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Abstract 

     Graphical conceptual models for On-Line Analytical 

Processing (OLAP) applications should semi-

automatically generate the database schema and the 

corresponding multidimensional (MD) model for a 

specific target commercial OLAP tool. However, this 

generation process is not immediate as the semantics 

represented by these conceptual models are different from 

those considered by the underlying MD models of OLAP 

tools. Therefore, some transformations for these 

differences are needed in this process. 

 

     In the context of graphical conceptual models, we 

provide an object-oriented conceptual model that provides 

a Unified Modeling Language (UML) graphical notation 

to represent both structural and dynamics properties of 

MD models and initial user requirements at the 

conceptual level. In this paper, on one hand, we present 

how to semi-automatically generate the database schema 

and the underlying MD model for one of the most leading 

commercial OLAP tools from our model. In this process, 

some semantics represented in the model are transformed 

into those considered by the underlying MD model of the 

target OLAP tool. On the other hand, initial user 

requirements are translated into their corresponding 

definitions in the target OLAP tool. In this way, the final 

user is able to start the analysis process from the initial 

requirements specified at the conceptual level. Finally, we 

present the prototype of the Computer Aided Software 

Engineering (CASE) tool that gives support to both the 

model definition and this generation process. 

 

Keywords: Conceptual modeling, OLAP, UML, 

Multidimensionality, Data warehouse 

 

1 Introduction 

     On-Line Analytical Processing (OLAP) tools, based on 

the multidimensional (MD) model, are the most popular 

front-end tools to analyze data in data warehouses. These 

tools consider the implementation of the MD model from 

two different perspectives: 

 

 The structural, part which refers to: 

o The structures that form the database 

schema to house MD data. 

o The underlying MD model that provides 

the OLAP tool to consider the MD 

semantics (e.g. facts, fact attributes, 

dimensions, hierarchy paths, etc.). 

 The dynamic part: it refers to the definition of 

initial user requirements and OLAP operations to 

further analyze data. 

 

     These OLAP tools are mainly MOLAP 

(Multidimensional OLAP) or ROLAP (Relational OLAP) 

depending on the kind of structures used to implement the 

database schema of the MD model. MOLAP tools directly 

implement the MD model into multidimensional vector 

structures. ROLAP tools are based on the relational model 

and the tables of the database schema are normally 

organized in form of the star schema (and its variants 

snowflake and constellations) [1]. 

 

     Each commercial OLAP tool provides its own MD 

model to consider the main semantics and concepts of 

MD modeling. As a consequence, different OLAP tools 

consider different semantics and properties of the MD 

model. These tools provide a graphical user interface to 

define the MD model from the structures 

(multidimensional vectors or relational tables) that form 

the MD database schema. Therefore, they first require the 

database schema to be defined. Once both the database 

schema and the MD model have been defined, an easy 

“point-and-click” graphical user interface allows the user 

to define initial requirements. 

 

     On the other hand, several proposals have lately been 

made to accomplish the graphical conceptual design of 

OLAP applications [2, 3, 4, 5, 6, 7, 8]. Ideally, within the 

context of OLAP applications, these graphical proposals 

should semi-automatically generate the implementation of 

the MD model to be directly queried in a commercial 

OLAP tool. In doing this, the generation process should 

generate the implementation of the: 

 

 Structural part: 

o Structures that form the database 

schema. 

o The MD concepts of the underlying MD 

model of the target OLAP tool. 

 Dynamic part: initial user requirements 

considered in the conceptual modeling phase. 

 

     To the best of our knowledge, the work presented by 

Hahn et al. in [9] is the only one in considering this semi-

automatic generation process with outstanding results. In 

this process, only the implementation of the underlying 

MD model into the target OLAP tool is taken into 
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consideration. Thus, the MD model accomplished with 

the Multidimensional/Entity Relationship model (M/ER) 

[5] is translated into the corresponding MD model of the 

target OLAP tool. In the M/ER model, some functional 

information such as derived measures or additivity are not 

considered and, therefore, cannot be generated. As 

pointed out in [9], the semantics and concepts considered 

by the different MD models of commercial OLAP tools 

are different from those considered by the graphical 

conceptual approaches above-presented. Therefore, it is 

necessary to transform some semantics and properties in 

the generation process trying to preserve their initial 

semantics as much as possible. 

