Pedro J. Clemente
Miguel A. Pérez
Sergio Lujan
Hans Reiser

13th Workshop for Phd Students in
Object Oriented Programming:

Summary and Accepted Papers

Technical Report TR-14-03-03
2003-10-06

Friedrich-Alexander-University
Erlangen-Nurnberg, Germany

Informatik 4 (Distributed Systems and Operating Systems)
Prof. Dr. Wolfgang Schrdder-Preikschat

13th Workshop for Phd Studentsin Object Oriented Programming

The workshop summary will be published in:
Frank Buschmann, Algjandro Buchmann (eds): ECOOP 2003 workshop reader. LNCS,
Sprinter, 2003

Table of contents

Summary of the workshop
Pedro J. Clemente, Miguel A. Pérez, Sergio Lujan and Hans Reisercccecevveivcneenee. 1

Typecasting As a New Join Point in AspectJ
M. DEVI PraSadcocoiiiiiiiiiieiesee sttt sttt s 13

Mob: a Scripting Language for Programming Web Agents
Hervé Paulino, Luis Lopes, and Fernando SIVa.cccceceveeveececeese e 21

A Process-based Framework for Automatic Categorization of Web Documents
Sari R EIDadah, Nidal Al-SAIdcccoceiieeeie e 30

A Minimalist Approach to Framework Documentation
F N (< 7= T Yo 1 - 37

Using an ADL to Design Aspect Oriented Systems
A.Navasa, M. APErez, J.M. MUIITOoceeeeeee et 48

Software Visualization and Aspect-Oriented Software Development
SUSANNE JUCKNALN ...ttt e st tesneesreenseeneenne s 58

Refactoring in the Presence of Aspects
JAN WWIOKA ...ttt bbbttt e et bbb ne e 62

An Example of generating the synchronization code of a system composed by many
similar objects
57721010115 o F= L0 v T - TSRS OSRRRS 70

Composing Non-Orthogonal Aspects
Andreas|. Schmied, Franz J. HauCKcccooiiiiieiie i 81

Summary of 13th Workshop for Phd Students in
Object Oriented Programming

Pedro J. Clemente!, Miguel A. Pérez', Sergio Lujan? and Hans Reiser®

Department of Computer Science. University of Extremadura, Spain*
2 Department of Languages and Computer Science. University of Alicante, Spain.
3 Department of Distributed Systems and Operating Systems. University of
Erlangen-Niirnberg, Germany.

{jclemente, toledano}@Qunex.es, sergio.lujan@ua.es, reiser@cs.fau.de

Abstract. The objective of the 13th edition of Ph Doctoral Students in
Object-Oriented Systems workshop (PHDOOS) was to offer an oppor-
tunity for PhD students to meet and share their research experiences,
and to discover commonalities in research and student ship. In this way,
the participants may receive insightful comment about their research,
learn about related work and initiate future research collaborations. So,
PHDOOS is a gauge to detect hot spots in current lines of research and
new avenues of work in objects-oriented concepts.

1 Introduction

At its 13th edition, the PhDOOS workshop established the annual meeting of
PhD students in object-orientation. The main objective of the workshop is to
offer an opportunity for PhD students to meet and share their research expe-
riences, to discover commonalities in research and studentship, and to foster a
collaborative environment for joint problem solving.

The workshop also aims at strengthening the International Network of PhD
Students in Object-Oriented Systems|1] initiated during the 1st edition of this
workshop series at the European Conference on Object Oriented Programming
(ECOOQOP), held in Geneva, in 1991. This network has counts approximately 120
members from all over the world. There is a mailing list and a WWW site,
used mainly for information and discussion about OO-related topics. Since its
foundation, the International Network of PhD Students has proposed and created
a workshop for PhD students in association with ECOOP each year. This 13th
edition makes PHDOOS a classical workshop in ECOOP.

At this edition, the workshop was divided into plenary sessions, discussion
session and a conference. The sessions were determined according to the research
interests of the participants. Potential topics of the workshop were those of the
main ECOOP conference, i.e. all topics related to object technology including
but not restricted to: analysis and design methods, real-time, parallel systems,

* The organization of this workshop has been partially financed by CICYT, project
number TIC02-04309-C02-01

patterns, distributed and mobile object systems, aspects oriented programming,
frameworks, software architectures, software components, reflection, adaptabil-
ity, reusability and theoretical foundations. Due to the heterogeneous nature of
the topic of the papers received, the workshop conclusions are focused on the
interesting research areas and on solving common problems.

The participants had a 20 minute presentation at the workshop (including
questions and discussions). The discussion group was based on the research inter-
ests of the participants. Finally, the conference featured a speaker who is invited
to talk about interesting research, personal experiences or research methodology.
This conference was a unique opportunity to hear or ask things not discussed
elsewhere, and to have an "unplugged" discussion with a well-known personality
from our field. This year, the speakers was the professor Robert E. Filman

This paper is organized into the following points. The next section is focused
on the participants of the workshop. In section three, the presented papers are
explained and main topics are summarized. The fourth section talks about a
conferences, and the fifth section includes the final discussion. Finally the paper
concludes with workshop conclusions and bibliographic references.

2 PHDOOS workshop participants.

In previous editions [2,3,4,5] of this workshop there have been more or less twenty
participants working for 2 days. However, this year the coincidence with a Doc-
toral Symposium cut the number of participants with papers to 10, thereby
reducing the length of this workshop to 1 day. We can divide the participants
into four groups:

— Participants with papers
Organizing Committee.
Program Committee
Invited speaker.

2.1 Participants with papers

The number of papers received was 11, and 9 were accepted. The attendants
with accepted papers were the following:

M. Devi Prasad. Manipal Center for Information Science, Manipal Academy

of Higher Education

— Hervé Paulino. Department of Computer Science. Faculty of Sciences and
Technology. New University of Lisbon.

— Sari R. ElDadah, Nidal Al-Said. Department of Information Systems. Arab
Academy For Banking and Financial Sciences.

— Ademar Aguiar. Faculdade de Engenharia da Universidade do Porto.

— Balazs Ugron. Department of General Computer Science. E6tvos Lorand

University, Budapest.

— Amparo Navasa Martinez. Quercus Software Engineering Group. University
of Extremadura.

Susanne Jucknath. Institute of Software Engineering and Theoretical Com-
puter Science Technical University of Berlin.

Jan Wloka. Fraunhofer FIRST.

— Szabolcs Hajdara. Department of General Computer Science. E6tvos Lorand
University, Budapest.

Andreas I. Schmied. Distributed Systems Laboratory. University of Ulm

2.2 Organizing Committee

The Organizing Committee of Ph Doctoral Object-Oriented Systems is made
up of volunteers participants in the previous workshop. Organizers in earlier
editions advise these volunteers. This year, the organizers were: Sergio Lujan
Mora, Sérgio Soares, Hans Reiser, Pedro José Clemente Martin and Miguel Angel
Pérez Toledano.

Sergio Lujan-Mora is a Lecturer at the Computer Science School at the Uni-
versity of Alicante, Spain. He received a BS in 1997 and a Master in Computer
Science in 1998 from the University of Alicante. Currently he is a doctoral stu-
dent in the Dept. of Language and Information Systems being advised by Dr.
Juan Trujillo. His research spans the fields of Multidimensional Databases, Data
Warehouses, OLAP techniques, Database Conceptual Modeling and Object Ori-
ented Design and Methodologies, Web Engineering and Web programming.

Sérgio Soares is currently a Ph.D. student at the Computer Science Center of
the Federal University of Pernambuco. His current research interests include im-
plementation methods and aspect-oriented programming. He is also a Assistant
Professor at the Statistics and Computer Science Department of the Catholic
University of Pernambuco

Hans Reiser studied Computer Science at the University of Erlangen-Niirnberg,
obtained Dipl. Inf. degree in computer science in spring of 2001. Since 6,/2001
he has been employed as researcher at the Department of Distributed Systems
and Operating Systems at University of Erlangen-Niirnberg. He is member of
the AspectIX research team (a joint group of our department and distributed
systems department of University of Ulm), doing research on adaptive middle-
ware for large-scale distributed systems. The primary research focus for PhD is
software based fault tolerance in distributed systems.

Pedro José Clemente Martin graduated with a Dipl. Inf. in Computer Sci-
ences from the University of Extremadura (Spain) in 1998.He is a Lecturer at
the Computer Science Department at the University of Extremadura, Spain and
a member of the Quercus Software Engineering Group. His current research
interests are Aspect Oriented Programming and Component based Software En-
gineering. His PhD is focused on the interconnection of components to build
software systems using aspect oriented programming.

Miguel Angel Pérez Toledano graduated with a Dipl. Inf. in Computer Sci-
ences from the Polithecnic University of Catalunia (Spain) in 1993. Now, he is

working at the University of Extremadura as Associated Professor. He partici-
pated in the organization of the PhD workshop of ECOOP’02, and is a member
of the Quercus Software Engineering Group. His current research interests are
Semantic Description of Components and Repositories of Software Components.
His PhD is focused on the selection and retrieval of components from repositories
using semantic descriptions.

2.3 Program Committee

The program committee was composed of senior researchers with a strong back-
ground in some object-oriented topic. The review process is designed to ensure
that every participant is able to present some relevant and well prepared mate-
rial. This edition, the program committee was composed by:

Marcelo Faro do Amaral Lemos (Federal University of Pernambuco, Brazil)
Marcio Lopes Cornelio (Federal University of Pernambuco, Brazil)

— Juan C. Trujillo (University of Alicante, Spain)

Fernando Sanchez Figueroa (University of Extremadura, Spain)

— Juan Manuel Murillo Rodriguez (University of Extremadura, Spain)

— Riidiger Kapitza (University of Erlangen-Niirnberg, Germany)

— Andreas Schmied (Univiversity of Ulm, Germany)

— José Samos (University of Granada, Spain)

2.4 Invited speaker.

For this edition, the invited speaker to PhDOOS was professor Robert E. Fil-
man. He is working at the Research Institute for Advanced Computer Science
(RIACS), NASA Ames Center. His work about Aspect Software Oriented Devel-
opment is recognized by the international computer science research community.

3 Research Hot Points

One of the main workshop objectives is to detect the principal research lines
following Object Oriented Programming and Programming Technologies. In this
sense, the following topics have been presented and have been discussed:

— Aspect Oriented Software Development
— Documentation and Categorization of Software
— Agents Technologies

3.1 Aspect Oriented Software Development

Aspect Oriented Software Development has been the most important point dis-
cussed in this workshop due to the fact that sixty percent of the accepted papers
dealt with this topic. In this sense, we can find several topics and focuses that

allow us to ensure that the area of Aspect Oriented Technologies is currently
very important.

The subjects treated included extension and description of Aspect-Oriented
Languages, Aspect Oriented Code Visualization, Composition of Aspects, and
domain of Aspect-Oriented application.

About Aspect-Oriented Languages there are two approaches: to extend an
existing language (for example, AspectJ) and to define new languages to describe
and compose aspects (for example, using ADL).

Prassat [6] suggests that AspectJ does not treat type-casting as an important
operation in programs execution. He demonstrates that Java programs use type
casting primarily for retrieving references to new types from distantly related
ones. He investigates AspectJs inadequacy in selecting execution points that use
type-casting to yield new object or inheritance references. He demonstrates the
necessity for a reference creation by type casting joinpoints and argues that its
addition makes AspectJs existing model more expressive.

Amparo Navasa [7] claims that to extract the aspect code, crosscutting the
functional one makes it easier to implement aspect oriented systems using AOP
languages, but it is possible to take away the problem of AO from the implemen-
tation phase to the design. In this phase, crosscutting functional code concerns
can be treated as independent entities. Her ideas are based on developing as-
pect oriented systems taking into account the benefits of applying CBSE at the
early stages of AO systems development, particularly at architectural design.
Concretely, AOSD at the design level as a co-ordination problem, using an ADL
to formalize it. This means a new language to define aspects and compose them
from the design time viewpoint.

Aspect Oriented Software Visualization presents a growing potential due to
the fact that graphic tools do not currently exist to visualize the aspect code
execution. In this sense, one intention of Software Visualization is to form a
picture in the user’s mind of what this software is about, what happens during
the execution and what should happen from the programmer’s point of view|§].
This is especially helpful with existing software and non-existing documentation.
Therefore the amount of existing software is increasing the need to understand
this software too.

From Composition of Aspects viewpoint, there is special interest in Dis-
tributed Systems, because they contain lots of cross-cutt and tangled code frag-
ments to fulfill their services. Merging a formerly separated aspect code with
a program code by means of aspect-oriented programming is enabled through
a couple of available technologies that manipulate program sources. Unfortu-
nately, these tools or aspect weavers both operate on a distinct coarse-grained
level (types, methods) and fulfill only a restricted a-priori known set of manip-
ulations.

However, to weave several aspect code fragments which could have been
constructed by independent teams for more than one concern simultaneously a
composition that not only concatenates aspects, but also manages join effects be-
tween them, reveals several complex, possibility interfering weaving demands[9].

The use of Aspect Oriented in specific domains or concrete areas in Software
Engineering is other growing area. In this sense, Hajdara[10] presented a solu-
tion to apply Aspect Oriented technologies to handle different non-functional
properties like synchronization specification of parallel systems.

Refactoring and Aspect Orientation (AO) are both concepts for decoupling,
decomposition, and simplification of object-oriented code. Refactoring is meant
to guide the improvement of existing designs. For this reason it is the main
practice in eXtreme Programming to implement ’embrace change’ in a safe and
reliable way. Aspect orientation on the other hand offers a new powerful en-
capsulation concept especially for coping with so called crosscutting concerns.
Although refactoring and AO have the same goals, their current forms impede
each other. Since the development of modular systems has become more and
more difficult a combined application of refactoring and AO is still a desirable
goal and would be a great help for developers|11].

3.2 Documentation and Categorization of Software

Two papers were presented on this topic during the workshop. The first paper
"A Process-based Framework for Automatic Categorization of Web Documents"
from Sari R. ElDadah[12], presented the design of a Framework for the devel-
opment of Automatic Text Categorization applications of Web Documents. The
process, composed of 4 activities, (identifying significant categories, finding the
best description for each category, classifying the documents into the identified
categories and personalizing the categories and their relevant descriptions ac-
cording to the user preference) is conducted from the various Automatic Text
Categorization methods developed so far, and described based on Petri Nets
process description language. The paper concluded with notes about the ATC
process.

The second paper presented on this topic was titled "A Minimalist Approach
to Framework Documentation" from Ademar Aguiar and Gabriel David[13]. This
paper proposes a documenting approach for frameworks that aims to be simple
and economical to adopt. It reuses existing documentation styles, techniques
and tools and combines them in a way that follows the design principles of min-
imalist instruction theory. The minimalist approach proposes a documentation
model, a documentation process, and a set of tools built to support the approach
(Extensible Soft Doc).

3.3 Agents Technologies

In this subject, we can include the paper "Mob: a Scripting Language for Pro-
gramming Web Agents" showed by Hervé Paulino[14]. Mob: a scripting language
for programming mobile agents in distributed environments was presented. The
semantics of the language is based on the DiTyCO (Distributed TYped Concur-
rent Objects) process calculus. Current frameworks that support mobil agents
are mostly implemented by defining a set of Java classes that must then be ex-
tended to implement a given agent behavior. Mob is a simple scripting language

that allows the definition of mobile agents and their interaction, an approach sim-
ilar to D’Agents. Mob is compiled into a process-calculus based kernel-language,
and its semantics can be formally proved correct relative to the base calculus.

4 Workshop Conference

The workshop conference entitled Aspect Oriented Software Development was
presented by Robert E, Filman.
Robert presented an interesting conference which has four parts:

— Object Infrastructure Frameworks (OIF)
Aspect-Oriented Software Development
— AOP through Quantification over Events
Research Remarks

The conference began with an introduction about Robert’s latest research projects.
He then introduced the concept of Aspect Oriented Software Development, and
a way to obtain AOP through Quantification over Events. Finally, some remarks
about research directions were presented.

Now, we are going to summarize each part of this presentation, because
Robert’s affirmations are very interesting, above all for students interested in
Aspect-Oriented.

4.1 Object Infrastructure Framework (OIF)
Distributed Computing systems is difficult mainly for the following reasons:

— It is hard to archive systems with systematic properties (called Ilities) like
Reliability, Security, Quality of Service, or Scalability.

— Distribution is complex for the following reasons: concurrence is complicated,
distributed algorithmics are difficult to implement, every policy must be
realized in every component, frameworks can be difficult to use, etc.

The introduction of a Component based Architecture require separating the
component functionality and the non-functional properties. These non-functional
properties should be inserted into components and allow for the interaction (com-
munications) among components.

This idea has been implemented using Object Infrastructure Frameworks
(OIF) [15]. OIF allows for the injection of behavior on the communications
paths between components, using injectors because they are discrete, uniform
objects, by object/methods and dynamically configurable. This idea permit the
implementation of non-functional properties like injectors, and then they can be
applied to the components; for example, injectors can encrypt and decrypt the
communications among components.

OIF is an Aspect Oriented Programming mechanism due to the fact that:

— It allows separating concerns into injectors
— It wrapping technology
— It piggy-backs on distributed-object technology (CORBA)

4.2 Aspect-Oriented Software Development

How can we structure our programming languages do help us archive such ili-
ties(Reliability, Security, Quality of Services, Evolvability, etc.)?

Separation of Concerns is an interesting strategy to structure our program-
ming languages because a fundamental engineering principle is that of separation
of concerns.

