
 Internacional Journal of Computer & Information Science 1

Automatically Generating Structural and Dynamic Information of OLAP Applications from

Object-Oriented Conceptual Models
Juan Trujillo, Sergio Luján-Mora

Departamento de Lenguajes y Sistemas Informáticos, Universidad de Alicante

Campus de San Vicente del Raspeig

Ap. Correos 99 - 03005 Alicante, Spain

{jtrujillo, slujan}@dlsi.ua.es

Abstract

 Graphical conceptual models for On-Line Analytical

Processing (OLAP) applications should semi-

automatically generate the database schema and the

corresponding multidimensional (MD) model for a

specific target commercial OLAP tool. However, this

generation process is not immediate as the semantics

represented by these conceptual models are different from

those considered by the underlying MD models of OLAP

tools. Therefore, some transformations for these

differences are needed in this process.

 In the context of graphical conceptual models, we

provide an object-oriented conceptual model that provides

a Unified Modeling Language (UML) graphical notation

to represent both structural and dynamics properties of

MD models and initial user requirements at the

conceptual level. In this paper, on one hand, we present

how to semi-automatically generate the database schema

and the underlying MD model for one of the most leading

commercial OLAP tools from our model. In this process,

some semantics represented in the model are transformed

into those considered by the underlying MD model of the

target OLAP tool. On the other hand, initial user

requirements are translated into their corresponding

definitions in the target OLAP tool. In this way, the final

user is able to start the analysis process from the initial

requirements specified at the conceptual level. Finally, we

present the prototype of the Computer Aided Software

Engineering (CASE) tool that gives support to both the

model definition and this generation process.

Keywords: Conceptual modeling, OLAP, UML,

Multidimensionality, Data warehouse

1 Introduction

 On-Line Analytical Processing (OLAP) tools, based on

the multidimensional (MD) model, are the most popular

front-end tools to analyze data in data warehouses. These

tools consider the implementation of the MD model from

two different perspectives:

 The structural, part which refers to:

o The structures that form the database

schema to house MD data.

o The underlying MD model that provides

the OLAP tool to consider the MD

semantics (e.g. facts, fact attributes,

dimensions, hierarchy paths, etc.).

 The dynamic part: it refers to the definition of

initial user requirements and OLAP operations to

further analyze data.

 These OLAP tools are mainly MOLAP

(Multidimensional OLAP) or ROLAP (Relational OLAP)

depending on the kind of structures used to implement the

database schema of the MD model. MOLAP tools directly

implement the MD model into multidimensional vector

structures. ROLAP tools are based on the relational model

and the tables of the database schema are normally

organized in form of the star schema (and its variants

snowflake and constellations) [1].

 Each commercial OLAP tool provides its own MD

model to consider the main semantics and concepts of

MD modeling. As a consequence, different OLAP tools

consider different semantics and properties of the MD

model. These tools provide a graphical user interface to

define the MD model from the structures

(multidimensional vectors or relational tables) that form

the MD database schema. Therefore, they first require the

database schema to be defined. Once both the database

schema and the MD model have been defined, an easy

“point-and-click” graphical user interface allows the user

to define initial requirements.

 On the other hand, several proposals have lately been

made to accomplish the graphical conceptual design of

OLAP applications [2, 3, 4, 5, 6, 7, 8]. Ideally, within the

context of OLAP applications, these graphical proposals

should semi-automatically generate the implementation of

the MD model to be directly queried in a commercial

OLAP tool. In doing this, the generation process should

generate the implementation of the:

 Structural part:

o Structures that form the database

schema.

o The MD concepts of the underlying MD

model of the target OLAP tool.

 Dynamic part: initial user requirements

considered in the conceptual modeling phase.