 

     In this context, our model is an object-oriented (OO) 

conceptual model to accomplish the conceptual design of 

both the structural and dynamic parts of OLAP 

applications. In order to facilitate the use of the modeling 

constructors, the model provides a Unified Modeling 

Language (UML) [10] compliant graphical notation [7, 8] 

in which each modeling constructor has its corresponding 

graphical notation. This fact allows the designer to 

accomplish a correct conceptual design with no need of 

parsing the graphical notation. 

 

     In this paper, we present how to semi-automatically 

generate the implementation of both the structural and 

dynamic part from our OO model into Informix Metacube 

(IM). In [13] we presented how to generate the structural 

part. In this paper, we extend the latter work by providing 

details on how to generate the dynamic part. 

 

     With respect to the structural part, the process first 

generates the star schema that will house the MD data and 

then, the corresponding MD model of IM from our 

modeling constructors used in the conceptual design. 

Nevertheless, some of the constructors do not have their 

corresponding representation into IM and, therefore, some 

are ignored while others are transformed trying to 

preserve their initial semantics as much as possible. With 

reference to the dynamic part, initial user requirements 

defined in our conceptual model are translated into IM 

requirements. Thanks to this, the final user is able to load 

them in the subsequent analysis phase and can 

immediately start the data analysis from them. 

 

     Finally, in this paper we also present a Computer 

Aided Software Engineering (CASE) tool that gives 

support to all the theoretical aspects presented in this 

paper. 

 

     The remainder of this paper is organized as follows. 

Section 2 summarizes how to accomplish the conceptual 

modeling of the structural and dynamic part of OLAP 

applications with our model. Section 3 presents how IM 

stores information about its underlying MD model and the 

requirements defined by the user. Section 4 describes the 

generation process of both the structural and dynamic part 

from our model into IM. In section 5 we present a 

summary of the CASE tool that gives support to both our 

model and this generation process. Finally, in section 6, 

we present the conclusions and sketch some works that 

are currently being carried out. 

 

2 The Object-Oriented Conceptual Model 

     In this section, we will describe how the UML 

compliant graphical notation we provide represents both 

the structural and dynamic parts of OLAP applications. 

 

2.1 The Structural Part 

     Let us consider from now on an example of a sales 
system in which facts are considered as the tickets issued 

in stores of a great-store chain. Figure 1 shows the class 

diagram of our model for this example in which the fact 

Sales_products is considered along four dimensions 

(Product, Customer, Store and Time). 

 

     Facts are considered as composite classes in a shared 

aggregation relation of n dimension classes. The 

minimum cardinality on dimension class roles is 1. Many-

to-many relationships between the fact class and any 

dimension class are considered by the cardinality of 1..* 

on the dimension class role. In our example (see Figure 

1), there has been defined a many-to-many relationship 

between the fact Sales_products and the Product 
dimension as one ticket may contain several products. 

 

     Moreover, the designer may define identifying 

attributes in the fact class with the constraint {OID} if 

they are needed to identify the instances of the fact class 

unambiguously. These {OID} attributes are needed, for 

example, when there is a many-to-many relationship 

between the fact class and any dimension class. These 

{OID} attributes also allows us to define degenerate 

dimensions [11], which are those dimensions whose 

identifiers exist in a fact table, but do not have the 

corresponding dimension explicitly represented. In our 

example, as a ticket may include several products, the 

identifying attributes num_ticket and num_line have 

been defined to distinguish the ticket a sold product 

belongs to. 

 

     As well as atomic measures, derived measures can also 

be represented with the constraint “/” placed next to the 

measure_name. Their derivation rules are placed as 

constraints between brackets around the class. In Figure 1, 

we can see that the fact class contains three derived 

measures (qty_sold, total_price, and num_clients) and 

their corresponding derivation rules. 
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Figure 1: The UML notation to represent the structural part of the sales system 

 
     Regarding additivity, all measures are additive by 

default. Semi-additivity and non-additivity are considered 

by defining constraints on measures and also placed 

around the class. These constraints are shown to the 

designer in a non-strict natural language syntax although 

they have its formal underlying formulae. In Figure 1, we 

can see that the attribute num_clients cannot be 

aggregated along the Product dimension. 