Separation of Concerns promises better maintainability, evolvability, Reusabil-
ity and Adaptability. Concerns occur at both the User/requirements level and
Design/implementation level[16].

Concerns cross-cut can be Applied to different modules in a variety of places,
and must be composed to build running systems.

In conventional programming, the code for different concerns often becomes
mixed together (tangled-code).

Aspect Oriented Programming modularize concerns that would otherwise be
tangled. AOP provides mechanisms to weave together the separate concerns.

Implementation Mechanism The following division allows for the description
of the common AOP implementation mechanisms used and the usual platforms
used:

— Wrapping technologies: Composition filters, JAC

— Frameworks: Aspect-Moderator Framework

— Compilation technologies: AspectJ, HyperJ

— Post-processing strategies: JOIE, JMangler

— Traversals: DJ

— FEvent-based: EAOP

— Meta-level strategies: Bouragadi et al., Sullivan, QSOUL /Logic Meta-Programming

4.3 AOP through Quantification over Events

A single concerns can be applied to many places in the code, but the we need
to quantify it.

Concerns can be quantified over the static(lexical) form of the program, se-
mantic (reflective) structure of the program structures and the events that hap-
pen in the dynamic execution of a system.

To take the expressiveness in quantification to its extreme is to be able to
quantify over all the history of events in a program execution. The events are with
respect to the abstract interpreter of a language. However, language definitions
do not define their abstract interpreters.

As a consequence, we are able to describe interesting points in the program
(lexical structure of the program, reflective structure of the classes and dynamic
execution of the system), and then to describe the change in behavior desired
at these points. The shadow of a description is the places in the code where
the description might happen, for example, the event invoking a subprogram
represents in a syntactic expression subprogram calls. It is necessary to define
these events, capture these, and to change the behavior at this point. For more
detail, please refer to [17].

4.4 Research remarks

This section of the conference presents the main research directions about Aspect
Oriented Software Development, and this information should be useful for current
and prospective Phd Students.

Research regime

— Define a language of events and actions on those events.

— Determine how each event is reflected (or can be made visible) in source
code.

— Create a system to transform programs with respect to these events and
actions.

— Developing an environment for experimenting with AOP languages (DSL for
AOP)

Real AOP Value

We don’t have to define all these policies before building the system
Developers of tools, services, and repositories can remain (almost) completely
ignorant of these issues

We can change the policies without reprogramming the system

— We can change the policies of a running system

Open Research Directions

Languages for doing AOP

— Hardly seen the end of this topic
— Join points

— Weaving mechanisms

Handling conflicts among aspects

The software engineering of AOP systems

— Modeling aspects: From models to executable code
— Debugging aspects independently of the underlying system
— Tools for recognizing and factoring concerns

Applying AOP to particular tasks

— Monitoring/debugging
Version control/provenance
— Web/system services
User-centered computing
Reliable systems

— System management

5 Summary of the discussion group

Although the workshop has a wide focus it turned out that most participants are
working in research areas closely related to aspect oriented programming. Instead
of having small subgroup discussions, the group opted for one plenary sessions
discussing topics on AOP-related topics. In the process of selecting appropriate
topics, we came up with the following main issues:

5.1 Shall aspects be supported as first class entities?

The situation today is that most AOP languages do not support aspects as first
class entities. This is however due to the simple pragmatic way these languages
are implemented. One may anticipate that the next generation of AOP languages
will provide support for aspects as first class entities. The main benefits which
we expect from such future developments are reusability of aspects, inheritance
between aspects, and dynamically adaptive aspects. These areas still offer some
research potential.

5.2 Does AOP make sense with non-OOP paradigms?

This issue was only briefly discussed. The group agreed that in paradigms like
functional or imperative programming, separation of concerns is an equally re-
quired design method, and AOP is useful technique to support this. However,
related to the generalization of aspects discussed later, non-OOP aspect orienta-
tion will have somewhat different requirements on potential join-point definition
than in the case of OOP.

5.3 What are adequate techniques to understand AOP programs?

One major problem with AOP is that while it simplifies things on a rather
abstract level, it gets more difficult to understand the concrete behavior of your
program at a lower level. Current visualization techniques, already offered in
some development environments, are not yet adequate for larger projects. The
issues to be supported by visualization techniques are documentation, testing
and debugging. The demand for such techniques will further rise, if aspect code
and functional code shall be developed independently

5.4 What purposes shall aspects be used for?

One widespread use of aspects is to restructure existing software (refactoring to
increase modularization), with the goal to improve structure and maintainabil-
ity. However, we anticipate that in the future, AOP will also be applied for new
applications, starting in the design phase. For this purpose, the availability of
reusable “aspect components”, addressed in the next item, will be essential. A
different question is whether AOP techniques may and shall be used for modi-
fying existing applications, that were developed without considering such later
modification. However, we were rather reluctant to consider this as a good AOP
technique.

10

5.5 Is is feasible to make aspects reusable?

Closely related to the previous topic is this important issue. In our opinion,
the most problematic matter is the definition of join points. In current AOP
languages, the definition of aspects is always tailored individually to one specific
application. Even in such a specific case, existing AOP tools are usable best if
the application and the aspects are written by the same developer. Also, even
a small modification to one application easily makes aspects unusable. We all
agree that this is a highly disappointing situation.

Having reusable aspects is highly desirable, but it requires further research
on how this might be done. An important issue in this context is the question
of whether aspects can be defined without them? limiting to an specific AOP
language. Ultimately, AOP needs to be done already in the design phase of
application development.

5.6 Conclusions

In spite of the fact that AOP has matured for over the years, several issues can
be found that are still relevant for future research. The most important issue
we found are the definition of join points targeting at reusability of aspects, and
tool support for visualizing and understanding aspect oriented applications.

References

1. International Network for PhD Students in Object Oriented Systems (PhDOOS).
http://www.ecoop.org/phdoos/ (1991)

2. 9th Workshop for Ph Doctoral Students in Objects Oriented Systems.
http://www.comp.lancs.ac.uk/computing/users/marash/PhDOOS99/ (1999)

3. 10th Workshop for Ph Doctoral Students in Objects Oriented Systems.
http://people.inf.elte.hu/phdws/ (2000)

4. 11th Workshop for Ph Doctoral Students in Objects Oriented Systems.
http://www.st.informatik.tu-darmstadt.de/phdws/ (2001)

5. 12th Workshop for Ph Doctoral Students in Objects Oriented Systems.
http://www.softlab.ece.ntua.gr /facilities/public/AD /phdoos02/ (2002)

6. Prasad, M.D.: Typecasting as a new join point in AspectJ. 13th Workshop for
Phd Students in Object Oriented Programming at ECOOP. Darmstadt, Germany.
(2003)

7. A.Navasa, M.A.Pérez, J.M.: Using an adl to design aspect oriented systems. 13th
Workshop for Phd Students in Object Oriented Programming at ECOOP. Darm-
stadt, Germany. (2003)

8. Jucknath, S.: Software visualization and aspect-oriented software development.
13th Workshop for Phd Students in Object Oriented Programming at ECOOP.
Darmstadt, Germany. (2003)

9. Andreas I. Schmied, F.J.H.: Composing non-orthogonal aspects. 13th Workshop for
Phd Students in Object Oriented Programming at ECOOP. Darmstadt, Germany.
(2003)

11

10.

11.

12.

13.

14.

15.

16.

17.

Hajdara, S.: An example of generating the synchronization code of a system com-
posed by many similar objects. 13th Workshop for Phd Students in Object Oriented
Programming at ECOOP. Darmstadt, Germany. (2003)

Wloka, J.: Refactoring in the presence of aspects. 13th Workshop for Phd Students
in Object Oriented Programming at ECOOP. Darmstadt, Germany. (2003)

Sari R. ElDadah, N.A.S.: A process-based framework for automatic categorization
of web documents. 13th Workshop for Phd Students in Object Oriented Program-
ming at ECOOP. Darmstadt, Germany. (2003)

Ademar Aguiar, G.D.: A minimalist approach to framework documentation. 13th
Workshop for Phd Students in Object Oriented Programming at ECOOP. Darm-
stadt, Germany. (2003)

Herve Paulino, L.L., Silva, F.: Mob: a scripting language for programming web
agents. 13th Workshop for Phd Students in Object Oriented Programming at
ECOOP. Darmstadt, Germany. (2003)

Robert E. Filman, Stu Barrett, D.D.L., Lindero, T.: Iserting ilities by controlling
communications. Communications of the ACM, January 45, No 1 (2002) 118-122
Filman, R.E., Friedman., D.P.: Aspect-oriented programming is quantification
and obliviousness. Workshop on Advanced Separation of Concerns. OOPSLA,
Minneapolis (2000)

Filman, R.E., Havelund, K.: Source-code instrumentation and quantification of
events. Workshop on Foundations Of Aspect-Oriented Languages (FOAL) at
AOSD Conference. Twente, Netherlands. (2002)

12

Typecasting As a New Join Point in AspectJ

M. Devi Prasad
Manipal Center for Information Science, Manipal Academy of Higher Education
Manipal -576119, Karnataka, India
devi.prasad @mahe.manipal.edu
Telephone: +91-08252-573491

ABSTRACT

Aspect] does not treat typecasting as an important operation in program’s execution.
However, down casting and cross casting play an important role in overall behavior of a java
program. We demonstrate that Java programs use type casting primarily for retrieving
references to new types from distantly related ones. We investigate Aspect]’s inadequacy in
selecting execution points that use typecasting to yield new object or interface references. We
demonstrate the necessity for a “reference creation by type casting” joinpoint and argue that
its addition makes Aspect]’s existing model more expressive. We bring out characteristics of
such a joinpoint and illustrate its usage.

1. INTRODUCTION

Aspect] [1] is a general purpose programming language based on Java for modularizing
crosscutting concerns [3]. Often, crosscutting concerns are features of an application,
including (but not limited to) logging, tracing, synchronization, and caching. Experience
shows that implementing these features in traditional OO languages results in scattered and/or
tangled code [3]. Aspect] introduces new modularizing construct named as ‘aspect’. An
aspect helps in expressing new behavior in an additive manner over and above the existing
OO implementation. It does so by providing language level expressions to identify and
augment key structural and behavioral elements in the underlying OO system.

Essentially, aspects are useful in providing incremental extensions to components. Since
components are accessed using well known interfaces, any conceived functionality
enhancement achieved by aspects has to be interface centered and must be transparent to
existing client code. Additionally, the new functionality may necessitate sharing state and
information among members of the introduced abstraction. Some design patterns, such as
Decorator or Proxy [4], are helpful in modularizing certain concerns. Aspect] can be
effectively used to create design patterns [5]. When Aspect] is employed for this purpose,
some important consequences of its join point model should be borne in mind:

1. When all methods of a class or interface require distinct advice, declaring pointcuts
designating individual methods and providing separate advice for each pointcut is
both unwieldy and undesirable. They tend to be fragmented.

13

2. Only around advice can define a return type for advice body. Therefore, around
advice can be employed to wrap a newly retrieved interface or object reference. It can
then return the reference to this wrapper instead of the wrapped reference.

Statement (2) above suggests that by suitably advising around the join points that create
a new instance or obtain an interface reference, we can avoid fragmented advice constructs.
Using decorators gives an OO flavor compared to separate around advice modularized in an
aspect. The former lends itself to the benefits of behavioral extension by inheritance.

Such a solution relies on the expressiveness of the join point model to pick out object or
interface reference creation points. In Java programming language, three kinds of expressions
can generate a new reference: (1) the ‘new’ operator call, (2) (factory) method call, and (3)
type casting expression. Aspect] can directly express only the first two join points among the
three listed here.

In this paper we show that reference generation by type casting is an important
programming technique used in practical programs. We argue that using Aspect], creating
decorator like wrappers is not possible in cases that use down casting or cross casting
expressions. We propose a new join point to specifically capture type casting expressions that
generate new references to objects or interfaces.

The rest of the paper is organized as follows: In section 2 we give a motivating example
to illustrate the problem. In section 3 we show inadequacy of Aspect] in providing a simple
and effective solution to this problem. In section 4 we propose a new joinpoint for capturing
reference creation with type casting that improves Aspect])’s expressiveness. In section 5 we
discuss a prototypical implementation of this idea. We conclude section 6 by summarizing
the results and discuss intended future work.

2. ILLUSTRATIVE EXAMPLE

In this section we introduce an example for reference in the subsequent sections. In this
example we consider a distributed service implemented using the Java RMI infrastructure.
The remote server component implements two interfaces, InStream and OutStream. The
declaration of interfaces and a typical client program is also shown here. Since the remote
component implementation is irrelevant to this discussion, it is not produced here. Details
such as error handling or remote exception processing are not shown for brevity.

interface InStream extends Remote { interface OutStream extends Remote {
int available(); void flush();
void close(); void close();
int read(); int write(int data);
int read(byte[] data); int write(byte[] data);
} }

14

class Consumer {
public long streamDataln(Remote r) {

long totalStreamed = 0;

// get required interface reference
InStream in = (InStream) r;

/I use ‘in’ to
//‘totalStreamed'

stream data & update

// client of the Java RMI component...

import java.rmi.*;

class main {

public static void main(String args[]) {
Remote r = Naming.lookup
(“rmi://server/ServiceProviderImpl™);

Consumer ¢ = new Consumer();
c.streamDataln(r);

... c.streamDataOut(r);
return totalStreamed;

} }
public void streamDataOut(Remote 1) {
// get required interface reference

OutStream out = (OutStream) r;

// use ‘out’ to stream data

A client streams data from the remote service using the InStream interface and it sends
out data using the OutStream interface. The Consumer class implements the interaction
between the client and the service. In Java RMI, each remote interface must inherit from a
tagging interface named Remote. Its sole purpose is to advertise to the RMI runtime that the
interface can be used for remote invocations.

Given such a component with well-known interfaces, we are interested in providing, say,
a feature like client side caching for improved performance. Moreover, we expect this feature
to be supplemented transparently to the client code shown here. Our aim will be to determine
the limitations in Aspect]‘s expressiveness in handling issues that are unique to
implementations represented by this example. We will also be interested in improving
Aspect]’s vocabulary to deal with these discrepancies.

3. INADEQUACY OF Aspect] JOIN POINT MODEL

Consider the case where the client wishes to provide caching responsibilities to OutStream
object. For this, the caching strategy must coordinate buffer accesses among OutStream
methods on the client side. For instance, many write operations on OQutStream may update
the local cache before requesting a close on the stream. However, new responsibilities of
close include flushing the cache contents before actually closing the stream. Similarly when
the local cache is full, invoking a write operation must ensure that the buffer is synced to the
server before further caching.

15

3.1 Modeling caching concern using around advice constructs
As a first approximation, we try to encapsulate the caching concern as an aspect with unique
around advice matching each method of the QutStream interface.

aspect CacheOutStream {
byte [Jcache = new byte][...];
int curOffset = 0;

int around(OutStream out, byte[] data):
(target(out) && call(int write(..)) && args(data) && !within(CacheOutStream)) {
if (cache does not have room for new data) {
out.write(cache, curOffset);
curOffset = 0;

}

// In any case, append ‘data’ to cache and update ‘curOffset’
copyAndUpdateOffset(data);

/l return # bytes actually written

return ...

}

int around(OutStream out, byte data):
(target(out) && call(int write(..)) && args(data) && !within (CacheOutStream)) {
//similar to the version given above

}

void around(OutStream out):
(target(out) && call(void close()) && !within (CacheOutStream)) {
out.flush(); //if there is data in cache — need to flush it
out.close();

}

void around(OutStream out):
(target(out) && call(void flush()) && !within (CacheOutStream)) {
if (curOffset > 0) { //if there is data in cache — need to flush it
out.write(cache);
out.flush();

}
}
}

It is evident from this example that specifying proper pointcuts poses a non trivial
challenge. We should also be careful to avoid recursion in advice execution. In addition, we
should take special care in declaring the pointcut to specifically avoid matching
OutStream.write() calls made within the aspect declaration.

We can also infer from this example that when it is necessary to impart additional
behavior for an underlying module, all or a large number of elements belonging to that
module might require enhancement. When methods of an interface demand coordinated
behavior, advising individual methods with unique responsibilities becomes tedious. Even
when such advices are provided, program readability or comprehension may get affected
because it requires some effort for one to associate an advice with a method.

16

A decorator design pattern [4] represents an alternate solution in such contexts. A
decorator provides additional behavior around an existing implementation by implementing
the same interface(s) as the target object. So it conforms to the interface layout expected by
the client.

3.2 Modeling caching concern using decorator and around advice constructs

In most of the cases, decorator can be created by advicing around join points that generate
objects or interface references. For example, the following around advice intercepts requests
to create a new instance of RMI component and decorates the fresh object with a wrapper
RemoteServiceDecorator. This wrapper object maintains reference to the original remote
object. The decorator decides when certain calls need delegation and appropriately routes call
to the remote object.

aspect CachingOutStreamDecorator {

Remote around() : call(public static Remote java.rmi.Naming.lookup(..)) {
Remote r = proceed();
Remote remoteDecorator = new RemoteServiceDecorator (r):
return remoteDecorator;

We can set up similar advice around object creation joinpoints that use the ‘new’
operator. These two joinpoints (a factory method call and constructor call) represent
important junctures in program execution where new object or interface references are either
generated or transferred. With this arrangement, the aspect CachingOutStreamDecorator
trivially captures decorator creation concern. Actual caching concern is implemented by the
RemoteServiceDecorator.