 To the best of our knowledge, the work presented by

Hahn et al. in [9] is the only one in considering this semi-

automatic generation process with outstanding results. In

this process, only the implementation of the underlying

MD model into the target OLAP tool is taken into

 Internacional Journal of Computer & Information Science 2

consideration. Thus, the MD model accomplished with

the Multidimensional/Entity Relationship model (M/ER)

[5] is translated into the corresponding MD model of the

target OLAP tool. In the M/ER model, some functional

information such as derived measures or additivity are not

considered and, therefore, cannot be generated. As

pointed out in [9], the semantics and concepts considered

by the different MD models of commercial OLAP tools

are different from those considered by the graphical

conceptual approaches above-presented. Therefore, it is

necessary to transform some semantics and properties in

the generation process trying to preserve their initial

semantics as much as possible.

 In this context, our model is an object-oriented (OO)

conceptual model to accomplish the conceptual design of

both the structural and dynamic parts of OLAP

applications. In order to facilitate the use of the modeling

constructors, the model provides a Unified Modeling

Language (UML) [10] compliant graphical notation [7, 8]

in which each modeling constructor has its corresponding

graphical notation. This fact allows the designer to

accomplish a correct conceptual design with no need of

parsing the graphical notation.

 In this paper, we present how to semi-automatically

generate the implementation of both the structural and

dynamic part from our OO model into Informix Metacube

(IM). In [13] we presented how to generate the structural

part. In this paper, we extend the latter work by providing

details on how to generate the dynamic part.

 With respect to the structural part, the process first

generates the star schema that will house the MD data and

then, the corresponding MD model of IM from our

modeling constructors used in the conceptual design.

Nevertheless, some of the constructors do not have their

corresponding representation into IM and, therefore, some

are ignored while others are transformed trying to

preserve their initial semantics as much as possible. With

reference to the dynamic part, initial user requirements

defined in our conceptual model are translated into IM

requirements. Thanks to this, the final user is able to load

them in the subsequent analysis phase and can

immediately start the data analysis from them.

 Finally, in this paper we also present a Computer

Aided Software Engineering (CASE) tool that gives

support to all the theoretical aspects presented in this

paper.

 The remainder of this paper is organized as follows.

Section 2 summarizes how to accomplish the conceptual

modeling of the structural and dynamic part of OLAP

applications with our model. Section 3 presents how IM

stores information about its underlying MD model and the

requirements defined by the user. Section 4 describes the

generation process of both the structural and dynamic part

from our model into IM. In section 5 we present a

summary of the CASE tool that gives support to both our

model and this generation process. Finally, in section 6,

we present the conclusions and sketch some works that

are currently being carried out.

2 The Object-Oriented Conceptual Model

 In this section, we will describe how the UML

compliant graphical notation we provide represents both

the structural and dynamic parts of OLAP applications.

2.1 The Structural Part

 Let us consider from now on an example of a sales
system in which facts are considered as the tickets issued

in stores of a great-store chain. Figure 1 shows the class

diagram of our model for this example in which the fact

Sales_products is considered along four dimensions

(Product, Customer, Store and Time).

 Facts are considered as composite classes in a shared

aggregation relation of n dimension classes. The

minimum cardinality on dimension class roles is 1. Many-

to-many relationships between the fact class and any

dimension class are considered by the cardinality of 1..*

on the dimension class role. In our example (see Figure

1), there has been defined a many-to-many relationship

between the fact Sales_products and the Product
dimension as one ticket may contain several products.

 Moreover, the designer may define identifying

attributes in the fact class with the constraint {OID} if

they are needed to identify the instances of the fact class

unambiguously. These {OID} attributes are needed, for

example, when there is a many-to-many relationship

between the fact class and any dimension class. These

{OID} attributes also allows us to define degenerate

dimensions [11], which are those dimensions whose

identifiers exist in a fact table, but do not have the

corresponding dimension explicitly represented. In our

example, as a ticket may include several products, the

identifying attributes num_ticket and num_line have

been defined to distinguish the ticket a sold product

belongs to.

 As well as atomic measures, derived measures can also

be represented with the constraint “/” placed next to the

measure_name. Their derivation rules are placed as

constraints between brackets around the class. In Figure 1,

we can see that the fact class contains three derived

measures (qty_sold, total_price, and num_clients) and

their corresponding derivation rules.

