metacube
(IM) represents the structural part of multidimensional
modeling and the tools it provides for these tasks.

IM works with both the star and snowflake schema.
However, the snowflake schema is partial in the sense that
the tables that represent different levels of hierarchy are not
related between them. Thus, these tables are related to the
one that represents the minimum level of hierarchy. There-
fore, in our generation process, we will only generate the
database schema that corresponds to the star schema.

On the other hand, the underlying MD model of IM is
called Decision Support System (DSS). The content of the
DSS can be defined through an easy graphical user inter-
face with the tool Data Warehouse Manager (DWM). To do
this, it is necessary to have the database schema (star or
snowflake) previously implemented. The information about
the MD models defined in IM is stored in relational tables
which contain information about the MD elements defined
in the DSS (e.g. facts, dimensions, hierarchy levels, etc.)
and, the logical information on these MD elements (e.g. fact
tables, primary key of the fact tables, attributes in the rela-
tional tables to identify instances of hierarchy levels, etc.).

To clarify the main MD properties considered by the
DSS, we have modeled the DSS model with the UML (see
Figure 2). Thus, the relational tables of the DSS have been
modeled with classes and relationships between them. The
name of the classes and relationships are the same as their
corresponding relational tables in the DSS. It can be ob-
served that not only information on the defined MD con-
cepts is considered (facts, dimensions, etc.) but also logical
information (primary keys, table column that corresponds
to one measure, etc.).

Figure 2. Modeling the DSS model of Informix
Metacube with the UML

The classesFact table andDim store information about
the facts and dimensions defined in the DSS respectively.
The relationshipFact dim mapping represents the infor-
mation about which dimensions are related to which facts
through the corresponding foreign key defined in the fact
table (information considered in the associated classFor-
eign key) as several facts and dimensions can be defined in
the DSS. The classFact stores information on the measures
defined in the DSS, so that every measure must always be
contained in a fact (see cardinality of the relationship). The
derivation rules of derived measures are represented in the
classDss string.

In the DSS, hierarchy levels are called dimensional
groups and considered in the classDim el. Every dimen-
sional group only belongs to one dimension (see cardinal-
ity of the relationship). This means that even though two
or more dimensions share the same dimensional group, the
same dimensional group has to be defined per each dimen-
sion. The relationshipRollup stores information about what
dimensional group is connected to (rolls up to) which di-
mensional group. These dimensional groups can be con-
nected to form multiple and alternative hierarchy paths (see
cardinality of the relationship). Finally, the classAtt stores
information on the attributes defined in each dimensional
group. An attribute must only belong to one dimensional
group. For example, if the attributename has been defined
in both theCity andCommunity classes, the attribute name
must be defined twice as in the DSS they will be considered
as different attributes (name in theCity class andname in



The GOLD Model The DSS Model

Dimensions

Dimension Dimension
Time dimension Attributecurrent period
Dimension class Base dimensional group
Base class Dimensional group (D.G.)
Class identifying attribute{OID} D.G. identifying attribute
Class attribute D.G. attribute
Class descriptor attribute{D} D.G. default attribute
Classification hierarchies Roll-up relationships between D.G.
Alternative path and multiple hierarchies Alternative path and multiple hierarchies
Non-strict and complete hierarchies NOT CONSIDERED
Specialization hierarchies TRANSFORM into roll-up relationships between D.G.
Specialization concept D.G. “specialization concept”
Specialized class attribute Attribute of the D.G. just created
Specialization relationships Roll-up relationships

Facts

Fact class Fact
Many-to-many relationships between a fact and one dimensionNOT CONSIDERED

Ask for identifying attribute{OID}
Shared aggregation with a class Fact-dimension relationship
Fact class identifying attribute{OID} TRANSFORM

Create dimension, D.G. and the only attribute of that D.G.
Fact attribute Measure
Derivation rule Derivation rule
Additivity of measures NOT CONSIDERED

Table 1. Correspondence between the GOLD model and the DSS model

theCommunity class).
After this brief review of the main MD features consid-

ered by the DSS, we will summary some important MD
properties that cannot be considered by the DSS model:

• “Many-to-many” relationships between a fact and one
dimension cannot be considered as the primary key of
the fact table is only composed by the foreign keys of
the dimension tables to which the fact table is related.
This would require more attributes to be part of the pri-
mary key of the fact table or additional relational tables
to represent these“many-to-many”relationships.