However, a careful analysis of this solution uncovers a serious problem. In the current
example, the client can freely downcast or crosscast one reference to the other among
InStream, OQutStream or Remote interface types. Since the around advice wraps remote
object reference with a decorator object, the client obtains a RemoteServiceDecorator
reference instead of remote object reference. This implies that this decorator should
implement all interfaces that the remote component exposes. Otherwise, subsequent type cast
to some expected remote interface in the client code would throw runtime exception. In our
example, RemoteServiceDecorator, therefore, should implement a trivial version of
InStream that simply forwards calls to remote object along with an implementation of
OutStream that actually encapsulates the caching concern.

Expecting clients to provide trivial implementation for interfaces of no interest to the
application is not only counter intuitive but also inefficient. Given the simplicity of the
problem at hand, we should be able to provide a simple and efficient solution.

17

3.3 Type cast as a major join point

In our RMI example, the streamDataln and streamDataOut methods (of the Consumer
class) are designed to work with one interface type, InStream and QutStream respectively.
We wish to decorate only the OutStream interface, perhaps only inside streamDataOut
method. However, streamDataln and streamDataOut methods obtain reference to a sub
type (InStream or OutStream) by down casting a reference variable of the super type
(Remote). Because the remote object in our example implements both InStream and
OutStream, a cross cast from InStream to OutStream is a perfectly valid operation.

Type casts of these two kinds are generally employed in traversing down and across type
hierarchies. It is a common technique used in languages such as Java that lack support for
templates or generic types. Even languages that support template types provide for down cast
or cross cast. C++, for instance, provides three different flavors of type cast expressions. We
can view these expressions as events that generate new information from the currently
available one. Therefore they convey important purpose in program’s execution.

Aspect] however does not treat down casting and cross casting to be interesting join
points in a program’s behavior. Thus, in Aspect], there is no point cut expression that can
pick out these two constructs for further advice. This also means that there is no way in
Aspect] to create efficient and minimal decorator per interface if the program chooses
“reference creation by down casting” pattern as illustrated in our example.

4. A PROPOSAL FOR NEW JOINPOINT

In this section, we give some salient features of a “reference generation with down (or cross)
cast” join point and show its typical usage within Aspect]. We term this join point as a
reftrans join point. It is a point in the program execution where

— A super type reference is down cast to a sub type
— Some interface or object reference is cross cast to another type

The above definition considers only reference variables as the source (i.e., right hand
side (RHS)) of type casting. The two other kinds of expressions that can yield an interface or
object reference are a method call or new operator. Since Aspect] supports them directly,
there is no necessity to treat them special.

Here is a pointcut declaration that can pick out reftrans joinpoints. We assume that the
OutStreamDecorator class provides caching support for the QutStream clients.

aspect RefTransDecorator {
pointcut OutStreamFromRemote(Remote r) : args(r) && reftrans((OutStream) r),

OutStream around(Remote remObj) : OutStreamFromRemote(remObj) {
OutStreamDecorator outDecorator = new OutStreamDecorator((OutStream) remObj);
return outDecorator;

}

18

The emphasized part of pointcut declaration represents support for picking out a type
cast from super type (Remote) to sub type (OutStream). The declaration contains two parts:
an args declarator from the Aspect] vocabulary combined with reftrans. The args
declaration indicates source type of the cast expression. The reftrans pointcut specifies the
argument picked out by args and the target type of cast expression. In this manner, the
complete context for type casting is inferred. When a join point matches this declaration,
Aspect] picks up the actual argument at that join point and makes it available at the advice.
When the RefTransDecorator aspect (listed above) is applied to our example code, the
statement

OutStream out = (OutStream) r;

in streamDataOut method of Consumer class matches the OutStreamFromRemote point
cut. The remObj parameter of the around advice is bound to reference r from the type
casting statement. The advice body passes this reference to the OutStreamDecorator
constructor.

This simple example illustrates combining the reftrans join point with an around advice
to create a wrapper for spontaneously created interface references. It provides a simple yet
flexible alternate to writing many after and before advices for individual members of an
interface. It gives developers more expressive power at a little added cost.

S. APROTOTYPE IMPLEMENTATION WITHIN AspectJ

We have modified the Aspect] compiler [2] to support the proposed reftrans joinpoint. The
support for this feature meshes well with existing syntax and semantics of Aspect]. A
primitive pointcut representing reftrans is the only addition to the existing repertoire.
Normal Aspect] point cut declaration (PCD) can combine this pointcut with other pointcuts
in the usual manner.

6. CONCLUSION AND FUTURE DIRECTIONS

There are two major contributions in this paper. First, we have illustrated that in some cases
generating a decorator for an object gives more flexibility than developing separate before
and after advice for individual methods of an object. Second, we demonstrated the necessity
to capture particular kinds of type cast expressions as important points in program execution.
We showed how, under certain circumstances, the absence of a reftrans like join point in
Aspect] causes inconvenience in creating decorator objects. In addition to these, we have
provided a proof of concept implementation of this facility within Aspect].

The current implementation does not handle certain special cases. For instance, in the
following Java statement

InStream in = (InStream) (OutStream) r;
type coercion is repeatedly applied to obtain same result as in the following pair of
statements:

OutStream out = (OutStream) r; InStream in = (InStream) out;

19

The current implementation considers only those statements that down cast or cross cast a
reference variable. I plan to study cases where repeated type coercion is meaningful and
extend the implementation accordingly.

Java currently does not support operator overloading. In contrast, C++ allows operator
overloading. In C++, one can overload various type coercion operators for a user-defined
type. The translator for C++ wires up a call to the appropriate overloaded coercion method. I
plan to study the implication operator overloading on the design of join points in general and
to reftrans in specific. In addition, the proposed generics support for Java [6] will
undoubtedly reduce the necessity of type coercion. On the other hand, for dynamic type
discovery (as shown in the RMI example in this paper), type casting will continue to be an
important language element. I plan to study the effect of generics on the join point model of
Aspect].

Elsewhere researchers have discussed the necessity of more expressive and precise join
points for current generation of AOP languages [7]. This paper has suggested a “low-level”
join point that works only at the code level. Aspect] is also a language with low-level support
for specifying and composing crosscutting code into a core system. There is certainly a need
for a means to separate crosscutting concerns across the lifecycle [8]. We have been working
on a project that attempts to reverse engineer an Aspect] based software system into an
extended UML model and a collection of OCL constraints [9].

7. ACKNOWLEDGEMENTS

The anonymous reviewers of the initially submitted version of this paper gave good advice on
the content, organization and flow of material. Professor B.D. Chaudhari helped shaping the
ideas in the initial stages and provided comments on the earlier drafts of this paper.

REFERENCES

Aspect] Programming Guide. http://www.eclipse.org/aspectj/

Aspect] 1.0.6 source code http://www.eclipse.org/aspect;j/

Gregor Kiczales, et al., Aspect-Oriented Programming. Proceedings of the European Conference

on Object-Oriented Programming (ECOOQOP), June 1997.

4. E.Gamma, et al., Design Patterns: Elements of Reusable Object-Oriented Software. Addison-
Wesley Reading, MA: 1995

5. Jan Hannemann and Gregor Kiczales. Design Pattern Implementation in Java and AspectJ.
OOPSLA - 2002.

6. JSR-000014, Adding Generics to the Java™ Programming Language.
http://www.jcp.org/aboutJava/communityprocess/review/jsr014/

7. Gregor Kiczales. The Fun Has Just Begun. Keynote Address, AOSD - 2003.
(http://aosd.net/archive/2003/kiczales-aosd-2003.ppt)

8. Siobhan Clarke and Robert J. Walker. Towards a Standard Design Language for AOSD, AOSD -
2002.

9. Kleppe and J. Warmer. The Object Constraint languag, Precise modeling with UML. Addison

Wesley Professional.

W= e

20

Mob: a Scripting Language for
Programming Web Agents

Hervé Paulino!, Lufs Lopes?, and Fernando Silva?

! Department of Informatics. Faculty of Sciences and Technology. New University of Lisbon.
email: herve@di.fct.unl.pt
2 Department of Computer Science. Faculty of Science. University of Oporto.
email: {Iblopes,fds}@ncc.up.pt

Abstract. Mobile agents are the latest software technology to program flexible and efficient dis-
tributed applications, since they are independent programs that travel over the network, focusing
on local communication, rather than the usual communication paradigms. Most current systems im-
plement semantics that are hard if not impossible to prove correct. In this paper we present MOB,
a scripting language for web agents encoded on top of a process calculus and with provably sound
semantics that allows interaction with programs written in many programming languages.

Keywords: mobile agents, Internet computing, distributed systems, process calculus

1 Introduction and Motivation

The introduction of the m-calculus [7,13] and other related process calculi, in the early
nineties, as a model for concurrent distributed systems, provided the theoretical frame-
work upon which researchers could build solid specifications. The main abstractions in
these calculi are processes, representing arbitrary computations and channels, representing
places where processes synchronize and exchange data. Recent extensions of these mod-
els introduced another fundamental abstraction, sites, which denote places in a network
where processes run. These extensions allowed, for the first time, the modeling of complex
distributed systems with mobile resources [2, 6, 10,12, 17].

The mobile resources supported by these recent extensions are a powerful abstraction
for the development of mobile agent frameworks. Mobile agents add to regular agents the
capability of traveling to multiple locations in the network, by saving their state and restor-
ing it in the new host. As they travel, they work on behalf of the user, such as collecting
information or delivering requests. This mobility greatly enhances the productivity of each
computing element in the network and creates a powerful computing environment, focus-
ing on local interaction. Thus, our mobile agents are independent programs that travel
over the network, focusing in local communication, rather than the usual communication
paradigms (e.g., client-server).

In this paper we present a scripting language, MOB, for programming mobile agents in
distributed environments. The semantics of the language is based on the DiTyCO (Dis-
tributed TYped Concurrent Objects) process calculus [17]. The run-time for the language
is provided by the current implementations of the DiTyCO [11]. In particular, we rely on
it for interprocess communication and code migration over the network.

21

The development of mobile agents requires a software infrastructure that provides migra-
tion and communication facilities, among others. Current frameworks that support mobile
agents are mostly implemented by defining a set of Java classes that must then be extended
to implement a given agent behavior, such as Aglets [3], Mole [8], or Klava [9]. MOB, on the
other hand, is a simple scripting language that allows the definition of mobile agents and
their interaction, an approach similar to D’Agents [15]. However, MOB applications may
interact with external services programmed in other languages than MoOB. Furthermore,
the language is compiled into a process-calculus based kernel-language, and its semantics
can be formally proved correct relative to the base calculus. Therefore, in this sense, MOB
features some language security. Correctness or type-safety results are difficult to produce
for most of the current systems. For example, only a subset of Java programs can be proved
to be correct and type-safe [14].

The interaction between MOB applications and external services, provided by MOB en-
abled hosts, can be programmed in many languages such as Java, C, TCL or Perl. The
philosophy is similar to that used in the MIME type recognition. The runtime engine
matches a file type against a set of internally known types and either launches the corre-
sponding application or simply executes the code.

The remainder of the paper is structured as follows: section 2 describes the target lan-
guage, TyCO, in which MOB is encoded; section 3 describes the MOB programming lan-
guage; section 4 provides some MOB programming examples; section 5 describes the com-
pilation of a MOB program in TyCO; and finally section 6 describes the on-going research
and future work.

2 The Target Language - DiTyCO

Our target language is based on a process calculus, in the line of the asynchronous -
calculus, named DiTyCO [17]. The main abstractions of the (centralized) calculus are
channels (communication endpoints), objects (collections of methods that wait for incoming
messages at channels) and asynchronous messages (method invocations targeted to chan-
nels). It is also possible to define process definitions, parameterized on a set of variables,
that may be instantiated anywhere in the program (this allows for unbounded behavior).
The abstract syntax for the core language is the following:

P == 0 terminated process
| P|P concurrent composition
| new z P new local variable
| 2l[7] asynchronous message
| 2?{l1(Z1) = P1,...,1n(Tn) = P} object
| def X1 (Z1) =P1 ... Xn(Zn) = Py in P definition
| X[9] instantiation
| if v then P else Q conditional execution

where x represents a variable, v a value (a variable or a channel), X a process definition
and, [a method label.

From an operational point of view, centralized DiTyCO computations evolve for two rea-
sons: object-message reduction (i.e., the execution of a method in an object in response to
the reception of a message) and, instantiation of definitions. These actions can be described
more precisely as follows:

w2 U@) =P,...} | 2N[5] — {5/i}P

22

The message z![[0] targeted to channel z, invokes the method [in an object z7{... (%) =
P, ...} at channel z. The result is the body of the method, P, running with the parameters
Z substituted by the arguments ©. For instantiations we have something very similar.

def ... X(#)=P ... in X[§] | Q > def ... X(@)=P ... in {§/3}P | Q

A new instance X [7] of the definition X is created. The result is a new process with the
same body, P, as the definition but with the parameters Z substituted for the arguments
¥ given in the instantiation.

This kernel language constitutes a kind of assembly language upon which higher level
programming abstractions can be implemented as derived constructs.

The full, distributed, calculus grows from the centralized version by adding a new layer
of abstraction representing a network of locations, identified by r, s, where processes run.

N = 0 terminated network

| N | N concurrent composition
| new t@s N new local variable
| def D@s in N definition

| s[P] location with running process

This additional layer does not however introduce new reduction operations in the calcu-
lus. In fact, reduction can only be performed locally at locations, either by communications
or instantiations as described above.

As can be observed from the above syntax, all resources are lexically bound to the
locations they are created on. Thus, a message or object located at some channel x@s must
first move to location s to in order to reduce. Similarly, an instantiation of a definition X @Qs
must move to location s in order to reduce.

To preserve the lexical bindings of resources, every time one moves to another location,
all its free identifiers (references for resources it uses) are translated on-the-fly. This is
represented by a transformation o, meaning “translation of identifiers when moving from
location r to location s”.

The lexical scope on resources together with the requirement of local reduction induce
the following rules for resource migration:

Message Migration rlx@sl[v]] — s[zN[Vors]]
Object Migration rlzQs? M| — s[z?Moy]
Remote Instantiation def X@Qs(Z) = P in r[XQs[0]] — def XQ@Qs(Z) = P in s[X[0o,s]]

One final word is required on: (a) lexical scope, and; (b) local reduction, since they are
design goals for the language. Lexical scope is an important property since it provides the
compiler and run-time system with important information on the origin of a resource. This
is important namely for safety reasons (e.g., does the resource come from a trusted location
?) and for implementation reasons (e.g., where do we allocate the data-structures for it 7
Do they move around in the network 7).

Local reduction is also of the utmost importance. Client-server interactions for example
occur within a location, with much lower overheads than in the standard Client-Server
model where interactions required maintaining remote sessions open and the exchange of
many messages drastically reducing the available bandwidth of a network. In the novel
paradigms for Web Computing [1], client applications move to server locations where they

23

interact with a local session. They return to their original location after the local session
is complete.

The following programming example illustrates the use of these primitives and derived
constructs. We use the (let/in) derived constructs, defined in [16], for synchronous method
calls.

def Cell (self, value) =
self 7 {
read (replyto) = replyto![value] | Cell [self, value]
write (newValue) : Cell [self, newValue]

}
in def

IntegerCell(self, value) = Cell [self, value]
StringCell(self, value) = Cell [self, value]

in
new c IntegerCell[c, 4] | let i = clread[] in iolprinti[i]

The general Cell template stores a value and features read and write methods to retrieve
or change its contents. Type specific templates, such as IntegerCell, based on the general
Cell template will be used further on on the paper, to encode values in DiTyCO. In this
example, an IntegerCell is created to store value 4 and the read method is used to retrieve
this value in order to print it to the standard output. Notice that Cell is polymorphic on
value.

3 The Source Language - Mob

The MoOB programming language is a simple, easy-to-use, scripting language. Its main
abstractions are mobile agents that can be grouped in communicators allowing hierarchies
to be formed, group communication and synchronization. The abstract syntax for the kernel
of the language is as follows:

Program ::= AgentDef | AgentDef Program | InstructionList | InstructionList Program
AgentDef ::= agent id { AttributeDef Init Do Iterators}
AttributeDef ::= [] | id ; AttributeDef
Init ::= init CodeBlock
Do ::= do CodeBlock

Iterators ::= [] | next CodeBlock previous CodeBlock
CodeBlock ::= Instruction | { InstructionList }

InstructionList ::= [] | Instruction ; InstructionList | Instruction \n InstructionList
Instruction ::= NewComm | NewAgent | Statement | id = Command | Command
NewComm ::= id = communicator StringLiteral | communicator StringLiteral
NewAgent ::= id = agentof id Attributes | agentof id Attributes

The language defines a set of reserved words for constructs and built-in attributes, here
written in boldface.

3.1 The Agent Abstraction

The development of a MOB mobile agent implies two stages: the first (init section) consists
on a setup that runs prior to the agent’s actual execution. Usually it is used to assign
initial values to the agent’s attributes. The second (do section) defines the agent’s behavior
throughout its journey.

24

A MoB agent features several built-in attributes: email: email address of the agent’s
owner; owner: identification of the agent’s owner; home: home hosts of the agent; itinerary:
the agent’s itinerary; strategy: definition of a strategy of how the itinerary must be traveled;
and sindex: the index in the itinerary of the current host. Attributes owner, email and
home are read-only, while all the others can be altered during the agent’s execution.