 Internacional Journal of Computer & Information Science 3

Figure 1: The UML notation to represent the structural part of the sales system

 Regarding additivity, all measures are additive by

default. Semi-additivity and non-additivity are considered

by defining constraints on measures and also placed

around the class. These constraints are shown to the

designer in a non-strict natural language syntax although

they have its formal underlying formulae. In Figure 1, we

can see that the attribute num_clients cannot be

aggregated along the Product dimension.

 With respect to dimensions, each level of a

classification hierarchy is considered as a class. These

classes must contain an identifying attribute ({OID}) to

identify the instances of a hierarchy level and a descriptor

attribute ({D}) that will be used as the default label in the

data analysis in the target OLAP tool. These two

attributes are necessary as in the semi-automatic

generation of the implementation of the model, the OLAP

tool will need to know the existence of these two

attributes. The classes that represent classification

hierarchies must form a Directed Acyclic Graph (DAG)

(constraint {dag}) starting from each dimension class. The

DAG structure can represent both alternative path and

multiple classification hierarchies.

 The peculiarities of classification hierarchies such as

the strictness (an object of a lower level of a hierarchy

belongs to only one of a higher level) and completeness

(all members belong to one higher-class object and that

object consists of those members only) are also

considered. In concrete, these features are specified by

means of the cardinality of the roles of the associations

and the constraint {completeness} respectively, as seen in

the Store dimension (see Figure 1). Finally, dimensions

can be categorized by means of generalization and

specialization hierarchies, as observed in the Product
dimension. In this way, we can model additional features

for an entity’s subtypes.

2.2 The Dynamic Part

 Our model also allows the user to represent initial user

requirements at the conceptual level by means of cube
classes. The basic components of these classes are as

follows:

 Head area (H): name of the cube class.

 Internacional Journal of Computer & Information Science 4

 Measures area (M): representation of the

measures to be analyzed.

 Slice area (S): restrictions to be satisfied.

 Dice area (DC): dimensions and their grouping

conditions to address the analysis.

 Cube operations (CO): OLAP operations that are

provided by the model (roll-up, drill-down, etc.).

 Let us suppose the following user initial

requirement:

The qty_sold of products where the

State is "Valencia" and the Group of

products is "Grocery" must be grouped

according to the Store Province and

City and the Product Family and Brand

Figure 2: Graphical notation for an initial user

requirement

 In Figure 2, we can see the graphical notation of the

cube class that is used by the designer to represent the

previous user initial requirement. It is easy to see the

different sections of cube classes above-presented:

 Section Facts contains the aim of the analysis:

qty_sold.

 Slice the restrictions defined on the dimensions

Store and Product.

 Section Dice, the grouping conditions required

along the Store and Product dimensions can

easily be identified.

 For nonexpert UML or database users, the cube class’s

graphical notation facilitates the definition of initial user

requirements. Every cube class has a more formal

underlying OQL specification.

3 Informix Metacube

 In this section, we will present how Informix

Metacube (IM) [12] represents the structural and dynamic

parts of multidimensional modeling and the tools it

provides for these tasks.

3.1 The Structural Part

 IM works with both the star and snowflake schema.

However, the snowflake schema is partial in the sense that

the tables that represent different levels of hierarchies are

not related between them. Thus, these tables are related to

the one that represents the minimum level of hierarchy.

Therefore, in our generation process, we will only

generate the database schema that corresponds to the star

schema.

 On the other hand, the underlying MD model of IM is

called Decision Support System (DSS). The content of the

DSS can be defined through an easy graphical user

interface by the tool Data Warehouse Manager (DWM). In

order to accomplish this, it is necessary to have the

database schema (star or snowflake) previously defined.

The information about the MD models defined in IM is

stored in relational tables which contain information

about:

 The MD elements defined in the DSS (e.g. facts,

dimensions, hierarchy levels, etc.).

 The logical information on these MD elements

(e.g. fact tables, primary key of the fact tables,

attributes in the relational tables to identify

instances of hierarchy levels, etc.).