• Additivity cannot be considered, i.e. there is not way
of indicating that a certain fact attribute cannot be ag-
gregated along a dimension. Not either it is possible
to restrict the set of aggregation operators that can be
applied on a fact attribute (e.g. it is not possible to
specify that only MAX and MIN can be applied on a
specific fact attribute).

• The relationships between dimensional groups (rela-
tionshipRollup) are considered strict by default and,
therefore, aspects about the cardinality of these rela-
tionships are not considered. In the star schema man-
aged by IM, an instance of a dimensional group is
only related to one instance of a higher hierarchy level.

That is, non-strict and completeness classification hi-
erarchies are not considered.

• The standard star schema does not allow the considera-
tion of the categorization of dimensions as all attributes
that correspond to all possible categories of a dimen-
sion are defined as attributes within the same relational
table in the star schema.

4. From the GOLD model into the DSS model

In this section, we will present the main tasks of
the semi-automatic generation process that from a GOLD
model obtains its corresponding DSS model to implement
it in IM.

The algorithm of the structural part reads a GOLD con-
ceptual model and generates two files with SQL sentences:

• the first file contains the SQL sentences needed to
create the relational tables that correspond to the star
schema that will form the database schema and,

• the second one, contains the SQL sentences to regis-
ter the MD concepts in the DSS that correspond to the
modeling constructors used in a GOLD model.

In this generation process, we have to handle that certain
modeling constructors of the GOLD model do not have their



Product

{OID} cod_product
quantity
weight
{D} name

Feeding

…...

Cleaning

Drink

…..

Food

….

Refresh.

sparkling
…….

Alcohol

percentage
…..

Group

Type

Family

Type

{OID,D} Type_ID
time_1
num_shelf
percentage
sparkling
…...

Family

{OID,D} Family_ID
…...

Group

1

*

1

1

1..*

*

{OID,D} Group_ID
….

Fresh

num_shelf
…….

Cool

time_1
…...

Type

Product

{OID} cod_product
quantity
weight
{D} name

Figure 3. Transformation of specialization hierarchies into classification hierarchies

corresponding representation into the DSS model. In some
cases, it has been possible to carry out a minimal semi-
automatic transformation (the designer has to decide if this
transformation is carried out in some cases) of the modeling
constructors to be able to represent them in the DSS trying
to preserve their initial semantics. In other cases, such a
transformation is not possible and, therefore, those model-
ing constructors have been ignored with the corresponding
lack of expressiveness in the final representation of a GOLD
model. Due to the lack of space, in this paper we will only
describe the transformations accomplished for some mod-
eling constructors.

The Table 1 shows the correspondence between the mod-
eling constructors of the GOLD model and the MD concepts
considered by the DSS model. From now on, we will only
mention the modeling constructors ignored as well as we
will only remark the transformations accomplished.

To start with, every class that represents a hierarchy level
is defined as a dimensional group. Then, the process reads
all associations for every one of these classes and defines
a Rollup relationship between the two associated classes.
This means that even though two or more dimensions share
the same hierarchy level, this level is defined for each di-
mension as a dimensional group. This is required by the
DSS model where every dimensional group must only be-
long to one dimension.

On the other hand, non-strict and complete classification
hierarchies are ignored as in the database schema managed
by the DSS model an instance of a hierarchy level can only
refer to a one instance of a higher level of the classification
hierarchy. Thus, we have to ignore those properties in the

generation algorithm.
Finally, the additivity of measures is not considered by

the DSS model and, therefore, this property is ignored in
the generation process. In the follow, we will describe how
to accomplish the transformations described in Table 1.

4.1. Specialization hierarchies

Specialization hierarchies aretransformed into strict
classification hierarchies. Every concept of the specializa-
tion hierarchy is transformed into one dimensional group
(level) of the classification hierarchy. Every attribute within
a class defined under this specialization concept is consid-
ered as an attribute of the new dimensional group. These
new dimensional groups are related by means of strict clas-
sification hierarchies. Finally, every new dimensional group
will have defined as identifying and default attribute the at-
tributespecialization name ID.

In Figure 3, we can see an example of this transformation
accomplished for theProduct dimension from a conceptual
point of view. The specialization levelsGroup, Family and
Type will be transformed into their corresponding classi-
fication levels. The identifying and default attribute will
be calledspecialization name ID of typeString that will
have the possible values of the name of the classes defined
under the specialization concept that represents. For exam-
ple, the different values the attributeType ID can have are
Cool, Fresh, Alcohol andRefreshments. Finally, the ar-
rows in the Figure 3 show how all attributes defined under
a specialization concept are included in the corresponding
new classification level.