Although MOB features several strategies for traversing the itinerary, namely: list, tree,
circular and scatterjoin, it allows the programmer to define new ones. An agent’s itinerary
is seen as an object that can be managed through two iterators next and previous.

Beside the built-in attributes, an agent may feature as many attributes as the program-
mer wishes. Their usefulness is to hold values to be retrieved when the agent migrates back
home. The following example presents the skeleton of a MOB agent definition, Airline, that
includes a new user-defined attribute, price.

agent Airline {

price;
init { price =0 }
do { // Implementation of the agent’s actions/behavior }

}

Now that an agent behavior is defined an undetermined number of agents can be created.
The following example creates an agent named airline owned by johndoe and with home
hosts hostl and host2. One can also launch several agents at once using the -n flag. airlineList
will contain the returned list of agent identifiers Notice that the attribute initialization
supplied in the agent constructor will not override the ones in the init section.

airline = agentof Airline -u “johndoe” -h “hostl host2"”
airlineList = agentof Airline -n 10 -u “johndoe” -h “hostl host2"

Each agent must be associated to an owner, defined in an entry of the Unix-like file named
passwd. An entry of such a file must contain the user’s login, name, password and group
membership. Following the Unix policy for user management, users may belong to groups
defined in the groups file, sharing their access permissions. Each MOB enabled host must
own both files in order to authenticate each incoming agent. As featured in FTP servers,
an agent can present itself as anonymous for limited access to local resources.

3.2 The Communicator Abstraction

Communicators are conceptually equivalent to MPI communicators [4] and allow group
communication and synchronization. As presented in the grammar, the communicator
construct only requires the list of agents (may be empty) that will start the communicator.
Other agents may join later.

3.3 Instructions

MoB features a rather small but fully functional set of instructions. Most of the statements
included in MOB are common in all scripting languages (for, while, if, foreach and switch),
the only difference lies in the try instruction, a little different from the usual error catching
instructions found in, for instance, TCL. Its syntax is similar to the try/catch exception
handler instruction of Java, allowing specific handling of different types of local run-time
system exceptions. MOB provides instructions to define a mobile agent’s behavior and its
interaction with other agents and external services. These commands can be grouped in
the following main sets:

25

agent manipulation: clone.

mobility: go.

check-pointing: savestate and getstate.

inter-agent communication: asynchronous (send, recv, recvfrom), synchronous (bsend,

brecv, brecvfrom), communicator-wide (csend) and multicast (msend). There are vari-

ants of these functions for use with the HTTP and SMTP protocols (e.g., httpcsend;
smtprecv). These variants are useful to bypass firewalls that only allow connections to
ports of regular services.

5. managing communicators: cjoin and cleave.

6. execution of external commands: exec. This functionality allows the execution of com-
mands external to the MOB language. The MOB system features a set of service
providers that enable communication through known protocols, such as HT'TP, SMTP,
SQL and FTP. The interaction with these providers is possible through exec’s protocol
flag.

7. input/output: MOB’s input/output instructions are implemented as syntactic sugar for

the exec instruction. open filename could also be written as exec -p fs open filename.

==

4 Programming with Mob

Now that the language syntax is presented, this section introduces simple MOB program-
ming examples.

We intend to develop two agents: one, airline, capable of querying each host of its itinerary
for the price of one airline ticket from Lisbon to Las Vegas; and a second, hotel, capable of
querying the hosts of its itinerary for a single’s room in a Las Vegas hotel.

In the airline example, the init section will set the itinerary as the first ten results of
a query to a search engine, and price as zero. The actual program starts with a query
to a hypothetical ticketsDB database for the price of the tickets. Note that the syntax of
the query will be defined by the implementation of the ticketsDB server and not by the
language. The execution of exec is protected by a try instruction. If no exception is caught
the program continues and newprice and price are compared, otherwise nothing is done.
Once the end of the program is reached the agent migrates to the next host in its itinerary
(default strategy) and restarts the execution of the program. When all of the itinerary has
been processed, the agent migrates to one of the hosts defined in the home attribute.

In the hotel example, to enhance the efficiency the search is divided among several agents,
all members of a ghotel communicator. This provides group communication to spawn new
cheaper prices among the agents.

In order to avoid a needless search of an hotel if there are no available airline tickets to
Las Vegas, the airline agent can interact with the ghotel communicator through the csend
command, and inform all the agents from ghotel that they can finish their execution and
return home.

agent Airline {
price // declaration of the price attribute
init {
itinerary = exec -p http -n 10 www.search_engine.com “airline company” // query engine for itinerary
price = 0 // initialize price attribute

26

do {
try { // protect database access with a exception handling mechanism
newprice = exec -p sql ticketsDB ““price” “Lisbon” “Las Vegas'" // query database for ticket price
if (newprice < price || price == 0)
price = newprice
}

catch // exception caught
write log “Could not access database in " + hostname // cannot access database

if (sindex+1 == [lsize itinerary] && price == 0) // is the search over and no ticket is found?
csend ghotel “stop” // no ticket found, send “stop” message to ghotel communicator

}
}

airline = agentof Airline -u “johndoe” -h “hostl host2" // create a new agent

In this second example, the exec to the search engine is now done outside the agent’s
definition. The result is scattered among the 10 agents launched. Notice that each agent
joins the ghotel communicator in the init section and that all the agents terminate their
execution and return home if they receive the stop message from the airline agent. Also
notice that, every time a cheaper price is found it is spawned to the communicator.

agent Hotel {
price // declaration of the price attribute
init {
strategy = “list” // definition of the agent's strategy
cjoin ghotel // join the ghotel communicator

do {
if ([recvfrom airline] == “stop”) // did the airline agent terminate without finding any tickets?
go -h home// search is over, migrate home
try { // protect database access with a exception handling mechanism
newprice = exec -p sql hotelDB “price” “single room” // query database for hotel room price
if (price < newprice) {
price = newprice
csend ghotel price // spawn new price to the communicator
}
newprice = recv // probe and receive (if any) a new price from the communicator
if (price < newprice)
price = newprice

catch // exception caught
exec -p smtp email “Could not access database in " + hostname // could not access database

}
}

ghotel = communicator// create communicator
list = exec -p http -n 50 www.search_engine.com “hotel Las Vegas” // query search engine
for (i = 0; i < 50; i = i+10)

agentof Hotel -i [Irange list i 10] // create new agents with a sublist of list as the itinerary

5 The Compilation Scheme

In this section we briefly sketch how a MOB program can be encoded into the DiTyCO
language and run-time. Using the airline example, the agent is encoded into a AirlineAgent
extension of the general agent definition Agent. This extension overrides the init and do
methods and introduces a new attribute, price.

The following code illustrates the encoding of the airline agent into DiTyyCO. The full
encoding of the MoOB language into DiTyCO may be found in [5].

27

def AirlineAgent(self, name, ..., homes, ..., price) =
self 7 {

init() =
{- Encoding of the init section. -}
AirlineAgent[self, name, ..., homes, ..., price] |
selfldo]]

do() =
{- Encoding of the do section. -}
AirlineAgent[self, name, ..., homes, ..., price]

{- all the methods inherited from Agent -}

}

in

The instantiation of the Airline definition in MOB corresponds of an instantiation of the
AirlineAgent definition in DiTyCO. Continuing with the airline example, the following agent
construct

airline = agentof Airline -u “johndoe” -h “hostl host2"

is encoded in the following DiTyCO code.

(1) new varl0 StartList[varl0] |
new varll AddToList[varll, “host2”, varlQ] |
new varl AddToList[varl, “hostl”, varll] |

(2) new airlineUser StringCell[airlineUser, “johndoe”] |
new airlineHomes ListCell[airlineHomes, varl] |

new airlineUserDefined0 IntegerCell[airlineUserDefined0, 0] |
(3) new airline AirlineAgentlairline, airlineUser, ..., airlineHomes, ..., airlineUserDefined0] |
airlinelinit[]

The agentof encoding of the airline agent is divided in three sections: the first (1) is
dedicated to constructing all the lists required by the AirlineAgent definition (e.g., itinerary,
homes, lists for managing incoming and outgoing messages, . ..); the second (2) for building
Cell objects for each user accessible attributes; and finally (3) creating the airline object
and starting its execution, by invoking its init method.

After this static encoding into DiTyCO the MOB program may be compiled and executed
using the DiTyCO run-time engine.

6 Conclusions and Future Work

MoOB is currently under implementation. All the features, excluding external services and
exception mechanisms, are fully encoded in DiTyyCO. Future work will focus on the encod-
ing and development of external services, such as, recognition/execution of programs in
several high-level languages, building itineraries through external search engines, database
communication, and network communication through known protocols, such as SMTP,
FTP, or HTTP.

Once the first prototype is ready, case studies will be programmed to provide a base for
discussion of the language’s strong and weak points. Work will also be done in security
(agents and hosts), and in providing an integrated tool for programming, debugging and
monitoring of the agents.

28

Acknowledgments. This work is partially supported by FCT’s project MIMO (contract
POSI/CHS/39789/2001) and the CITI research center.

References

10.

11.

12.

13.

14.

15.

16.

17.

. Fuggetta A., Picco G. P.; and Vigna G. Understanding Code Mobility. IEEE Transactions on Software

Engineering, 24(5):342-361, May 1998.

Fournet C. and Gonthier G. et al. A Calculus of Mobile Agents. In International Conference on Concurrency
Theory (CONCUR’96), volume 1119 of LNCS, pages 406-421. Springer-Verlag, 1996.

Lange D. Programming Mobile Agents in Java. In WWCA 1997, pages 253-266, 1997.

MPI Forum. The MPI Message Passing Interface Standard. www-unix.mcs.anl.gov/mpi/, 1994.

Paulino H., Lopes L., and Silva F. Encoding and Compiling Mob in DiTyCO. To appear.

Vitek J. and Castagna G. Seal: A Framework for Secure Mobile Computations. In Workshop on Internet
Programming Languages, 1999.

Honda K. and Tokoro M. An Object Calculus for Asynchronous Communication. In Furopean Conference on
Object-Oriented Programming (ECOOP’91), volume 512 of LNCS, pages 141-162. Springer-Verlag, 1991.
Straber K., Baumann J., and Hohl F. Mole - A Java Based Mobile Agent System. In Miihlhduser M., editor,
Special Issues in Object Oriented Programming, pages 301-308, 1997.

Bettini L., De Nicola R., and Pugliese R. Klava: a Java Framework for Distributed and Mobile Applications.
Software - Practice and Ezperience, 32(14):1365-1394, 2002.

Cardelli L. and Gordon A. Mobile Ambients. In Foundations of Software Science and Computation Structures
(FoSSaCS’98), volume 1378 of LNCS, pages 140-155. Springer-Verlag, 1998.

Lopes L., Silva F., Figueira A., and Vasconcelos V. DiTyCO: Implementing Mobile Objects in the Realm of
Process Calculi. In 5 Mobile Object Systems Workshop (M0S’99), June 1999.

Abadi M. and Gordon A. A Calculus for Cryptographic Protocols: the Spi-Calculus. In Computer and
Communications Security (CCS’97), pages 36-47. The ACM Press, April 1997.

Milner R., Parrow J., and Walker D. A Calculus of Mobile Processes (parts I and II). Information and
Computation, 100(1):1-77, 1992.

Drossopoulou S., Eisenbach s., and Khurshid S. Is the java type system sound? Theory and Practice of Object
Systems, 5(1):3-24, 1999.

Gray R. S. Agent Tcl: A transportable agent system. In Proceedings of the CIKM Workshop on Intelligent
Information Agents, Fourth International Conference on Information and Knowledge Management (CIKM 95),
1995.

Vasconcelos V. TyCO Gently. DI/FCUL TR 01-4, Departamento de Informética da Faculdade de Ciéncias
de Lisboa, July 2001.

Vasconcelos V., Lopes L., and Silva F. Distribution and Mobility with Lexical Scoping in Process Calculi. In
Workshop on High Level Programming Languages (HLCL’98), volume 16(3) of ENTCS, pages 19-34. Elsevier
Science, 1998.

29

A Process-based
Framework for Automatic Categorization of Web Documents

Sari R. ElDadah Nidal Al Said
Department of Information Systems School of Electrical and Computer Engineering
Arab Academy For Banking and Financial Sciences National Technical University of Athens
Amman, Jordan Athens, Greece
Sdadah@students.aabfs.org nidal@softlab.ece.ntua.gr

Abstract

This paper presents the design of a
Framework for the development of
Automatic Text Categorization (ATC)
applications of Web Documents. The
process, composed of 4 activities, is
conducted from the various ATC methods
developed so far, and described based on
Petri Nets process description language. The
paper concludes with notes about ATC
process.

Keywords: Frameworks, Collaboration,
Slotg, Tabs, Knobs, Dials, Petri Nets,
Agents, Automatic Text Categorization,
Collaborative Recommendation, Information
Retrieval, Neural Networks, Data Mining.

1. Introduction

Automatic Text Categorization (ATC) is a
field of search that has received increasing
attention in the last few years, due to the
enormous amount of information that has
become available on the Intemnet. As the
Internet gains more popularity for being a
large source of information, huge amounts of
information are either added or viewed every
minute. However, the lack of having an
effective means to organize information for

easy and fast search threatens the essence of

30

the Internet, because regardless of how large
and rich a set of information is, it will not be
optimally useful if its contents is hard to
explore.
Librarians have been arduously
performing the task of categorization for
[1], the

categorization task to manual procedures

centuries but assigning
would not be an effective solution for an
information source like the Internet, and
therefore, the idea of automating the
categorization task has emerged.

Many ATC methods and algorithms have
been developed to automate the
categorization process in different levels so
far. Information Retrieval [3,7,15], Neural
Networks [12,13,24], Knowledge-based
Approaches [25], Ontology Classification
[1,22,23], and Data Mining [16], just to
mention a few, are examples of the fields
from where ATC methods

In all

have been

developed. these methods, the

categorization task was performed with

different levels of automation, ranging from
just classifying the web documents into a
predefined set of categories, to completely
automating the process of exploring the
categories, finding descriptions for each
category, and relating each web document to
one or more categories based on its
relevance to it.

Another major aspect of categorization is
the degree of quality, which is not only
depending on the efficiency of the method
used, but also varies from one user to
another according to his/her interests and
background knowledge. A car stuff web site
may be classified in the category of
environment pollution from the viewpoint of
a green-peace worker, for example, while
web document might be

the same

categorized as “Sport Cars Group” by

another user who is a

a@’ Wae
™

|

WwWw

o NG

|

o]

Q)

Figure 1. The aimed vision of the Internet

31

fan of sport cars. This explains how complex
the categorization process of web documents
is, and exposes a challenge to the research
society in order to achieve the perfect view
of the Internet, individually categorized and
classified for each user, as depicted in
Figurel.

Accomplishing such personalized
categorization has many significant impacts
and benefits on the world of Internet; i) An
effective search through the web reduces the
time consumed and provides more relevant
search results, ii) A recommendation service
can be provided through the well categorized
web documents, with the advantage of
recommending each wuser according to
his/her view of interests, iii) and This can be
further exploited in the E-Business activities,
so that when a user searches for a mobile to
buy ,for example, an effective search would
provide him/her with the best choices
available on the web and also recommend
according to the user’s view of taste.

The next section explains the proposed
process for building an efficient ATC, which
has the advantages of providing a
personalized categorization for each Internet

user.

2. The ATC Process

Although there are many methods
developed for ATC, the steps followed in
each method were algorithm-driven, i.e.,
each method follows a sequence of steps
generated by the algorithm used in the
method (e.g., Information Retrieval). ATC
methods also vary in the degree of
automation of the categorization process.
Some ATCs aim to develop a classification
scheme, which can be used to categorize
documents automatically, using a manual or
supervised list of categories [2, 15]. Other
methods go beyond this task and automate
the exploration of categories [11].

Previous work and research
accomplished in the field so far, has four
major steps that are conducted and suggested
to build an effective ATC. These steps are
identified as separate activities in the
proposed framework, each one can be seen
as a layer that has an interface, predefined
input, predefined output, and is independent
in the work it performs.

The

proposed framework is also

designed to possess an object-oriented
nature. Each activity can be assigned to a
separate object. Two or more activities can
also be done at the same object according to
the with

designed components, largely

predefined cooperation patterns between

32

them. This allows components to be
replaceable by others that conform to the
slots, tabs, knobs, and dials the framework
exposes to users who want to adapt the

framework to their own context [29].

<<framework>>
ATC
Lo ‘ ‘*\\\ LT ‘*~\\
[Identify) ! Find category)

~ cateoariee 4 N decerintion ’
- -

\\\\\\

- -7 ‘—‘\\ ~. L
/ /
! Classify) !

N docnments s N
~ - \\

: N
Personalize)
clacification s

Figure 2. Modeling ATC Framework

In Figure 2, the ATC framework is
modeled as a package, which contains four
collaborations; each one corresponds to an
ATC step. A collaboration is a society of
classes, interfaces, and other elements that
work together to provide some cooperative
behavior that’s bigger than the sum of all its
parts [29]. A collaboration is also the
specification of how an operation is realized
by a set of classifiers and associations
playing specific roles used in a specific way.
2.1 Identifying significant categories
The first step of the ATC is to identify what
categories the web documents will be
classified into. It is important to determine
exactly all the categories, considering almost

all the grouping probabilities. This activity is

very complicated to automate, as the task of
category identification implies the know-of-
semantics for categories [28]. However,
preserving this task to be manually
performed requires huge and expensive
efforts, due to the large amount of web
documents, which grows and changes
rapidly.