 To clarify the main MD properties considered by the

DSS, we have modeled the DSS model with UML (see

Figure 3). Thus, the relational tables of the DSS have

been modeled with classes and relationships between

them. The name of the classes and relationships are the

same as their corresponding relational tables in the DSS.

It can be observed that not only information on the

defined MD concepts is considered (facts, dimensions,

etc.) but also logical information (primary keys, table

column that corresponds to one measure, etc.).

 The classes Fact_table and Dim store information

about the facts and dimensions defined in the DSS

respectively. The relationship Fact_dim_mapping

represents the information about which dimensions are

related to which facts through the corresponding foreign

keys defined in the fact table (information considered in

the associated class Foreign_key), as several facts and

dimensions can be defined in the DSS. The class Fact
stores information on the measures defined in the DSS, so

that every measure must always be contained in a fact

(see cardinality of the relationship). The derivation rules

of derived measures are represented in the class

Dss_string.

 Internacional Journal of Computer & Information Science 5

Figure 3: Modeling the DSS model of Informix

Metacube (structural part) with UML

 In the DSS, hierarchy levels are called dimensional

groups and are considered in the class Dim_el. Every

dimensional group only belongs to one dimension (see

cardinality of the relationship). This means that even

though two or more dimensions share the same

dimensional group, the same dimensional group has to be

defined per each dimension. The relationship Rollup

stores information about what dimensional group is

connected to (rolls_up_to) which dimensional group,

thus representing classification hierarchies. These

dimensional groups can be connected to form multiple

and alternative path hierarchies (see cardinality of the

relationship). Finally, the class Att stores information on

the attributes defined in each dimensional group. An

attribute must only belong to one dimensional group. For

example, if the attribute name has been defined in both

the City and Community classes, the attribute name

must be defined twice as in the DSS they will be

considered as different attributes (name in the City class

and name in the Community class).

 After a brief review of the main MD features

considered by the DSS, we will summary some important

MD properties at the conceptual level that cannot be

considered by the DSS model:

 Many-to-many relationships between a fact and

one dimension cannot be considered as the

primary key of the fact table is only composed

by the foreign keys of the dimension tables to

which the fact table is related. This would

require more attributes to be part of the primary

key of the fact table or additional relational

tables to represent these many-to-many

relationships.

 Additivity cannot be considered, i.e. there is not

way of indicating that a certain fact attribute

cannot be aggregated along a dimension. Not

either it is possible to restrict the set of

aggregation operators that can be applied on a

fact attribute (e.g. it is not possible to specify that

only MAX and MIN can only be applied on a

specific fact attribute).

 The relationships between dimensional groups

(relationship Rollup) are considered strict by

default and, therefore, aspects about the

cardinality of these relationships are not

considered. In the star schema managed by IM,

an instance of a dimensional group is only

related to one instance of a higher hierarchy

level. That is, non-strict and completeness

classification hierarchies are not considered.

 The standard star schema does not allow the

consideration of the categorization of dimensions

as all attributes that correspond to all possible

categories of a dimension are defined as

attributes within the same relational table in the

star schema.

3.2 The Dynamic Part

 IM allows the definition of initial user requirements

from a DSS with the Informix Metacube Explorer (IME)

tool. These requirements are defined from a model

defined in the DSS and from them users can apply the set

of OLAP operations provided by this tool. User

requirements can be saved and then, users can load them

whenever it is necessary, as a start point of the

information analysis phase. The information about these

user requirements is also stored in relational tables.

Figure 4: Modeling the DSS model of Informix

Metacube (dynamic part) with UML

 Internacional Journal of Computer & Information Science 6

 To facilitate the comprehension about the information

on user requirements stored in the relational tables, in

Figure 4, we have modeled these tables with UML. To

start with, in the class Query_header, every instance

represents the basic information of a defined requirement,

i.e. its number in the DSS, number of the DSS to which it

belongs to, the author and the folder where it has been

saved. In the class Query_item all elements of a user

requirement are specified, i.e. dimensions and their

dimensional groups considered, fact attributes, etc. The

information about the filters defined in a user requirement

is considered by the class Ui_filter (filters allow us to

define constraints on data, e.g. year = 2002). Both

filters and user requirements are stored in folders and,

therefore, the class Ui_folder contains information about

the folder where they have been saved.