 

     With respect to dimensions, each level of a 

classification hierarchy is considered as a class. These 

classes must contain an identifying attribute ({OID}) to 

identify the instances of a hierarchy level and a descriptor 

attribute ({D}) that will be used as the default label in the 

data analysis in the target OLAP tool. These two 

attributes are necessary as in the semi-automatic 

generation of the implementation of the model, the OLAP 

tool will need to know the existence of these two 

attributes. The classes that represent classification 

hierarchies must form a Directed Acyclic Graph (DAG) 

(constraint {dag}) starting from each dimension class. The 

DAG structure can represent both alternative path and 

multiple classification hierarchies. 

 

     The peculiarities of classification hierarchies such as 

the strictness (an object of a lower level of a hierarchy 

belongs to only one of a higher level) and completeness 

(all members belong to one higher-class object and that 

object consists of those members only) are also 

considered. In concrete, these features are specified by 

means of the cardinality of the roles of the associations 

and the constraint {completeness} respectively, as seen in 

the Store dimension (see Figure 1). Finally, dimensions 

can be categorized by means of generalization and 

specialization hierarchies, as observed in the Product 
dimension. In this way, we can model additional features 

for an entity’s subtypes. 

 

2.2 The Dynamic Part 

     Our model also allows the user to represent initial user 

requirements at the conceptual level by means of cube 
classes. The basic components of these classes are as 

follows: 

 

 Head area (H): name of the cube class. 
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 Measures area (M): representation of the 

measures to be analyzed. 

 Slice area (S): restrictions to be satisfied. 

 Dice area (DC): dimensions and their grouping 

conditions to address the analysis. 

 Cube operations (CO): OLAP operations that are 

provided by the model (roll-up, drill-down, etc.). 

 

 Let us suppose the following user initial 

requirement: 

 
The qty_sold of products where the 

State is "Valencia" and the Group of 

products is "Grocery" must be grouped 

according to the Store Province and 

City and the Product Family and Brand 

 

 
Figure 2: Graphical notation for an initial user 

requirement 

 

     In Figure 2, we can see the graphical notation of the 

cube class that is used by the designer to represent the 

previous user initial requirement. It is easy to see the 

different sections of cube classes above-presented: 

 

 Section Facts contains the aim of the analysis: 

qty_sold. 

 Slice the restrictions defined on the dimensions 

Store and Product. 

 Section Dice, the grouping conditions required 

along the Store and Product dimensions can 

easily be identified. 

 

     For nonexpert UML or database users, the cube class’s 

graphical notation facilitates the definition of initial user 

requirements. Every cube class has a more formal 

underlying OQL specification. 

 

3 Informix Metacube 

     In this section, we will present how Informix 

Metacube (IM) [12] represents the structural and dynamic 

parts of multidimensional modeling and the tools it 

provides for these tasks. 

 

3.1 The Structural Part 

     IM works with both the star and snowflake schema. 

However, the snowflake schema is partial in the sense that 

the tables that represent different levels of hierarchies are 

not related between them. Thus, these tables are related to 

the one that represents the minimum level of hierarchy. 

Therefore, in our generation process, we will only 

generate the database schema that corresponds to the star 

schema. 

 

     On the other hand, the underlying MD model of IM is 

called Decision Support System (DSS). The content of the 

DSS can be defined through an easy graphical user 

interface by the tool Data Warehouse Manager (DWM). In 

order to accomplish this, it is necessary to have the 

database schema (star or snowflake) previously defined. 

The information about the MD models defined in IM is 

stored in relational tables which contain information 

about: 

 

 The MD elements defined in the DSS (e.g. facts, 

dimensions, hierarchy levels, etc.). 

 The logical information on these MD elements 

(e.g. fact tables, primary key of the fact tables, 

attributes in the relational tables to identify 

instances of hierarchy levels, etc.). 

 

     To clarify the main MD properties considered by the 

DSS, we have modeled the DSS model with UML (see 

Figure 3). Thus, the relational tables of the DSS have 

been modeled with classes and relationships between 

them. The name of the classes and relationships are the 

same as their corresponding relational tables in the DSS. 

It can be observed that not only information on the 

defined MD concepts is considered (facts, dimensions, 

etc.) but also logical information (primary keys, table 

column that corresponds to one measure, etc.). 