2.2 Finding the best description for

each category

In order to identify the categories, each
category must have a clear and exact
description that differs one category from
another. Finding expressive description for
every category is a quality measure [3].
Identifying categories and finding their
description have been mixed and considered
one process in many methods [7, 15]. New
trends talk about ontology characteristics of
the web documents, where categories are
predefined first, and finding their
descriptions then follows by experimenting a
test sample of web documents [1, 28]. A
conclusion from those two trends shows that
working in the two activities in parallel is
possible.

2.3 Classifying the documents into

the identified categories

This task relates a web document to one or
more category. The foundation of relating

the web document here comes from the basic

33

features and description of the document
(i.e., its content). It is important to explore
all contributions that a

the possible

document may have in the different

categories, so they can be seen by different

levels (according to the a contribution
measure) in all possible categories.

2.4 Personalizing the categories, web
documents’ classification, and
their relevant descriptions accor-
ding to the user preference

Modifying the categorization measures with

respect to the user’s preferences is a major

contribution for the categorization process.

Therefore, each user can search the web

according to his/her view, which makes

surfing web documents easier and more

Research has been done on

the

beneficial.

personalizing aspects of Internet,
including web site structure and recommen-
dation systems, and can be used to provide a
user with a personally categorized view of
the web. Collaborative recommendation is a
candidate method that can accomplish this
task.

In the following section, a model for the
four steps is provided using Petri Nets [26],

a standard process modeling techniques.

3. ATC Framework Concepts

The four-step process of ATC will be
modeled in the proposed framework as
activities through the use of standard process
modeling techniques. The steps of ATC

process are modeled according to [27].

. Find the Best
Identify Significant Description for
Categories (1) each Category (1)
1 1
Classifying the

Documents into the
Identified Categories (2)

1

O

A 4
Personalizing the
Categories (1)

Figure 3. A Petri net Model for the
Framework

The four steps are modeled as Activities,
which generate Artifacts, and are performed

by Actors. The first two activities may be

34

achieved in parallel, as discussed before, but
depend exclusively on their outputs. During
the execution to an activity, Fields of an
Artifact (output) can be updated by the
actor(s) assigned to the activity. Figure 3
illustrates the process description, in which
each activity is represented by a box with a
name and the number of tokens it requires.
Locations are represented by small circles.
The number of tokens in each location
determines the State of the system. The set
of activities are capable of being performed
either by human (through full handling or
some degree of supervision), or automati-
cally by Agents. Pre and post-conditions can
be assigned to each state as specifications on
artifact fields. In the case that these
execution constraints fail, an Exception is

raised [27].

4. Conclusions

In this paper, a framework for designing
Automatic Text Categorization of Web
Documents is suggested. An integrated
vision for a perfect ATC is proposed, with a
discussion of the major four steps that are
required to achieve this vision.

We believe that our work is a first
step towards defining a complete framework
for ATC. There are clearly many problems
research directions

and concerning the

design of an effective ATC. The proposed
step of the ATC process is claimed to be a
challenge, in addition to the concerns about
privacy of users’ data. However, proposing a
vision for ATC development clarifies that
the research can work for and shares an
ambition of acquiring a web that is highly

personalized for every user.

5. References

[1] 1. Frommholz, “Categorizing Web
Documents in Hierarchical Catalogues”,
Proceedings of the 23rd European Collo-
quium on Information Retrieval Research,
Darmstadt, DE, 2001.

[2] G. Attardi, A. Gull, F. Sebastiani,
“Automatic Web Categorization by Link and
Context Analysis”, Proceedings of THAI-99
Ist European Symposium on Telematics
Hypermedia and Artificial Intelligence, pp.
105-119, Varese, IT, 1999.

[3] W. Lam, M. E. Ruiz, P. Srinivasan,
“Automatic Text Categorization and Its
Applications to Text Retrieval”, IEEE
Transactions on Knowledge and Data
Engineering, vol. 11, pp. 865-879, 1999.

[4] W. Lam, K. Y. Lai, “A Meta-learning
Approach to Text Categorization”,
Proceedings of the 24™ Annual ACM SIGIR
Conference on Research and Development
in Information Retrieval, pp. 303-309,
Louisiana, USA, 2001.

[5] H. J. Oh, S. H. Myaeng, M. Lee, “A
Practical Hypertext Categorization Method
Using Links and Incrementally Available
Class Information”, Proceedings of the 23"
Annual International ~ACM SIGIR
Conference on Research and Development
of Information Retrieval, pp. 264-271,
Athens, Greece, 2000.

[6] N. Govert, M. Lalmas, N. Fuhr, “A
Probabilistic Description-Oriented Approach

35

for Categorizing Web Documents”, Procee-
dings of the eighth International Conference
on Information and Knowledge manage-
ment, Missouri, USA, 1999

[71 Y. Yang, C. G. Chute, “An Example-
Based Mapping Method for Text Categoriza-
tion and retrieval’, ACM Transactions on
Information Systems, vol. 12, issue 3, pp.
252-277.

[8] G. Attardi, “Categorization by Context”,
J.UCS: Journal of Universal Computer
Science, vol. 4, issue 9, pp. 719-736, 1998.
[9] O. R. Zaian, M. Antonie, “Classifying
Text Documents by Associating terms with

Text Categories”, Proceedings of the
thirteenth ~ Australian ~ Conference on
Database Technologies, pp-215-222,

Victoria, Australia, 2002.

[10] W. W. Cohen, Y. Singer, “Context-
sensitive Learning Methods for Text
Categorization”, CAN Transactions on
Information Systems, vol. 17, issue 2, April
1999.

[11] D. Boley, M. Gini, R. Gross, E. Han, K.
Hastings, G. Karypis, V. Kumar, B.
Mobasher, J. Moore, “Document
Categorization and Query Generation on the
World Wide Web Using WebACE”, Al
Review, vol. 13, issue 5-6, pp. 365-391,
1999.

[12] M. E. Ruiz, P. Srinivasan, “Hierarchical
Neural Networks for Text Categorization”,
Proceedings of SIGIR 22" ACM
International Conference on Research and
Development in Information Retrieval, NY,
USA, 1999

[13] M. E. Ruiz, P. Srinivasan, “Hierarchical
Text Categorization using Neural
Networks”, Information Retrieval, vol. 5,
issue 1, pp. 87-117, 2002

[14] F. Sebastiani, “Machine Learning in
Automated Text Categorization”, ACM
Computing Surveys (CSUR), vol. 34, issue
1, pp. 1-47,NY, USA, 2002

[15] C. C. Aggarwal, S. C. Gates, P. S. Yu,
“On the Merits of Building Categorization
Systems by Supervised Clustering”,

Proceedings of the fifth ACM SIGKODD
International Conference on Knowledge
Discovery and Data Mining, pp. 352-356,
California, USA, 1999

[16] D. Boley, M. Gini, R. Gross, E. Han, K.
Hastings, G. Karypis, V. Kumar, B.
Mobasher, J. Moore, ‘“Partitioning-based
Clustering for Web Document Categoriza-
tion”, Decision Support Systems, vol. 27,
issue 3, pp. 329-341, 1999

[17] E. D. Liddy, W. Paik, E. S. Yu, “Text
Categorization for Multiple Users Based on
Features From a Machine-readable Dictio-
nary”’, ACM Transaction on Information
Systems, vol. 12, issue 3, pp. 278-295, July,
1994

[18] W. j Teahan, “Text Classification and
Segmentation Using Minimum Cross-
entropy”, Proceedings of the 6™ International
Conference “Recherche d’Information
Assistee par Ordinateur”, Paris, Fr, 2000
[19] G. Attardi, A. Gull, F. Sebastiani,
“Theseus: Categorization b y Context”, In
poster proceedings on WWW99 — 8"
International Conference on The World
Wide Web, pp. 136-137, Toronto, CA, 1999
[20] “WebACE: A Web Agent for
Document Categorization and Exploration”,
Proceedings of the 2" International
Conference on Autonomous Agents
(Agents’98), pp. 408-415, NY, USA, 1998
[21] S. Dumais, H. Chen, “Hierarchical
Classification of Web Documents”,
Proceedings of the 23™ Annual pp.256-263,
Athens, Greece, 2000

[22] A. Pretchner, S. Gauch, “Ontology
Based Personalized search”, ICTAI, pp.391-
398, 1999

[23] L. Gravano, P. G. Ipeirotis, M. Sahami,
“QProber: A System for Automatic
Classification of Hidden-web Databases”,
ACM Transactions on Information Systems,
vol. 21, issue 1, January, 2003

[24] E. S. Yu, P. C. Koo, E. D. Liddy,
“Evolving Intelligent Text-based Agents”,
Proceedings of the 4™ International

36

Conference on Autonomous Agents, pp.
388-395, Barcelona, Spain, 2000

[25] W. Pratt, M. A. Hearst, L. M. Fagan, “A
Knowledge-based Approach to Organizing
Retrieved Documents”, AAAI/TAAL pp. 80-
85, 1999

[26] J. Billington and W. Reisig (eds.),
“Application and Theory of Petri Nets”,
Springer-Verlarg, 1996

[27] M. Fayad, “E-Frame: A Process-based
Object-Oriented Framework for E-
Commerce”, International Conference on
Computing (IC 2001), Las Vegas, USA,
June 25-28 2001

[28] Y. Labrou, T. Finin, “Yahoo! As an
Ontology — Using Yahoo! Categories to
Describe Documents”, Proceedings of the 8™
International Conference on Information and
Knowledge Management, Missouri, USA,
1999

[29] Grady Booch, James Rumbaugh, Ivar
Jackobson, The Unified Modeling Language
User Guide. Addison-Wesley, 1999

A Minimalist Approach to Framework Documentation

Ademar Aguiar and Gabriel David

Faculdade de Engenharia da Universidade do Porto,
Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
{aaguiar,gtd}@fe.up.pt

Abstract. Good quality documentation is an important prerequisite for the effective reuse of
object-oriented frameworks. To satisfy the needs of different audiences, framework documentation
must integrate several kinds of documents and contents, thus resulting hard, costly and tiresome
to produce when not supported by appropriate tools and methods. This research proposes a
documenting approach for frameworks that aims to be simple and economic to adopt. It reuses
existing documentation styles, techniques and tools and combines them in a way that follows the
design principles of minimalist instruction theory. The resulting documents assume the form of
minimalist framework manuals, a kind of instruction manual that emphasizes the understandabil-
ity and usability of a framework. In concrete, the minimalist approach proposes a documentation
model, a documentation process, and a set of tools built to support the approach—XSDoc!.

1 Introduction

Object-oriented frameworks are a powerful technique for large-scale reuse. Through
design and code reuse, frameworks help developers achieve higher productivity, shorter
time to-market, and improved compatibility and consistency [1,2,3].

A framework can be defined as a reusable design of an application together with
an implementation [1,4,5,6,7|. As one of the most complex kinds of object-oriented
products, frameworks can be particularly hard to understand by first-time users, spe-
cially if not accompanied with appropriate documentation [2,8|. Grady Booch clearly
stated in [9] that "the most profoundly elegant framework will never be reused unless the
cost of understanding it and then using its abstractions is lower than the programmer’s
perceived cost of writing them from scratch”.

This research focus on the problem of producing good quality documentation as
a means to improve the understandability and usability of frameworks [10]. The next
section briefly overviews this problem and introduces the minimalist instruction theory.
Section 3 presents the key concepts of minimalist framework documentation, and section
4 outlines the XSDoc infrastructure aimed to support the approach. The final section
discusses the results achieved and future work.

2 Motivation and Research Overview

Good quality documentation is a crucial success factor for framework reuse because it
helps on the understanding of a new framework, guiding users on the customization
process and explaining their design principles and details [2,7]. Among the approaches
suggested for documenting frameworks, the cookbook approach [11], the patterns ap-
proach [12] and the meta-patterns approach [13| have proven to be effective in reducing
the typical long learning curve.

1 XSDoc pronounces "Extensible Soft Doc"

37

2 Ademar Aguiar and Gabriel David

2.1 The Problem of Documenting Frameworks

To define and write good quality documentation for a framework is not easy, quick or
pleasant to do. It is, at least, an order of magnitude more difficult than documenting
object-oriented applications or class libraries, because it must cover not only a single
concrete product (an application) but, instead, a tool to produce a family of many simi-
lar concrete products (a framework). To be complete, the documentation of a framework
must describe the application domain covered by the framework, its purpose, how-to-use
it, how it works, and details about its internal design, what globally may involve a large
diversity of contents and many different ways of presenting them [14]. This inherent
complexity results from the following reasons:

— different audiences use frameworks in different ways, each with their own doc-
umentation requirements: framework selectors, application developers, framework
developers and developers of other frameworks;

— different styles of documents are used in framework documentation to provide
multiple views (static, dynamic, external, internal) at different levels of abstraction
(architecture, design, implementation): framework overviews, example applications,
cookbooks and recipes, design patterns, use cases, contracts, design notebooks and
reference manuals [14];

— different notations are needed to represent different kinds of contents: free text,
structured text, source code, object models, images, formal specifications, etc.

2.2 Minimalist Instruction Theory

Minimalist documentation is based on the theory of minimalist instruction [15], a theory
with foundations in the psychology of learning and problem solving. The minimalist
instruction intends to help on the design of instruction material, so that people can
learn faster and for longer. The key idea in the minimalist instruction is to minimize
the obtrusiveness to the learner of training material, hence the term.

Learners in general don’t seem to appreciate to read overviews, reviews and previews
of training material. Instead of reading, people seem to be more interested in action, in
working on real tasks and in doing their work. To overcome these and other obstacles
to learning, minimalist instruction theory is based on three values: more to do, to allow
learners to start immediately training on meaningful realistic tasks; less to read, to
reduce the amount of reading and other passive activity in training; and help with
errors, to help making error recognition and recovery less traumatic, more pedagogical
and more productive.

As a design theory, the minimalist instruction doesn’t prescribe ways of producing
minimalist manuals, but instead it defines a set of design principles: to motivate people
to train on real tasks and get-started fast; to present topics very briefly in the order
that seems best for the reader; to support error recognition and recovery; and to try to
explore readers’ prior knowledge.

2.3 Research Goals

Much of the work on framework documentation has focused more on finding ways of
documenting the design and architecture of frameworks [8] rather than on exploring
effective ways of describing the purpose and intended use of frameworks.

38

A Minimalist Approach to Framework Documentation 3

Despite the research done, there are still open issues related with framework docu-
mentation [14,16], namely: the definition of suitable methods and tools for an effective
and economic production of framework documentation; and the exploration of effec-
tive ways of describing the purpose and intended use of a framework [8]. This last
issue is precisely where minimalist documentation can be helpful, ie, on improving the
understandability and usability of frameworks.

The main goal of this work is to define a flexible approach capable of reducing
the costs, typically high, associated with the production of high-quality framework
documentation. A secondary goal is to evaluate the impact of minimalist documentation
on the understandability and usability of frameworks.

3 Minimalist Framework Documentation

The minimalist approach to framework documentation integrates reuses typical docu-
ment styles and techniques of framework documentation and combines them in a way
that follows the design principles of minimalist instruction theory.

The resulting documentation assumes the form of a minimalist framework manual,
including information about the application domain, its purpose, how-to-use it, how it
works, and internal design details. Typically, minimalist manuals are considered easy to
read and understand, thereby contributing for shorter learning curves on how-to-use a
system, and leading to a better understanding of the systems being trained [15,17,18|.

Among the experiments reported in the literature that used minimalist instruction
for documenting frameworks are [18,19].

3.1 Requirements for the Approach

The best mix of document types, writing techniques and presentation styles strongly
depends on the specific objectives, context and economics of the project at hands,
and even on the psychological and technical characteristics of the team elements. A
good approach for documenting frameworks should be able to satisfy a diversity of
requirements, with a special emphasis on the following:

— easy-to-use by developers, so that the activity of documentation can be a means
to improve development productivity and quality, instead of being considered an
obstacle, as happens in many development environments;

— flexible enough to be easily adaptable to the needs of different projects and devel-
opment environments;

— capable of cross-referencing different kinds of contents using simple linking mech-
anisms, easy to learn and use;

— economical, to reduce the typical high-costs associated with the production of good
quality documentation.

To fulfil all these requirements, it is important to have the support of a kind of inte-
grated content management covering the overall process of framework documentation
from the initial phases of creation and integration of contents till the last phases of
publishing and presentation to target audiences.

The approach informally provides guidance about what, when, and how to document.
It consists on a a documentation model, a generic documentation process and a set of
tools to make it convenient to use in mainstream development environments.

39

4 Ademar Aguiar and Gabriel David

3.2 Documentation Model

The documentation model is the core of the approach. It enumerates and organizes all
the contents and interdependencies (part-of hierarchies, navigational links, and deriva-
tions) required to produce a minimalist framework manual. According to its nature, the
overall contents can be divided in two main categories:

— typical of framework documentation: code examples, recipes and cookbooks,
design patterns, framework overviews, reference manuals, design notebooks, use
cases, scenarios and contracts;

— typical of minimalist manuals: user tasks, usage patterns, task information con-
texts, error inventories, error recovery guidelines, and classification of contents ac-
cording to the usage mode (training-wheels, guided-exploration or free exploration).