4 From theObject-Oriented Conceptual Model into the

DSS Model

 In this section, we will present the main steps of the

semi-automatic generation process that obtains from a OO

model its corresponding DSS model to implement it in

IM. This generation process consists of two algorithms,

one for the structural part and another one for the dynamic

one.

4.1 The Structural Part

 The algorithm of the structural part reads a conceptual

MD model and generates two SQL script files:

 The first file contains the SQL sentences needed

to create the relational tables that correspond to

the star schema that will form the database

schema.

 The second one contains the SQL sentences to

register the MD concepts in the DSS that

correspond to the modeling constructors used in

our model.

 In this generation process, we have to handle that

certain modeling constructors of our OO model do not

have their corresponding representation into the DSS

model. In some cases, it has been possible to carry out a

minimal semi-automatic transformation (the designer has

to decide if this transformation is carried out in some

cases) of the modeling constructors to be able to represent

them in the DSS trying to preserve their initial semantics.

In other cases, such a transformation is not possible and,

therefore, those modeling constructors have been ignored

with the corresponding lack of expressiveness in the final

representation of a model. Due to the lack of space, in this

paper, we will only describe the transformations

accomplished for some modeling constructors; the whole

algorithm has been implemented in the CASE tool (see

next section) we have developed.

 The Table 1 shows the correspondence between the

modeling constructors of our model and the MD concepts

considered by the DSS model. From now on, we will only

mention the modeling constructors ignored as well as we

will only remark the main transformations accomplished.

 To start with, every class that represents a hierarchy

level is defined as a dimensional group. Then, the process

reads all associations for every one of these classes and

defines a Rollup relationship between the two associated

classes. This means that even though two or more

dimensions share the same hierarchy level, this level is

defined for each dimension as a dimensional group. This

is required by the DSS model where every dimensional

group must only belong to one dimension.

 On the other hand, non-strict and complete

classification hierarchies are ignored as in the database

schema managed by the DSS model an instance of a

hierarchy level can only refer to a one instance of a higher

level of the classification hierarchy. Thus, we have to

ignore those properties in the generation algorithm.

 Finally, the additivity of measures is not considered by

the DSS model and, therefore, this property is ignored in

the generation process. In the follow, we will describe

how to accomplish the transformations described in Table

1.

4.1.1 Specialization Hierarchies

 Specialization hierarchies are transformed into strict

classification hierarchies. Every concept of the

specialization hierarchy is transformed into one

dimensional group (level) of the classification hierarchy.

Every attribute within a class defined under this

specialization concept is considered as an attribute of the

new dimensional group. These new dimensional groups

are related by means of strict classification hierarchies.

Finally, every new dimensional group will have defined

as identifying and default attribute the attribute

specialization_name_ID.

 Internacional Journal of Computer & Information Science 7

Table 1: Correspondence between the modeling constructors of our model and the MD concepts of the DSS model

 In Figure 5, we can see an example of this

transformation accomplished for the Product dimension

from a conceptual point of view. The specialization levels

Group, Family and Type will be transformed into their

corresponding classification levels. The identifying and

default attribute will be called specialization_name_ID

of type String that will have the possible values of the

name of the classes defined under the specialization

concept that represents. For example, the different values

the attribute Type_ID can have are Cool, Fresh, Alcohol
and Refreshments. Finally, the arrows in the Figure 5

show how all attributes defined under a specialization

concept are included in the corresponding new

classification level.

4.1.2 Many-to-many Relationships between a Fact and

one Dimension

 The DSS model does not consider the many-to-many

relationship between a fact and one dimension. If the

algorithm reads a cardinality higher than 1 in a shared

aggregation on the role of a dimension class, this property

will be ignored if no identifying attribute has been defined

in the fact class. Let us remind (see section 2) that our

model allows the designer to define identifying attributes

{OID} in the fact class that may be needed to represent

many-to-many relationships between a fact and one

dimension.