 

     The classes Fact_table and Dim store information 

about the facts and dimensions defined in the DSS 

respectively. The relationship Fact_dim_mapping 

represents the information about which dimensions are 

related to which facts through the corresponding foreign 

keys defined in the fact table (information considered in 

the associated class Foreign_key), as several facts and 

dimensions can be defined in the DSS. The class Fact 
stores information on the measures defined in the DSS, so 

that every measure must always be contained in a fact 

(see cardinality of the relationship). The derivation rules 

of derived measures are represented in the class 

Dss_string. 
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Figure 3: Modeling the DSS model of Informix 

Metacube (structural part) with UML 

 

     In the DSS, hierarchy levels are called dimensional 

groups and are considered in the class Dim_el. Every 

dimensional group only belongs to one dimension (see 

cardinality of the relationship). This means that even 

though two or more dimensions share the same 

dimensional group, the same dimensional group has to be 

defined per each dimension. The relationship Rollup 

stores information about what dimensional group is 

connected to (rolls_up_to) which dimensional group, 

thus representing classification hierarchies. These 

dimensional groups can be connected to form multiple 

and alternative path hierarchies (see cardinality of the 

relationship). Finally, the class Att stores information on 

the attributes defined in each dimensional group. An 

attribute must only belong to one dimensional group. For 

example, if the attribute name has been defined in both 

the City and Community classes, the attribute name 

must be defined twice as in the DSS they will be 

considered as different attributes (name in the City class 

and name in the Community class). 

 

     After a brief review of the main MD features 

considered by the DSS, we will summary some important 

MD properties at the conceptual level that cannot be 

considered by the DSS model: 

 

 Many-to-many relationships between a fact and 

one dimension cannot be considered as the 

primary key of the fact table is only composed 

by the foreign keys of the dimension tables to 

which the fact table is related.  This would 

require more attributes to be part of the primary 

key of the fact table or additional relational 

tables to represent these many-to-many 

relationships. 

 Additivity cannot be considered, i.e. there is not 

way of indicating that a certain fact attribute 

cannot be aggregated along a dimension. Not 

either it is possible to restrict the set of 

aggregation operators that can be applied on a 

fact attribute (e.g. it is not possible to specify that 

only MAX and MIN can only be applied on a 

specific fact attribute). 

 The relationships between dimensional groups 

(relationship Rollup) are considered strict by 

default and, therefore, aspects about the 

cardinality of these relationships are not 

considered. In the star schema managed by IM, 

an instance of a dimensional group is only 

related to one instance of a higher hierarchy 

level. That is, non-strict and completeness 

classification hierarchies are not considered. 

 The standard star schema does not allow the 

consideration of the categorization of dimensions 

as all attributes that correspond to all possible 

categories of a dimension are defined as 

attributes within the same relational table in the 

star schema. 

 

3.2 The Dynamic Part 

     IM allows the definition of initial user requirements 

from a DSS with the Informix Metacube Explorer (IME) 

tool. These requirements are defined from a model 

defined in the DSS and from them users can apply the set 

of OLAP operations provided by this tool. User 

requirements can be saved and then, users can load them 

whenever it is necessary, as a start point of the 

information analysis phase. The information about these 

user requirements is also stored in relational tables. 

 

 
Figure 4: Modeling the DSS model of Informix 

Metacube (dynamic part) with UML 
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     To facilitate the comprehension about the information 

on user requirements stored in the relational tables, in 

Figure 4, we have modeled these tables with UML. To 

start with, in the class Query_header, every instance 

represents the basic information of a defined requirement, 

i.e. its number in the DSS, number of the DSS to which it 

belongs to, the author and the folder where it has been 

saved. In the class Query_item all elements of a user 

requirement are specified, i.e. dimensions and their 

dimensional groups considered, fact attributes, etc. The 

information about the filters defined in a user requirement 

is considered by the class Ui_filter (filters allow us to 

define constraints on data, e.g. year = 2002). Both 

filters and user requirements are stored in folders and, 

therefore, the class Ui_folder contains information about 

the folder where they have been saved. 

 

4 From theObject-Oriented Conceptual Model into the 

DSS Model 

     In this section, we will present the main steps of the 

semi-automatic generation process that obtains from a OO 

model its corresponding DSS model to implement it in 

IM. This generation process consists of two algorithms, 

one for the structural part and another one for the dynamic 

one. 