To be useful, all this web of contents must be presented in an appropriate man-
ner, so that users don’t become overwhelmed or lost when using the documentation.
Therefore, the overall repository of contents is organized as a virtual n—dimensional
documentation space defined by n documentation aspects. Important examples of doc-
umentation aspects are: kind of audience, level of abstraction and level of information
granularity. This space can then be divided in documentation layers according to the
relevance of a specific content for a certain documentation aspect. The distribution of
contents along the layers is configurable and is supported by meta-information, either
manually annotated or automatically synthesized from the contents.

kinds-of-

contents

. . L | framework ¢

introduction @& § { .
[overview ¢
5 . 9
]
"
[]

layers i ternal-dest : level-of
intern esign : abstraction
]
"
-
.
.
implementation

L

concrete

LR T T L

framework framework framework
selector client developer

kind-of
audience

Fig. 1. Example of a configuration of layers.

To illustrate the layered documentation space, it is represented in Fig. 1 a simple
configuration of layers for a two-dimensional documentation space defined by the as-
pects abstraction level (abstract, concrete) and kind of audience (framework selector,

40

A Minimalist Approach to Framework Documentation 5

framework client and framework developer). This configuration defines three layers,
named introduction, internal design and implementation, and considers four kinds of
contents, framework overview, design pattern, example and class. This configuration
tells us that: a framework overview contains information relevant to the introduction
layer and all kinds of audience; an example contains information relevant to all layers
and all kinds of audience; a design pattern contains information relevant for both the
internal design and implementation layers, and for framework clients and framework
developers; and a class only contains information relevant for the implementation layer
and framework developers.

Set of project documents Framework manual, reference guide,

Physical document glossary, design notebook, application
example, cookbooks, recipes, patterns, ...

Project-Bundle I

Code-Base E | Documentation-Base " Documentation-Configuration !
6 defines
0..* . 0..* 1.%
Code-Unit

0..*
Code-Element E

[Document-Template I |Documentat.ion-La.yer|

A

I instantiates

| Doc-Element-Transform E

1.% 1.% 0.*
Doc-Element-Formatter Doc-Element-Filter I

Doc-Element

0..*
0.*
a 3 Aspect
descriptions, diagrams,
snapshots, annotations, code Aspects are the parameters used to adapt
fragments, ... a document element to the user

Fig. 2. An overview of the key concepts used in the documentation model.

The key concepts of the model are represented in Fig. 2. Starting from the top
concept, we see that the project bundle is composed by all the physical units of both the
code base and the document base. A code unit can be a source code file or an object code
file, and contains several code elements, such as packages, classes, methods, or fields. On
the other hand, a document unit can be a file, a database or a repository, and contains
several document elements, ie, pieces of documentation possibly represented in different
notations, such as texts, models, annotations, etc. In addition, there are predefined
document templates and sample instances of these templates, one for each kind of style
of document to use, such as use-case template, pattern template, framework overview
template, cookbook template, etc. Finally, the model contains also a documentation
configuration that is used to define the documentation layers and the way elements are
supposed to be filtered, transformed and formatted according to their relevance to each
aspect and the layer in focus.

In order to cope with a vast diversity of documentation requirements, the imple-
mentation of the model should be extensible so that new custom styles of documents,
notations, and layers can be added with a reasonable effort.

41

6 Ademar Aguiar and Gabriel David

3.3 Documentation Process

The documentation process defines the roles, techniques, and activities involved in the
production of the minimalist framework manuals. The roles identified are:

— developers, such as framework users, framework developers, and framework main-
tainers, which are responsible for content creation mostly during the development
phase;

— technical writers, which are responsible to structure, guide, review and conclude
the documentation;

— documentation managers, which are responsible for configuring and maintaining
the documentation base, namely the template documents, template instances, and
the filtering, transformation and formatting of documents according to the layers
configured.

The production of framework documentation is closely related with the framework
design and usage, so, ideally, these activities should be done side by-side, if we want to
obtain documentation that is understandable, consistent, and easy-to-maintain.

After a configuration phase, the production of framework documentation starts with
the creation of the various kinds of contents, and their cross-referencing. Upon creation,
the different kinds of contents are normalized, integrated and stored in a repository from
where they will be retrieved, transformed, published and presented to target audiences.

This documentation process is generic and was designed considering lightweight
processes, which typically allocate very little effort for documentation, thus being very
restrictive on adopting a documentation approach. Therefore, the resulting process is
simple, flexible and easy to adapt to different development processes and environments,
ranging from literate programming environments [20,21] to industrial integrated devel-
opment environments. In the next section are presented the set of tools currently being
prototyped to support this minimalist approach.

4 The XSDoc documentation infrastructure

The XSDoc is an infrastructure based on XML [22] and WikiWikiWeb [23| specially
designed to support the production and usage of minimalist framework manuals, and
covers all the typical functionalities of a content management system. Currently, XSDoc
only supports frameworks written in Java programming language, models described in
UML [24], and the integration with the Eclipse IDE.

The XSDoc infrastructure is composed by one Wiki engine (XSDocWiki), a plugin
for integration in the Eclipse IDE (XSDocPlugindEclipse), and a set of document tem-
plates, markup languages, and converters of contents to and from XML. The Fig. 3
illustrates these components as well as their interconnections.

4.1 XSDocWiki

A WikiWikiWeb, or simply a Wiki, is a very innovative and appealing collaboration
tool. It can be defined as a web platform for the cooperative edition of documents,
where everyone can edit any page, using a simple web browser and invoking the "Edit"
option on the top, or bottom, of that page [23|. After saving, the modifications done
will be uploaded immediately and made available online.

42

A Minimalist Approach to Framework Documentation 7

X$Doc Content Management System

-_"-f*'-‘-'--.‘
_ » Java » Converter L Configurati i
Java editor source code | | lava-= Jawahll nfiguration o
H b ==
’-L/ J
> UL Converter Corerter > FDF
ML editor diagrams || » UNL -= SVGHIMI g ML-=PDF documents | |
I »
[e— [e—
> other Reference Canwerter > HTRL
documents | > manager g HML- =HTRL documents |
I F
— — - -
L Y e—
Wik Converter Converter Wiki
5Doc Wik [P documents x g P i [documents ||
. H
L __—
Contents
¥SDoc extraction
Plugin
For Eclipse
¥MLcontents
repositary
Creation Management Publishing Presentation

Fig. 3. XSDoc components and their interconnections.

A Wiki uses a very simple markup language to support simple text formatting and
a mechanism for automatic linking based on WikiNames?. Despite its simplicity the
mechanism is very powerful because it works like a late-linking mechanism, thus en-
abling the dynamic change of the targets. In addition, other kinds of linking mechanisms
can be defined using lexical conventions, such as prefixes, suffixes, and name patterns,
in general.

The XSDocWiki engine is the main component of the XSDoc infrastructure. It was
developed using the VeryQuickWiki engine [25] as a starting base and then extended
with several features to support the edition and visualization of minimalist framework
manuals, namely the support for processing Java sources, UML diagrams, XML docu-
ments, version control systems, a plugin mechanism for adding new types of documents,
and a few minimalist controls. The resulting Wiki supports not only the automatic link-
ing between Wiki pages, but also between informal documents, structured documents,
source code programs in Java language, and models in UML, using predefined naming
conventions that are very easy to learn and use.

With the plugin mechanism, the support for each new style of document (use-case,
example, cookbook, pattern, etc) can be added on the fly. A XSDoc plugin includes:
a document-template; a set of converters to map that style of documents to and from
XML, which can be written in a scripting language (XSL, Javascript, Python, etc.); a

2 WikiName is a Wiki name because it JoinsCapitalizedWords, which is AnotherWikiName

43

8 Ademar Aguiar and Gabriel David

declaration of which elements may contain Wiki text, so that they can be analyzed and
their links connected; and some lexical rules to use during the automatic linking phase.
For example, for Java source files, it is declared that javadoc elements may contain Wiki
text, thus enabling in javadoc comments the usage of Wiki links to any Wiki page, be
it another Java source file, an UML file or a document file, structured or not.

So configured, the XSDocWiki promotes the cooperation of technical and non-
technical people on an incremental edition and revision of software documents, ensuring
an high availability of contents (always online), and only requires a simple web browser,
a tool currently very easy to integrate in a vast majority of development environments.

4.2 XML Converters and Presentation Processors

As most of the contents can be comfortably edited and linked using the Wiki, most of
the documentation contents will reside on Wiki pages stored in a file system, a version
control system, or a database.

However, Java source code programs and UML diagrams need special processing as
they must be converted from their original format to XML using XSL transformers [26],
respectively using JavaML [27], SVG [28] and XMI [29] vocabularies.

Before being published and presented, the contents must then be filtered and for-
matted accordingly. XSDoc is able to output HTML files for online browsing, and PDF
files for high-quality printing.

4.3 Integration Mechanisms

The components of XSDoc are closely integrated, both in terms of functionalities and
in terms of the information they exchange. The functional integration of the Wiki with
the converters and processors is done within the Wiki and its specific extensions.

In terms of the information exchanged between the tools, the integration is achieved
through the use of text files and XML files. A markup language (XSDocML3) is also
used internally to normalize all the contents in a unique schema, when necessary.

One of the goals of the minimalist approach is its seamlessly integration in contem-
porary development environments. We think that the combined use of XML and Wiki
makes this integration successful in almost every industrial development environment
with the cost of development of small configurations, considering that XML is widely
supported everywhere and the Wiki engine only needs a browser to run.

The integration of the XSDoc infrastructure with IDE’s is achieved through the
development of specific plugins. The plugin should enable the use of a web browser
through which the XSDocWiki can be accessed, and to provide a communication link
between the IDE and the XSDocWiki, to enable their interoperation.

Much tighter integration of the XSDoc infrastructure in a development environment
can be done with recent IDE’s, such as Borland’s Together or IBM’s Eclipse, which
enable in the same environment a synchronized edition of all kinds of contents: source
code, UML models, and XSDocWiki documents.

3 XSDoc Markup Language

44

A Minimalist Approach to Framework Documentation 9

4.4 Benefits of XSDoc

During development, it is typical to switch between the tasks of developing code (edit-
compile-test), the task of browsing documentation, and the task of writing documenta-
tion, if done.

Present IDE’s already integrate in a same environment the tasks of developing code,
and some of them also enable the browsing of documentation inside the IDE. However,
the support for writing documentation inside an IDE is usually very small, consisting
only on enabling the writing of documentation in the same files as the source code, using
Javadoc comments for example, or specific forms to introduce the Javadoc comments.

But when we need to write documentation at a higher level of abstraction than the
source code files enable, such as documenting a pattern instantiation, or describing an
architecture, we need to jump out of the IDE and edit the file independently. Worst,
if we need to cross-reference the contents of this pattern instantiation document with
some source code elements, be it a class, a method or a field, we need to copy-paste
the contents from one file to the other (the most usual and easier) or instead define a
static cross-reference between the contents. In any case, sooner or later, the document
and the source code will become incoherent, because code changes very fast.

The most economic alternative to avoid incoherence between documentation and
code is not to write documentation during development, but only at the end; another
alternative is to use a literate programming philosophy, but in this case we need to
move out from the most popular IDE’s and leave their powerful features that help us
improve development productivity. XSDoc is another alternative to solve this problem.

With XSDoc integrated in an IDE, the developer have access to a web browser from
where he can use the XSDocWiki. When documenting, the developer creates new pages,
writes documents, possibly using predefined templates, uses copy-paste and drag-and-
drop IDE features, browses the resources, both documents and source code, and defines
links to other pages or special contents, like Java source code or UML diagrams, using
predefined tags and linking mechanisms.

As an example, to document the instantiation of the Command pattern by the class
TestCase requires the writing of the text shown in Fig.4(a), which produces the result
represented in Fig.4(b). Any change on the code will be automatically reflected in the
documentation, when the page is refreshed by the browser.

5 Conclusions

Good quality framework documentation helps users to understand the purpose of a
framework, to learn how to customize it, and to learn its internal design details. A lot of
work already exists on ways of documenting the design and architecture of frameworks,
but there are still open issues.

Inspired by the minimalist instruction theory, this research proposes a new approach
(model, process and tools) to produce minimalist framework manuals. Simplicity, low
cost, and easy-to-use by all the elements of the development team, specially the pro-
grammers, are some of the intended qualities of such approach. To make convenient
the practical adoption of the approach, a set of tools called XSDoc infrastructure is
provided, combining a Wiki engine, document processing with XML technology, and
integration in a popular IDE.

45

10 Ademar Aguiar and Gabriel David

This document exemplifies how a pattern instantiation can be documented using ;]
the [[XSDoc)]] tools.

The class TestCase instantiates the CommandPattern.

The class TestCase plays the role of the participant [[Command]] and the method
run() implements the responsabilicy defined by Execute().

The resulting method run{) of TestCase i= presentecd below:
[<javaSource>] junit.framework. TestCasefrun(TestResult) [</ javaSource>]

This document exemplifies how a pattern instantiation can be documented using the XSDoc
tools.

(2)

The class TestCase instantiates the CommandPattern,

The class TestCase plays the role of the participant Command and the method
run() implements the responsability defined by Execute().
The resulting method run() of TestCase is presented below:

public void run(TestResult result)
result.run(this) ;

JavaML 2

TestCaselnstantiatesCommandPattern is mentioned on: TheDesignOfJUnit

(b)

Fig. 4. Documenting the application of the Command pattern to the class TestCase: (a) text written (b) output
obtained.

From the resulting work, it can be concluded that the use of the XSDoc infrastruc-
ture integrated in an IDE such as Eclipse, can significantly reduce the effort typically
needed to document a framework, as it can combine the simplicity, easiness and versa-
tility of the collaborative document edition in the Wiki, with the well-known qualities
of XML technology in terms of integration, processing and presentation of information.

Obviously, a Wiki engine adapted to the edition of XML documents can be consid-
ered by many as something more difficult to use than a typical Wiki, or a Wiki can
be considered a poor XML editor when compared to a typical XML editor. Anyway,
the combination of both technologies result in a very attractive infrastructure, whose
best qualities can be summarized as: easy to integrate in a framework development
environment; easy to use by any element of framework project team (technical or not);
promotes the participation of all the team elements in the documentation process; im-
proves the communication between the team elements; provides an easy access, revision
and incremental evolution of the documentation; and finally, enables a smooth inte-
gration of contents in a controlled and structured way, informally, while preserving the
information in an universal format, the XML format.

In future work, the XSDoc tools will be improved with more minimalist features
(zoom, exploration mode, error recovery, extensive search) and the minimalist manuals
for JUnit and JHotDraw will be concluded and their impact in terms of usability and
understandability will be evaluated in comparison with the original framework docu-

46

A Minimalist Approach to Framework Documentation 11

mentation. Then, new plugins for integration with other popular IDE’s will be developed
and other popular Wiki engines will be supported.

References

1.

o

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.

23.
24.

25.

26.

27.

28.

29.

Mohamed E. Fayad, Douglas C. Schmidt, and Ralph E. Johnson. Building Application Frameworks —
Object-Oriented Foundations of Framework Design. John Wiley & Sons, 1999.

Taligent Press. Building Object-Oriented Frameworks. Addison-Wesley, 1994.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns — Elements of reusable
object-oriented software. Addison-Wesley, 1995.

Ralph E. Johnson and Brian Foote. Designing reusable classes. Journal of Object-Oriented Programming,
1(2):22-35, June 1988.

R. Campbell, N. Islam, R. Johnson, P. Kougiouris, and P. Madany. Choices: Framework and refinement,
1991.

Ted Lewis, Glenn Andert, Paul Calder, Erich Gamma, Wolfgang Pree, Larry Rosenstein, Kurt Schmucker,
André Weigand, and John M. Vlissides. Object-Oriented Application Frameworks. Manning Publications
Co. / Prentice-Hall, 1995.

Mohamed E. Fayad and Douglas C. Schmidt. Object-oriented application frameworks. Communications
of the ACM, 40(10):32-38, October 1997.

Greg Butler and Pierre Denommeée. Documenting frameworks. In Building Application Frameworks —
Object-Oriented Foundations of Framework Design [1], pages 495-504.

Grady Booch. Designing an application framework. Dr. Dobb’s Journal, 19(2), February 1994.

. Ademar Aguiar. A minimalist approach to framework documentation. In Addendum to the 2000 proceedings

of the conference on Object-oriented programming, systems, languages, and applications (Addendum), pages
143-144. ACM Press, 2000.

Glenn E. Krasner and Stephen T. Pope. A cookbook for using the model-view-controller user interface
paradigm in smalltalk-80. Journal of Object-Oriented Programming, 1(3):27-49, September 1988.

Ralph Johnson. Documenting frameworks using patterns. In Andreas Paepcke, editor, OOPSLA’92 Con-
ference Proceedings, pages 63—-76. ACM Press, October 1992.

Wolfgang Pree. Design Patterns for Object-Oriented Software Development. Addison-Wesley / ACM Press,
1995.

Greg Butler, Rudolf K. Keller, and Hafedh Mili. A framework for framework documentation.
http://www.cs.concordia.ca/faculty/gregb, 1998.

John M. Carroll. The Nurnberg Funnel: Designing Minimalist Instruction for Practical Computer Skill.
MIT Press, 1990.

Mohamed E. Fayad. Future trends. In Building Application Frameworks — Object-Oriented Foundations
of Framework Design [1], pages 617-619.

John M. Carroll. Minimalism Beyond The Nurnberg Funnel. MIT Press, 1998.

Mary Beth Rosson, John M. Carrol, and Rachel K. E. Bellamy. Smalltalk scaffolding: a case study of
minimalist instruction. In Proceedings of the SIGCHI conference on Human factors in computing systems,
pages 423-430. ACM Press, 1990.