 Therefore, in our generation process, if the designer

has defined identifying attributes in the fact class, every

one of theses attributes will be transformed into a new

dimension with only the base dimensional group with

only one attribute (identifying and descriptor at the same

time).

 In Figure 6, we can see the transformation

accomplished from a conceptual point of view. The

identifying attributes {OID} num_ticket and {OID}

num_line will be transformed into two new dimensions

with only one base dimensional group for each new

dimension. The only attribute defined within these new

dimensional groups is the same as the one defined in the

fact class with the properties of {OID, D} (i.e. identifying

and descriptor attribute).

4.2 The Dynamic Part

 On the other hand, as commented in section 2, the

model allows the definition of initial user requirements at

the conceptual level by means of cube classes. The

dynamic part generation process generates a SQL script

file needed to register the initial requirements in IM. The

whole process is summarized in Figure 7.

 Internacional Journal of Computer & Information Science 8

Figure 5: Transformation of specialization hierarchies into strict classification hierarchies

Figure 6: Transformation of identifying attributes (OID) of Fact classes into new dimensions

 The algorithm reads every element defined in a cube

class and its corresponding definition in the star schema

generated with the algorithm of the structural part

previously-commented. This is necessary as every

element defined in a cube class refers to an element

defined in the conceptual model and its logical

information is also needed. For example, with reference to

the requirement considered in Figure 2, one of the

grouping conditions considered is Store.City. The

generation process needs to know that this element

corresponds to the logical element Store.City_name, i.e.

the attribute City_name defined in the relational table

Store that represents the Store dimension.

Figure 7: Generation process of initial user

requirements

 In this way, the final user can load all initial user

requirements specified at the conceptual level and, from

them, to start the further data analysis phase by applying

OLAP operations. Nevertheless, the administrator of the

database has to fill in some attributes of theses relational

 Internacional Journal of Computer & Information Science 9

tables such as privileges, user name, etc., for a correct

execution of the requirements.

5 The CASE Tool

 In this section, we briefly present the CASE tool that

gives support to both the model definition and the

generation process described through the paper. The tool

provides a comfortable interface for elaborating MD

conceptual designs independently of implementation

issues. In [14], the architecture of the CASE tool and a

complete explanation of its use were presented.

 First of all, the designer has to define both the

structural and the dynamic part of a conceptual model.

The CASE tool allows the designer to hide the attributes

and methods defined in every class to have a complete

view of the class diagram (Figure 8).

 Then, an option of the File menu allows us to start

with the generation process of the structural part of a

model into Informix Metacube (IM). To carry out the

generation of the dynamic part, it is absolutely necessary

to have the structural part previously generated. As

commented through our paper, the process is semi-

automatic as the interaction with the designer is

sometimes necessary. For example, the process warns the

designer that every {OID} attribute defined in the Fact

class will be transformed into a new dimension and waits

confirmation. In this moment, the designer may decide to

abort the process and define new {OID} attributes in the

Fact class.

Figure 8: A multidimensional model in the CASE tool

 If the generation process ends successfully a window

will inform the designer that the generation process has

concluded successfully. The CASE tool also allows the

designer to view the SQL script files generated. For

example, we can see the SQL sentences that will be

needed to define the corresponding star schema (Figure 9)

and those needed to register every MD concept of the

DSS model of IM.

Figure 9: SQL sentences generated from a

multidimensional model

6 Conclusions

 We have previously proposed an object-oriented

approach to accomplish the conceptual modeling of data

warehouses, MDB, and OLAP applications [7, 8]. To

facilitate the conceptual design, the model provides an

easy UML graphical notation that will be used by the

designer in the CASE tool that gives support to the model.

 In this paper, we have presented how to semi-

automatically generate all the needed information to

implement our model into Informix Metacube (IM). On

one hand, the generation of the structural part consists of

generating both the star schema to house the MD data and

the MD concepts of the DSS model that correspond to the

modeling constructors used in the design. In this process,

it has been necessary to transform some modeling

constructors that do not have their corresponding

representation in IM. On the other hand, with reference to

the dynamic part, we have generated the user initial

requirement information in IM format. This means that

the final user will be able to start the data analysis from

these initial requirements.