 

4.1 The Structural Part 

     The algorithm of the structural part reads a conceptual 

MD model and generates two SQL script files: 

 

 The first file contains the SQL sentences needed 

to create the relational tables that correspond to 

the star schema that will form the database 

schema. 

 The second one contains the SQL sentences to 

register the MD concepts in the DSS that 

correspond to the modeling constructors used in 

our model. 

 

     In this generation process, we have to handle that 

certain modeling constructors of our OO model do not 

have their corresponding representation into the DSS 

model. In some cases, it has been possible to carry out a 

minimal semi-automatic transformation (the designer has 

to decide if this transformation is carried out in some 

cases) of the modeling constructors to be able to represent 

them in the DSS trying to preserve their initial semantics. 

In other cases, such a transformation is not possible and, 

therefore, those modeling constructors have been ignored 

with the corresponding lack of expressiveness in the final 

representation of a model. Due to the lack of space, in this 

paper, we will only describe the transformations 

accomplished for some modeling constructors; the whole 

algorithm has been implemented in the CASE tool (see 

next section) we have developed. 

 

     The Table 1 shows the correspondence between the 

modeling constructors of our model and the MD concepts 

considered by the DSS model. From now on, we will only 

mention the modeling constructors ignored as well as we 

will only remark the main transformations accomplished.  

 

     To start with, every class that represents a hierarchy 

level is defined as a dimensional group. Then, the process 

reads all associations for every one of these classes and 

defines a Rollup relationship between the two associated 

classes. This means that even though two or more 

dimensions share the same hierarchy level, this level is 

defined for each dimension as a dimensional group. This 

is required by the DSS model where every dimensional 

group must only belong to one dimension. 

 

     On the other hand, non-strict and complete 

classification hierarchies are ignored as in the database 

schema managed by the DSS model an instance of a 

hierarchy level can only refer to a one instance of a higher 

level of the classification hierarchy. Thus, we have to 

ignore those properties in the generation algorithm. 

 

     Finally, the additivity of measures is not considered by 

the DSS model and, therefore, this property is ignored in 

the generation process. In the follow, we will describe 

how to accomplish the transformations described in Table 

1. 

 

4.1.1 Specialization Hierarchies 

     Specialization hierarchies are transformed into strict 

classification hierarchies. Every concept of the 

specialization hierarchy is transformed into one 

dimensional group (level) of the classification hierarchy. 

Every attribute within a class defined under this 

specialization concept is considered as an attribute of the 

new dimensional group. These new dimensional groups 

are related by means of strict classification hierarchies. 

Finally, every new dimensional group will have defined 

as identifying and default attribute the attribute 

specialization_name_ID. 
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Table 1: Correspondence between the modeling constructors of our model and the MD concepts of the DSS model 

 

     In Figure 5, we can see an example of this 

transformation accomplished for the Product dimension 

from a conceptual point of view. The specialization levels 

Group, Family and Type will be transformed into their 

corresponding classification levels. The identifying and 

default attribute will be called specialization_name_ID 

of type String that will have the possible values of the 

name of the classes defined under the specialization 

concept that represents. For example, the different values 

the attribute Type_ID can have are Cool, Fresh, Alcohol 
and Refreshments. Finally, the arrows in the Figure 5 

show how all attributes defined under a specialization 

concept are included in the corresponding new 

classification level. 

 

4.1.2 Many-to-many Relationships between a Fact and 

one Dimension 

     The DSS model does not consider the many-to-many 

relationship between a fact and one dimension. If the 

algorithm reads a cardinality higher than 1 in a shared 

aggregation on the role of a dimension class, this property 

will be ignored if no identifying attribute has been defined 

in the fact class. Let us remind (see section 2) that our 

model allows the designer to define identifying attributes 

{OID} in the fact class that may be needed to represent 

many-to-many relationships between a fact and one 

dimension. 

 

     Therefore, in our generation process, if the designer 

has defined identifying attributes in the fact class, every 

one of theses attributes will be transformed into a new 

dimension with only the base dimensional group with 

only one attribute (identifying and descriptor at the same 

time). 