Tan Chai. Pedagogical Framework Documentation: How to Document Object-oriented Frameworks - An
Empirical Study. PhD thesis, University of Urbana Champaign, 1999.

Donald Ervin Knuth. Literate programming. The Computer Journal, 27(2):97-111, 1984.

Ross N. Williams. FunnelWeb User’s Manual, May 1992. v1.0 for FunnnelWeb v3.0,
ftp://ftp.adelaide.edu.au/pub/funnelweb.

T. Bray, J. Paoli, and C. M. Sperberg-McQueen. Extensible markup language (xml) 1.0. w3c recommen-
dation, February 1998. URL:http://www.w3.org/TR/REC-xml.

Ward Cunningham. The original wiki front page., 1999. URL:http://c2.com/cgi/wiki.

Object Management Group. Unified modeling language specification version 1.4, September 2001.
URL:http://www.omg.org/technology /documents/formal /uml.htm.

Gareth Cronin and Bill Barnett. Very quick wiki engine homepage.
URL:http://veryquickwiki.sourceforge.net/.

S. Deach. Extensible stylesheet language (xsl) specification, w3c working draft, January 2000.
URL:http://www.w3.org/TR/WD-xsl.

Greg J. Badros. JavaML: a markup language for Java source code. Computer Networks (Amsterdam,
Netherlands: 1999), 33(1-6):159-177, 2000.

Jon Ferraiolo, Fujisawa Jun, and Dean Jackson. Scalable vector graphics (svg) 1.1 specification, w3c
recommendation, January 2003. URL:http://www.w3.org/TR/SVG11.

IBM AlphaWorks. Xml metadata interchange (xmi) toolkit, 1999.
URL:http://www.alphaworks.ibm.com/tech/xmitoolkit.

47

Using an ADL to Design Aspect Oriented Systems'
A.Navasa, M.A.Pérez, JM. Murillo

Quercus Software Engineering Group. http://quercusseg.unex.es
University of Extremadura. Spain
{ amparonm@unex.es, toledano@unex.es, uanmamu@unex.es}

Abstract

Developing aspect oriented software systems is a complex task. To do it easy, severa paradigms
are been developed as AOP. Moreover, in the last years AOSD has been generating a great deal of
interest to develop AO Systems from early stages. To extract the aspect code crosscutting the
functional one makes easier to implement aspect oriented systems using AOP languages, but it is
possible to take away the problem of AO from the implementation phase to the design. In this
phase, concerns crosscutting functional code can be treated as independent entities. This paper
presents our ongoing research developing aspect oriented systems taking into account the benefits
of applying CBSE at early stages of AO systems development, particularly at architectural design.
We present AOSD at the design level as a co-ordination problem, using an ADL to formalise it

1. Introduction.

Until now, a great deal of work has be carried out proposing aspect separation techniques
[Kic+96] to effectively separate the aspect code from the functional code (composition filters
[BeAkOl], Aspectd [Kic+01], Adaptive programming [LiOrOv0l], HiperJ [OsTa0ld],
[OsTa01b]). During the last few years, concepts from AOP have been extended to the early
stages in the software lifecycle, creating Aspect Oriented Software Development (AOSD) as a
new discipline of software engineering, which has been generating a great deal of interest for
developing systems from the early stages perspective. Its goa is to provide approaches for an
early identification, separation, representation and composition of crosscutting concerns
[BrM02003]. From this point of view, aspects are constructions (software artefacts) that can
be identified and manipulated throughout the development process. There is a great deal of
research at the design phase [CIWa01l, SuYa99] and at the requirements phase [Gru99,
Rat02]. In addition, research about aspect separation at platform definition and middleware
level can also be included [ClSaPe02, CIHe03]. Work results have shown real benefits by
increasing systems productivity, re-usability and adaptability.

It is possible to observe software architecture from an aspect-oriented point of view. For
instance, Grundy in [Gru0Q] considers that at the design level, "aspects specify the provided
and required capabilities of components and alow them to specify functional and non-
functional characteristics of these capabilities’; therefore, components and aspect can be
developed "to produce design-level system components and design-level aspects'. However,
none of the consulted works consider architectural tools to formalise them through the
architectural styles definition, through studying Domain Specific Software Architecture
(DSSA), or through defining Architectural Definition Languages.

Given the system specification by the high-level functionality description and a set of aspect
policies to be applied, it is necessary to specify the interaction among components to obtain
the systems architectural definition. Interconnection and interaction specification can not be
trivial, and it is necessary to focus specia attention on this point.

However, open systems can be designed to allow us to modify their behaviour due to the
application of aspect policies not considered before. In this paper, some ideas about how to
support systems evolution at the architectural level using aspect-orientation are presented.
From an architecture design perspective, taking into account aspect-orientation techniques,
systems accepting modifications to component behaviour could be designed without changing
the components. Dynamically adding or eliminating restrictions over component execution

! This work has been developed with the support of CICY T under contract TIC2002-04309-C02-01

48

can cause modifications on system behaviour. These execution restrictions are due to aspect
policies and can (perhaps must) be identified at the time of system specification and
separately from functional requirements. This will improve the understanding, identification
and management of crosscutting concerns at the architectural level. Besides, a better
understanding and description of aspects can support the reuse and development of software
from the early stages. For this, it is necessary first to identify and describe them in a correct

way.
Our aim is to design Aspect Oriented systems, which alow us to modify their component

behaviour by dynamically adding restrictions to components performance. We consider that
aspect separation at the architectural level can be solved as a co-ordination problem.

In section 2, three pillars on which the current research is based will be presented. In section
3, a dynamic ADL is used to describe aspect-oriented systems at the architectural level.
Finally, section 4 shows some conclusions and outlines future works.

2. The Three Cor ner stones.

This section refers to the cornerstones on which we base the work here presented; then some
reflections about considering aspects at design phase are made. Finally, how to define the
interaction between functional and non-functional components is presented.

Because the systems to be designed are complex ones, we consider that our ongoing research
is based on three points. The following three disciplines of software engineering give us a
base on which to build aspect oriented systems from components at the architectural design.
The genera idea behind using them together is to give the designer the possibility to build
complex systems in a structured way from a set of components. Before, it is necessary that,
components come into a forma description, from the specification phase. Bellow are the
advantages to doing so.

- CBSE is adiscipline that produces systems by the composition of pre-existing, reusable
and independent pieces of software, the components, through plug and play. It reduces the
cost of development, improving the final system's flexibility and reusability. Besides,
using components requires a standard previous definition of them to make possible their
composition at design level for obtaining a structural system definition. In order to do this,
it is necessary for each one to have defined one or more interfaces showing required
services (and needed too), precond and postcond [Sou00], and any other interoperability
information needed to obtain and to combine components. After that, interaction can be
established. Our work group considers that, using the ideas of CBSE, it is possible to
decompose complex systems into a set of components, and use them like lego pieces. This
lets us add, remove, or modify components easily.

- On the other hand, AOSD is a discipline that provides support for separating concerns
crosscutting functional code into non-functional components, and weaving them later.
AOSD allows us to treat concerns in a separated way from functiona components, it
being possible to identify and manipulate them throughout the development process. We
distinguish between functional components for defining the system's functional behaviour
and aspectual ones for defining its non-functional one.

- The third cornerstone supporting our work is software architecture (SA). This discipline
allows the software designer to specify the systems structure in terms of components and
connectors, which determine their interaction. But defining interactions is not a trivia
guestion in this new scenario: it is easy to define interaction between functional

49

components if services required by one of them matches with services offered by the
second one (even if they don't match completely). A more difficult question is to achieve
interconnection between functional components and aspectual ones. Nevertheless, it is
necessary to create explicit relationships between functional and aspectual components.

To formally build the architecture of systems, software architecture mechanisms need to
be used (architectural style definitions, ADL, DSSA-domain specific software
architecture-, etc.). Some previous work of our research group has reveaed that defining
an AO system through an adequate ADL is the better way to do it.

At the architectural level, systems elements are components and their interconnections and
aspects need to be considered as first class entities (that is, as components). In this lifecycle
phase, aspect separation will be done by defining functional and aspectua components and
thelr interaction.

2.1. Defining Aspects at Architecture Design Phase.

Looking at some literature (examples are [Gru00, BrMo03]), several aspect definitions can be
found. Generally speaking, we can define an aspect as a set of operations or procedures
carrying out a policy or strategy to be applied to functional components and it is orthogonal to
them. After applying an aspect to a functional component, its behaviour can be modified.
Taking into account this definition, and from the above (CBSE characteristics, AOSD
paradigm, SA definition), we can say that, at the architectura level, it is possible to enclose
aspects into a specia kind of component, named by us as a "non-functional” or "aspectual”
component. Thus, an aspect can be treated as a design artefact whose interaction with other
components needs to be defined. The following activities are necessary:

First of all, before an aspect can be considered as a component, it is necessary to identify,
from the specification or architectural design phases, which aspects can be applied to a
system. For example, at the design level, authentication or replication can be considered as
aspects, and those can be applied or not throughout the system life, without basic functionality
being concerned.

Secondly, to define aspects adequately, it will be necessary to specify them giving their
offered and required interfaces, as well as the preconditions and post-conditions for applying
them.

Finaly, it is possible to define the interaction between aspects and the functional components
whose behaviour can be modified. If several aspects can be applied, composition rules must
be defined.

Identifying and enclosing aspects at the design phase lets us do software complexity
management better. We can manage the crosscutting concerns in functional components by
defining over its interfaces the match points where aspect must be applied.

2.2. Interconnecting Functional and Non-functional Components at Software
Architecture Level.

At the architectural level, we represent the system structure by components and the interaction
between them. The interaction will be done by a communication mechanism: the architectonic
connectors. This kind of communication mechanism, in general, isn't trivial because of the
high complexity of interactions to be managed [Na+02].

50

It is known that to make components composition it is necessary that they be specified by
their interfaces. This allows for making possible defining anchor points between them. As we
know, at thedesign level, one only knows component interfaces. Besides, connectors are the
architectonic mechanisms of communication between them.

We consider architectonic connectors as first class entities. Each one specifies how and when
an aspect intercepts the normal execution of components connected with it. For this we say
that connectors, defining architectonic interaction between functional and aspectual
components, must co-ordinate both executions, and they are as co-ordinators of the system
execution. This point is important because, until now, components making the system are not
specially created to be co-ordinated.

We can say that, at the architectural level, applying aspects to a system can be treated as a co-
ordination problem, in which co-ordinated elements do not necessarily know each other, nor
have they been created to be co-ordinated. Then, to solve the aspect oriented system design
problem we could apply co-ordination exogenous models [Mur01].

To formally define the SA of a system taking into account aspects, we need to use those tools
that SA gives us (ADL, Styles, DSSA,...). Our ongoing research is focused on applying a
particular ADL to formalise AO systems design.

3. Selecting an Adequate ADL.

Until now several ADL have been developed, each one having different features (Wright
[AlI97], Darwin [MaKr96], Rapide [Luc95], Acme [GaMoWi97]). We only have considered
dynamics ADL (Rapide [Luc95], Acme [GaMoWi97]) because our group work wants to
promote systems design able to change dynamically, depending on if some aspect policies are
applied or not. The problem is that actual dynamics ADL ([Luc95], [GaMoWi97]) are general
and do not have primitives to support aspects separation characteristics.

Rapide [Luc95]: This is an event-oriented language that allows one to specify systems in
terms of a partially ordered set of events. It allows architectural design to be simulated, and
has tools for analysing the result of those simulations. Components computations are triggered
by received events, and in turn trigger other computations by sending events to other
components. Rapide toolset permits the ssmulation of such descriptions, animations of those
simulations, and analysis of the resulting trace graphs to check for anomalous behaviour. It
supports dynamic analysis using simulation technology and dynamic reconfiguration of
architectures. It is a good option to represent AO systems, but the latest research on Rapide
was published in 1998; hardware platforms over which Rapide is defined are obsolete and
working with it implies bringing all the libraries up to date and some of them are not
accessible.

Acme [GaMoWi97]: This provides a structural framework for characterising architectures. It
provides an interchange format for architectural development tools and environments. It
allows us represent events. Communication is established by connectors and co-ordination
between components becomes complex. It is possible to consider it as a useful ADL for our
research.

LEDA [Can00] isadynamic ADL, whose main characteristics are:

- Itisadynamic language.

- It doesn't distinguish between components and connectors. In it there are only components
and all are components. Components are system elements, each one expressing a part of

51

the system functionality. Connectors are represented by first class entities, being a special
kind of LEDA components.

- Itishardly based on formal concepts because it is defined on p-calculus. For this, system
specifications given in LEDA can be analysed and performed to get a prototype.

- Adapters are a mechanism to establish the correct communication between components
with non-compatible interfaces. This makes it possible to connect components whose
behaviour is not compatible between them.

- Components' interconnection is done by roles definition, which communicates language
components. Observable component behaviour is described by roles.

- Components and connectors can be represented by a particular LEDA graphic
representation.

From the above, we can say that LEDA is an adequate language to represent AO Systems at

design level. Not to distinguish between components and connectors is the main reason for

which we decided to use LEDA. Table below (Table 1) expresses this idea matching some

LEDA characteristics with the advantages to use it in AOSD:

LEDA characteristics Advantagesto useit in AOSD
This lets us define a system, changing
its behaviour by adding/eliminating

restrictions at design time.

It is a dynamic language

It doesn't distinguish between components
and connectors. Then connectors become

Defining the system connectors as
LEDA components lets us consider

represented by first class entities (as|complex interactions between systems
components). components.
System components and connections|Roles describe the observable

communication are made in LEDA by the
role definition

component behaviour.

Components and connectors can be
represented by a particular LEDA graphic
representation.

For this, it is easy to understand the
system structure.

System properties can be validated.

This lets us check the system
correctness each time a new restriction
is added.

A tool lets us generate Java code, and to
simulate system behaviour at the design time.

This helps the designer and reduces the
implementation time.

LEDA isagenera ADL

We suspect that it will be necessary to
define new primitives to be able
consider aspect.

Table 1. Characteristics of LEDA and advantagesto use it in AOSD.

3.1. Applying LEDA to Solve the Problem of Designing AO Systems at Architectural
Design Phase.

Solving the problem of designing an AO System at the architectural design phase requires the
steps numbered in the first column in Table 2. The second column points out steps to give
using LEDA.

52

To capture formal specifications of
system. We distinguish between
functional and aspectual specifications.

To obtain components from specifica- o _
tions. Functionad and aspectua Specifications of components found will be
components will be searched in|translatedto LEDA .

repositories (if possible) (1).

Interconnection between functional | T support interconnection between

components has to be defined. functional components, LEDA roles have to
be defined.

To define how to apply aspects to To define LEDA co-ordinator components

functional components. making it possible to apply aspects to

functional components co-ordinately.

To define new roles to be able to inter-
connect functional and aspectual components
through co-ordinators is necessary.

_ A LEDA tool lets us generate a Java
To generate a prototype, in an adequate| prototype for the new system. We have to:
language, for the new system. - Generate, to each co-ordinator component
the associated classes.

- Generate associated classes to define roles.

Due to (1) functiona and aspectua,
components are :

- Only a set of specifications. For this it will
be necessary to generate the Java classes
from LEDA description or

- Components found in repositories. Then
they can be executed together with the new
ones.

To simulate system behaviour at design| After obtaining Java code to simulate system
time. behaviour at design timeis possible.

Table 2. Stepsto solve the problem of designing AO System at architectural design phase using LEDA.

After designing an AO system with LEDA the following considerations can be done:

- Composition between co-ordinators and co-ordinated components must be and in fact are
dynamic to make possible the application of new aspects to a system.

- Changing the system (by applying new aspects or eliminating them), doesn't mean
modifying original components behaviour, nor aspectual components. Only the LEDA system
definition has to be modified, adding new roles definition and then generating a new
prototype.

3.2. An example.

In this section an example is presented. We describe a case in a normal situation and what
happens if a new aspect policy is added. We present how to solve the problem, and how we

53

could represent it by LEDA language. This representation is partial because defining new
aspectual primitivesis necessary.

Consider a bank account and a client acceding to it (Figure 1). The Client requests a bank
operation from the ServerBank. The ServerBank answers the Client by giving the requested

service.
ServerBank
. Reg o
Client
V_Answ

Figure 1. Bank account example.

If one wishes to add a new aspect policy at the ServerBank, the designer has to modify the
ServerBank component, including the new operation.

Our ongoing research proposes adding the new aspect without changing the ServerBank
component, but adding it to the system as a new component. This will be executed under
some restrictions before or after ServerBank performs the requested service. Such a
component (aspectual component) and ServerBank component must be executed in a co-
ordinated way. We propose including, the aspectual component carrying out the new policy
on the one hand, and on the other hand, a co-ordinator component, which can determine if
conditions to execute the new task are given (Figure 2).

ServerBank

Rea

Client

v Answ

Figure 2. Bank account with an aspect example.

The figure above represents how adding the new policy to the system without changing the
components which form the system. We have added the new aspect policy as a component
(Aspect_com). Besides we define a new component COORD, which makes possible the
interaction between ServerBank and the added policy (Aspect_com). COORD checks if
conditions or restrictions to apply the policy are done for the ServerBank component. As it is
the design time, we only have access to functional components by their interfaces.

It is possible to represent the above example in LEDA language as in Figure 3. Components
are given by rectangles (with shadow representing several ones). Roles are represented by
lines connecting them, with alabel giving the interaction name.