Sales_products

….
{OID} num_ticket
{OID} num_line
/ num_clients
inventory
...

Product

1..* 1

*

Store

Cardinality higher
than one

…...

Sales_products

….
….
/ num_clients
inventory
...

Product

1 1

*

Store

Cardinality one

…...
num_ticket

{OID,D} num_ticket

1

New dimensions

num_line

{OID,D} num_line

1

Figure 4. Transformation of identifying attributes {OID} of fact classes into new dimensions

4.2. Many-to-many relationship between a fact and
one dimension

The DSS model does not consider themany-to-manyre-
lationship between a fact and one dimension. If the algo-
rithm reads a cardinality higher than1 in a shared aggrega-
tion on the role of a dimension class, this property will be ig-
nored if no identifying attribute has been defined in the fact
class. Let us remind (see section 2) that the GOLD model
allows the designer to define identifying attributes{OID} in
the fact class that may be needed to representmany-to-many
relationships between a fact and one dimension.

Therefore, in our generation process, if the designer has
defined identifying attributes in the fact class, every one
of theses attributes will be transformed into a new dimen-
sion with only the base dimensional group with only one
attribute (identifying and descriptor at the same time).

In Figure 4, we can see the transformation accomplished
from a conceptual point of view. The identifying attributes
{OID} num ticket and {OID} num line will be trans-
formed into two new dimensions with only one base dimen-
sional group for each new dimension. The only attribute
defined within these new dimensional groups is the same as
the one defined in the fact class with the properties of{OID,
D} (i.e. identifying and descriptor attribute).

5. Conclusions

The GOLD model is an OO conceptual model to repre-
sent the structural and dynamic part of OLAP applications.
To facilitate the conceptual design, the model provides an
easy UML graphical notation that will be used by the de-
signer in the CASE tool that gives support to the model.

In this paper, we have presented how to semi-
automatically generate all the information needed to imple-
ment the structural part of a GOLD model into Informix
Metacube (IM). The generation of the structural part con-
sists of generating both the star schema to house the MD
data and the MD concepts of the DSS model that correspond
to the GOLD modeling constructors used in the design. In

this process, it has been necessary to transform some mod-
eling constructors that do not have their corresponding rep-
resentation in IM.

We have developed “The GOLD Model CASE Tool”
[8], that gives support to the GOLD model. Moreover, the
generation process described throughout the paper has also
been implemented in this CASE tool.

Regarding the dynamic part, we will present the trans-
formation process of initial users’ requirements defined in a
GOLD model into IM requirements in a future work.

References

[1] L. Cabibbo and R. Torlone. From a Procedural to a Visual
Query Language for OLAP. InProc. of the 10th Intl. Conf. on
Scientific and Statistical Database Management (SSDM’98),
pages 74–83, 1998.

[2] W. Giovinazzo. Object-Oriented Data Warehouse Design.
Building a star schema. Prentice-Hall, 2000.

[3] M. Golfarelli and S. Rizzi. A methodological Framework for
Data Warehouse Design. InProc. of the ACM 1st Intl. Work-
shop on Data warehousing and OLAP (DOLAP’98), pages
3–9, 1998.

[4] K. Hahn, C. Sapia, and M. Blaschka. Automatically Generat-
ing OLAP Schemata from Conceptual Graphical Models. In
Proc. of the ACM 3rd Intl. Workshop on Data warehousing
and OLAP (DOLAP’00), 2000.

[5] R. Kimball. The data warehousing toolkit. John Wiley, 1996.
[6] Object Management Group (OMG). Unified Modeling Lan-

guage Specification 1.4. Internet: http://www.omg.org/cgi-
bin/doc?formal/01-09-67, September 2001.

[7] C. Sapia, M. Blaschka, G. Hfling, and B. Dinter. Extending
the E/R Model for the Multidimensional Paradigm. InProc.
of the 1st Intl. Workshop on Data Warehouse and Data Min-
ing (DWDM’98), volume 1552 ofLecture Notes in Computer
Science, pages 105–116. Springer-Verlag, 1998.

[8] J. Trujillo, S. Luján-Mora, and E. Medina. The GOLD Model
CASE Tool: an environment for designing OLAP applica-
tions. InProc. 4th Intl. Conf. on Enterprise Information Sys-
tems (ICEIS 2002), pages 699–707, 1986.

[9] J. Trujillo, M. Palomar, J. Ǵomez, and I.-Y. Song. Designing
Data Warehouses with OO Conceptual Models.IEEE Com-
puter, special issue on Data Warehouses, 34(12):66–75, 2001.