 

     In Figure 6, we can see the transformation 

accomplished from a conceptual point of view. The 

identifying attributes {OID} num_ticket and {OID} 

num_line will be transformed into two new dimensions 

with only one base dimensional group for each new 

dimension. The only attribute defined within these new 

dimensional groups is the same as the one defined in the 

fact class with the properties of {OID, D} (i.e. identifying 

and descriptor attribute). 

 

4.2 The Dynamic Part 

     On the other hand, as commented in section 2, the 

model allows the definition of initial user requirements at 

the conceptual level by means of cube classes. The 

dynamic part generation process generates a SQL script 

file needed to register the initial requirements in IM. The 

whole process is summarized in Figure 7. 
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Figure 5: Transformation of specialization hierarchies into strict classification hierarchies 

 

 
Figure 6: Transformation of identifying attributes (OID) of Fact classes into new dimensions 

 
     The algorithm reads every element defined in a cube 

class and its corresponding definition in the star schema 

generated with the algorithm of the structural part 

previously-commented. This is necessary as every 

element defined in a cube class refers to an element 

defined in the conceptual model and its logical 

information is also needed. For example, with reference to 

the requirement considered in Figure 2, one of the 

grouping conditions considered is Store.City. The 

generation process needs to know that this element 

corresponds to the logical element Store.City_name, i.e. 

the attribute City_name defined in the relational table 

Store that represents the Store dimension. 

 

 
Figure 7: Generation process of initial user 

requirements 

 

     In this way, the final user can load all initial user 

requirements specified at the conceptual level and, from 

them, to start the further data analysis phase by applying 

OLAP operations. Nevertheless, the administrator of the 

database has to fill in some attributes of theses relational 
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tables such as privileges, user name, etc., for a correct 

execution of the requirements. 

 

5 The CASE Tool 

     In this section, we briefly present the CASE tool that 

gives support to both the model definition and the 

generation process described through the paper. The tool 

provides a comfortable interface for elaborating MD 

conceptual designs independently of implementation 

issues. In [14], the architecture of the CASE tool and a 

complete explanation of its use were presented. 

 

     First of all, the designer has to define both the 

structural and the dynamic part of a conceptual model. 

The CASE tool allows the designer to hide the attributes 

and methods defined in every class to have a complete 

view of the class diagram (Figure 8). 

 

     Then, an option of the File menu allows us to start 

with the generation process of the structural part of a 

model into Informix Metacube (IM). To carry out the 

generation of the dynamic part, it is absolutely necessary 

to have the structural part previously generated. As 

commented through our paper, the process is semi-

automatic as the interaction with the designer is 

sometimes necessary. For example, the process warns the 

designer that every {OID} attribute defined in the Fact 

class will be transformed into a new dimension and waits 

confirmation. In this moment, the designer may decide to 

abort the process and define new {OID} attributes in the 

Fact class. 

 

 
Figure 8: A multidimensional model in the CASE tool 

 

     If the generation process ends successfully a window 

will inform the designer that the generation process has 

concluded successfully. The CASE tool also allows the 

designer to view the SQL script files generated. For 

example, we can see the SQL sentences that will be 

needed to define the corresponding star schema (Figure 9) 

and those needed to register every MD concept of the 

DSS model of IM. 

 

 
Figure 9: SQL sentences generated from a 

multidimensional model 

 

6 Conclusions 

     We have previously proposed an object-oriented 

approach to accomplish the conceptual modeling of data 

warehouses, MDB, and OLAP applications [7, 8]. To 

facilitate the conceptual design, the model provides an 

easy UML graphical notation that will be used by the 

designer in the CASE tool that gives support to the model. 

 

     In this paper, we have presented how to semi-

automatically generate all the needed information to 

implement our model into Informix Metacube (IM). On 

one hand, the generation of the structural part consists of 

generating both the star schema to house the MD data and 

the MD concepts of the DSS model that correspond to the 

modeling constructors used in the design. In this process, 

it has been necessary to transform some modeling 

constructors that do not have their corresponding 

representation in IM. On the other hand, with reference to 

the dynamic part, we have generated the user initial 

requirement information in IM format. This means that 

the final user will be able to start the data analysis from 

these initial requirements. 

 

     Finally, we have presented a CASE tool that gives 

support to our approach. The generation process described 

throughout the paper has also been implemented in the 

CASE tool. We are currently working on using some 

dynamic information used in our model such as state and 

interaction diagrams to generate more user requirements 

than only the initial ones. 
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