 Finally, we have presented a CASE tool that gives

support to our approach. The generation process described

throughout the paper has also been implemented in the

CASE tool. We are currently working on using some

dynamic information used in our model such as state and

interaction diagrams to generate more user requirements

than only the initial ones.

References

[1] R. Kimball, “The data warehousing toolkit”, New

York: John Wiley & Sons, 2002.

[2] M. Golfarelli, and S. Rizzi, “A methodological

Framework for Data Warehouse Design”, in Proceedings

of the ACM 1st International Workshop on Data

 Internacional Journal of Computer & Information Science 10

warehousing and OLAP (DOLAP'98), Washington D.C.,

USA, 1998, pp. 3-9.

[3] M. Golfarelli, D. Maio, and S. Rizzi, “Conceptual

Design of DataWarehouses from E/R Schemes”, in

Proceedings of the 31st Hawaii Conference on System

Sciences (HCSS'31), Kona (Hawaii), USA, 1998, pp. 334-

343.

[4] L. Cabibbo and R. Torlone, “From a Procedural to a

Visual Query Language for OLAP”, in Proceedings of the

10th Intl. Conference on Scientific and Statistical

Database Management (SSDM'98), Capri, Italy, 1998, pp.

74-83.

[5] C. Sapia, M. Blaschka, G. Höfling, and B. Dinter,

“Extending the E/R Model for the Multidimensional

Paradigm”, in Proceedings of the First International

Workshop on Data Warehouse and Data Mining

(DWDM'98), 1998, vol. 1552 of Lecture Notes in

Computer Science, pp. 105-116.

[6] C. Sapia, “On Modeling and Predicting Query

Behavior in OLAP Systems”, in Proceedings of the

Internacional Workshop on Design and Management of

Data Warehouses (DMDW'99), Heidelberg, Germany,

1999, pp. 1-10.

[7] J. Trujillo, J. Gómez, and M. Palomar, “Modeling the

Behavior of OLAP Applications Using an UML

Compilant Approach”, in Proceedings of the First

International Conference On Advances in Information

Systems (ADVIS'00), Izmir, Turkey, 2000, vol. 1909 of

Lecture Notes in Computer Science, pp. 14-23.

[8] J. Trujillo, M. Palomar, J. Gómez, and I. Song,

“Designing Data Warehouses with OO Conceptual

Models”, IEEE Computer, special issue on Data

Warehouses, vol. 34, no. 12, pp. 66-75, December 2001.

[9] K. Hahn, C. Sapia, and M. Blaschka, “Automatically

Generating OLAP Schemata from Conceptual Graphical

Models”, in Proceedings of the ACM 3rd International

Workshop on Data warehousing and OLAP (DOLAP'00),

Washington D.C., USA, 2000.

[10] Object Management Group (OMG), “Unified

Modeling Language (UML)”, Internet:

http://www.omg.org/cgi-bin/doc?formal/01-09-67,

January 2001.

[11] W. Giovinazzo, “Object-Oriented Data Warehouse

Design. Building a star schema”, New Jersey: Prentice-

Hall, 2000.

[12] Informix, “Informix Metacube”, Internet:

http://www.informix.com, December 1999.

[13] J. Trujillo, and S. Luján-Mora, “Automatically

Generating Database Schemas into OLAP Tools from

Object-Oriented Conceptual Models”, in International

Conference on Computer Science, Software Engineering,

Information Technology, e-Business, and Applications

(CSITeA’02), Foz do Iguazu, Brazil, June 2002, pp. 102-

107.

[14] J. Trujillo, S. Luján-Mora, and E. Medina, “The

GOLD Model CASE Tool: an environment for designing

OLAP applications”, in Proc. of the 4th International

Conference on Enterprise Information Systems (ICEIS

2002), Ciudad Real, Spain, April 2002, pp. 699-707.