In the problem representation by LEDA, the system component ServerBank and the aspect
(Aspect_com) are connected by a connector (a first class entity) defined as a LEDA

54

component (called co-ordinator) represented by the COORD component. Co-ordinator
COORD performs the connect role defined between it and the system components
ServerBank and Aspect_com. It also performs the co-ordinate role to co-ordinate their
execution.

Defining the co-ordinator as afirst class entity to interconnect aspect components to the other
ones in the system is necessary because some preconditions and postconditions need to be
analysed for applying an aspect to the system or not.

Rlconnect ServerBank
R4change R3serve
Rlconnect RS Client
coorp < :
R2cpordinate >
R2act

R1connect Aspect_com I

Figure 3. A bank account with aspect represented by LEDA.

In LEDA one role for each component interaction with the other ones in the system needs to
be defined. The role behaviour is done by one or severa agent definitions. It is possible to
pass data by matching two complementary actions.

3.2.1. Role description:

In this section we are going to describe the roles needed to interconnect elements.

R1: Connect: models the interaction between elements to be connected. In the example
elements to be connected by R1 are ServerBank - Aspect_com- COORD.

R2 Co-ordinate-Change-Act is defined by the following:

a) Models the co-ordination activities of the co-ordinator component (COORD) in its relation
with other components to be connected with it. This role describes how co-ordination is
scheduled by the co-ordinator component.

b) Models the possibility of changing the ServeBank behaviour when an aspect component
(Aspect_com) is considered.

¢) Models how the aspect component (Aspect_Com) can act over the ServerBank component.

R3: Reguest-Serve: models the relationship between the Client and the ServerBank
components as it was defined by the given functional specifications.

Interconnections are established when component instances and roles are created (defining
attachments). They can be modified in a dynamic way.

3.2.2. Explanation of operation sequence

The following points out the steps given in a bank account operation, by LEDA.

(1) The co-ordinator and the connection between it and other system elements is created (role
R1).

55

(2) When a Client wishes to make a connection to ServerBank, it sends it a reguest
(throughout role R3-Request).

(3) Therequest isreceived by ServerBank and the Client remaind waiting for the answer.

(4) The co-ordinator (COORD) stand by until it detects an event over ServerBank (a request
from the Client).

(5) Then the co-ordinator performs R2 coordinate. This causes ServerBank to connect
(through R2 change) with Aspect_com (through R2 Act).

3.2.3. LEDA System Definition.
The lines bellow express how we can define a system in LEDA

Component Bank_System +_ Aspect { <--- Component declaration
Interface none; <---Refereed to all the system
Composition <--- System composed by:

cli: Client; <--- * We suppose 1 client only

coor: Co-ordinator;
serv: ServerBank;
asp: Aspect_com;

Attachments
asp.connect(connexion)<>coor.connect(connexion)<>serv.connect(connexion)
asp.act(param)<>coor.coordinnate(param)<>serv.change(param)
cli.reg(datoa)<>serv.serv(datas)

attachment lets us define links throughout. Communications can be
establish with the help of some parameters.

A system instance is declared as:
Instance SystemAspBank: Bank_system_+_ Aspect

The whole system will be defined when each role is defined. Some of them can be done by
LEDA, but other ones (like R2) need new primitives to be defined. At this moment, thisis one
of our lines of work.

4. Conclusions and Future Works.

In this paper some guidelines to integrate concepts from Aspect Orientation, CSBE and
architectural software have been presented. The work is focused on defining systems
changing dynamically their behaviour at design time when new aspect policies are
added/eliminated without changing components. We show how aspect separation can be
handled by means of SA, in a particular way with a specific ADL. We present the aspect
separation problem as one of co-ordination.

Systems to be designed are built from functiona components (describing functional
behaviour) and components doing aspect policies. It is necessary to establish dynamic
interactions among component interfaces as well. Thus, at the architectural level we can
modify the system structure without changing components and knowing its behaviour at
design time.

Currently we are working along severa lines:

- To select the best way to specify functional components (and their interfaces).

- To determine which aspects can be applied at thearchitectural level. Consequently it is
necessary for them to be well specified too (their interfaces, preactions, postactions...).

56

- To know the system throughout the specification of functional and aspect components; we
will trandlate them to LEDA. After that, we will define the dynamic interactions among
components. That means we'll have got the system's structural description.

- For getting this it is necessary to define new LEDA primitives to express aspectual
concepts and a software tool to manipulate the system at the architectural level, and then
generate Java code for getting a prototype.

4. Bibliography:

[AlI97] R. Allen. A Formal Approach to Software Architecture. Doctoral Thesis. School of Computer Science.
Carnegie Mélon University. USA CMU-CS-97-144. 1997

[BeAkOl] Bergmans L.M., Aksit M. Compossing Crosscutting Concerns using Composition Filters.
Communications of ACM vol 44, No. 10 pp51-57. 2001.

[BrMo03] 1.Brito, A.Moreira. Towards a Composition Process for Aspect-Oriented Requirements. Workshop on
Early Aspects 2003. AOSD conference. Boston USA, 2003.

[Can00] C. Canal. Un Lenguaje para la Especificacion y Validacion de Arquitecturas Software. Tesis Doctoral .
Universidad de Malaga. 2000.

[CIwa0l] Clarke, S., Waker, R.J. Composition Patterns. An Approach to Designing Reusable Aspects.
Proceedings of International Conference of Software Engineering, ICSE 2001. Toronto, Canada 2001.

[CIHe03] Clemente, P., Herndndez, J. Aspect Component Based Software Engineering Systems. 2™ Workshop on
Aspects, Components and Patterns for Infrastructure software. 2003 AOSD Conference. Boston, USA.2003.
[ClSaPe02] Clemente, P., Sanchez, F., Pérez,M.A. Modelling with UML Component-Based and Aspect Oriented
Programming Systems. 7" Workshop on Component-Oriented Programing (WCOP02) at. ECOOP'02. Malaga,
Spain 2002.

[GaMoWi97] D Garlan, R.T. Monrie, D. Wie. Acme: An Architecture Description Interchange Language. In
Proceeding of CASCON'97. Ontario Canada 1997.

[Gru99] Grundy, J. Aspect-Oriented Requirements Engineering for Components-based Software Systems. 4™
| EEE International Symposium on Requirements Engineering. IEEE Computer Society, Limerick, Ireland, 1999,
pp.84-91.

[Gru00] Grundy, J. An Implementaion Architecture for Aspect Oriented Component Engineering. In Proceedings
of the 5th International Conference on Parallel and Distributed Processing Techniques and Applications: Specia
Session on Aspect-oriented Programming, Las Vegas, June 26-29 2000, CSREA Press

[Ki+96] G. Kiczales et al. Aspect-Oriented Programming. In Max Muhlhéuser ed, Special Issues in Object-
Oriented Programming, Workshop Reader of the 10th. European Conference on Object-Oriented Programming,
ECOOP 96, Dpunkt-Verlag. 1997.

[Kic+01] Kiczales, G, Hilsdae, E. Huguning, J, Kersten, M, Palm, J, Griswold, W. An Overview of AspectJ.
2001 Proceedingd of ECOOP, Springer Verang. LNCS 2072.

[LiOrOv0l] Lieberherr, K., Orleans, D.,Ovlinger, J. Aspect Oriented Programing with Adaptive Methods.
Communications of ACM, vol 44, No. 10, pp.39-41. 2001.

[Luc95] D.C. Luckman et a. Specification and Analisys of Systems Architecture using Rapide. |EEE Transaction
on Software Engineering. San Francisco. USA. 1995.

[MaKr96] J. Magee, J. Kramer. Dynamic Structure in Software Architectures, in ACM Foundations of Software
Engineering. San Francisco, USA. 1996.

[Mur01] JM. Murillo. Coordinated Roles: Un modelo de coordinacion de objetos activos. Doctoral Thesis.
Universidad de Extremadura. Spain. 2001

[Na+02] A. Navasa, M.A.P&ez, JM. Murillo, J Hernandez. Aspect Oriented Software Architecture: A
Sructural Perspective. Workshop on Early Aspect: Aspect-Oriented Requirements Engineering and Architecture
Design. 1% International Conference on Aspect-Oriented Software Development (AOSD). April 2002. Enschede.
Holanda Web site download.. http://trese.cs.utwente.nl/AOSD-EarlyA spectsW S/workshop_papers.htm
[OsTa0la] Osser H., Tarr P., Hiper/J. Multidemensional Separation of Concerns for Java. International
Conference on Software Engineering. ACM pp. 734-737. 2001.

[OsTa01b] H. Ossher, P. Tarr. Using Multidimensional Separation of Concerns to (Re)Shape Evolving Software.
Communications of the ACM, October 2001, vol 44, num 10.

[Rat+02] Rashid A., Sawyer P., Moreira A., Araujo J. Early Aspects: a Model for Aspect Oriented Requirements
Engineering, IEEE Joint Conference on Requirements Engineering. Essen Germany, September 2002.

[Sou00] D'Souza, D. Objects, Components and Frameworks with UML. 2000 Web site: http://www.trireme.u-
net.com/catalysis/.

[SuYa99] Suziki, J., Yamamoto, Y. Extending UML with Aspects: Aspect Support in the Design Phase. AOP
Workshop at ECOOP99, Lishon, Portugal, 1999.

57

Software Visualization and Aspect-Oriented Software Development

Susanne Jucknath, susannej@cs.tu-berlin.de
Institute for Software Engineering and Theoretical Computer Science
Technical University of Berlin

Abstract

One intention of Software Visualization (SV) is to form a picture in the users
mind of what this software is about. What happens during the execution and what
should happen in the programmer‘s point of view. This is especially helpful with
existing software and non-existing documentation. So then the amount of existing
software is rising the need of understanding this software is rising too. There are
several methods of SV for different software paradigms, like object-oriented software
development. The intention of this paper is first to examine existing methods for their
use in Aspect-Oriented Software Development (AOSD) and second to extend three of
this concepts for the special needs of AOSD.

1 Introduction

Software Visualization (SV) for imperative software could be easily divided into visu-
alization of the algorithm and visualization of the program code. This separation of
concept and implementation is rather difficult for object-oriented software, because
the classification of objects itself contains a level of abstraction. James Noble [1] de-
veloped in this sense the APMV-Model - Abstraction Program Mapping Visualizing
- which respects modularization and information hiding as it is merely based upon
objects and not in their implementation.

Not objects inherently but their communication are the base of the so called execu-
tion murals [2]. This concept display the all messages between two or more classes.
But just displaying this communication data is not enough, since the benefit of a SV
should be to gain more information. So it would be nice to see some patterns in this
communication or more so, to automatically detect patterns. Therefore we have to
decide what the concept of pattern mean in this case. Is is necessary to have strict
Object Identity, before we decide that two communication streams belong to the same
pattern? Or is Class Identity satisfactory? There are several definitions possible, who
will lead us to Execution Patterns, like they are defined in [3].

Although it is very helpful to analyze program code automatically via execution pat-
terns, we do not use the full a priori knowledge this way, we already have about the
abstraction of this program code in Aspect Oriented Software. In Aspect Oriented
Software Development (AOSD) another abstraction level is realized than in Object
Oriented Software Development (OOSD). Aspects and concerns have a direct impact
on the program code but are not a direct part of it. So we can use the methods
discussed above - it is object oriented anyway - but we have to extend it to the level
of information AOSD includes.

But how could a woven aspect be visualized? We can build a static visualization (e.g.
of the class-model) or a dynamic visualization (e.g. of the class communication or
the program execution).

58

In the next two sections, we will shortly discuss static visualization as well as dynamic
visualization for AOSD. Based on this, we can estimate in the conclusion sector about
the benefit of SV for AOSD.

2 Static Visualization

Visualization of program code often starts with information rendered during the sys-
tem design, e.g. a static class model. Early approaches of SV for AOSD were made
by K.Czarnecki and K.Lieberherr. They displayed the relation between aspect and
class in a cross-classified table. This description is sufficient but stands alone, with
no direct (visual) connection to the visualization of the class model.

The common visualization of a class model is a graph. It fits also well for AOSD as
long as we can model the extra information (which aspect is interacting with which
class). This could be done by coloring each class (node) depending on each aspect it
effects. Of course with more than three aspects (RGB) we get a varicolored graph.

3 Global View and Local Effects

The static visualization of the class model implies a direct view on the amount of
effected code. But there are a few drawbacks. First of all with a large class model
(and even worse various aspects) it is hard to separate the wheat from the chaff and
to decide which influence is important. Second - as a consequence - it tells few about
the behavior at run time. And at last large class models tend to be hard to handle
for the kind of information we want to display.

For example, if we want to visualize the difference before and after weaving a new
aspect into the code we need a before-and-after encoding. This transcription should
be version-dependent but also run time dependent as we want to measure the real
amount of difference. This leads us directly to a dynamic visualization.

4 Dynamic Visualization

A dynamic SV could show the influence of an aspect at run time, e.g. to highlight
counterproductive aspects. But to show a counterproductive behavior it is essential
to show the right information of what happens. This information could contain the
communication between objects or the consumption of different resources. In analogy
to Audio-Signal-Processing we have to deal with discretisation and synchronization
of the message flow. We can avoid this by modeling the message flow to a given time
t.

4.1 Information Murals

In [3] execution mural shows the communication between two classes by putting the
classes on the y-axis and the boolean information about communication between them
at time t on the x-axis. It is not a problem to place independent class communication
in a information mural but a multi-communication between different classes turns out
to be complex.

For the visualization of a multi-communication the idea of a information mural can
be transformed to the visualization of classes and their communication activity. For
that we can place the classes on the y-axis and the activity of a class to a given time
t on the x-axis. The z-axis is left for changes over time tq, ..t,,.

59

Let us call such a information mural activity information mural (AIR). We can com-
pute AIRs for different version or stages of software development or before and after
weaving an aspect into code. But this alone is not enough for the need of a good SV
for AOSD. First of all we have to eliminate the white noise (classes who are constantly
communicating) and second we need a metric to measure the effect of the aspect. The
white noise can be blanked out by a filter function, which can be directly coupled
with the activity function.

To set a metric we can measure the distance between two given AIRs. This distance
function is, like the activity function, very dependent on the kind of information we
want to collect.

4.2 Graph Animation

An information mural gives a compact picture of what is happening during run time,
but not a idea of the reason why it is happening. For this we would need information
about coherence between different objects. That was a service delivered by the class
model. So the next question is, how to combine the benefit of the dynamic information
mural with the static class model. Or in other words, to display the most active classes
and their connections over time.

For this we must define active via an activity function (AF) for each class. The value
one class reaches at time t with the AF computes the visual worth of this class. The
visual worth of a class again decides if the class is displayed in the class-model or not.
If we do not show all classes in the class model it is naturally not a real class model
anymore and should be denoted as momentary class graph (MCG).

With different MCGs to different time steps t¢1,...t, we can use finally the existing
algorithms for graph animation to realize a smooth and user-friendly SV.

Graph Animation as described in [4,5] defines a mental map and layout quality for
each graph and a mental distance between successive graphs.

5 Conclusion

Aspect-Oriented Software Development (AOSD) extends Object-Oriented Software
Development (OOSD). As we have seen, we can also extend existing Software Visu-
alization (SV) algorithms for OOSD to Software Visualization for AOSD. We showed
one example of static SV for OOSD (the class model) to be supplemented by one color
for each aspect to meet a SV for AOSD. Several SV for OOSD could be extended in
a similar way. So the question is not only if it is possible to get a easy access to SV
for AOSD, but what do we expect from it? Mainly we want to see three facets:

1. What class is affected by which aspect?
2. What behavior shows the program before and after weaving the new aspect in?

3. Resulted this new aspect to the desired behavior?

Point 2 and Point 3 cannot be shown in a static SV, we need a dynamic SV to see the
behavior of the program code by run time. Two of the earlier mentioned approaches
for dynamic SV for OOSD were Information Murals and Ezecution Patterns. Each
of them has a great effort on SV for OOSD, but can not handle to show a priori
knowledge like aspects.

But a dynamic SV (Information Murals) combined with a static SV (the class model)
to a program code animation via graph animation could probably serve us with the
just right amount of information.

60

It could be also interesting to extend Fzecution Patterns the way we extended Infor-
mation Rurals. In particular, since there is a very good tool called Jinsight [6] which
provides for a lot more views on OOSD, for background see also [7, 8].

The need of SV for AOSD is obvious, because it could provide a way better un-
derstanding of the assets and drawbacks of AOSD in a given context. Especially if
we implement more then one aspect and are not able to overview their interrelation.
The question if the ideas discussed in this paper could fulfill this hope is another case.
We welcome all kind of feedback, comments and critics.

6 Bibliography

[1] James Noble, Visualizing Objects: Abstraction, Encapsulation, Aliasing and Own-
ership, Springer-Verlag Berlin Heidelberg, 2002

[2] Jerding, Dean and Stasko, John T., Visualizing Message Patterns in Object-
Oriented Program Executions, Graphics, Visualization and Usability Center, Georgia
Institute of Technology, Atlanta, GA, Technical Report GIT-GVU-96-15, May 1996

[3] John Vlissides, Wim De Pauw, David Lorenz and Mark Wegman, Ezecution pat-
terns in object-oriented visualization USENIX Conference on Object-Oriented Tech-
nologies and Systems, 1998

[4] Stephan Diehl, Carsten Goerg and Andreas Kerren, Foresighted Graph layout,
University of Saarbrucken, Technical Report A-02-2000, February 2000

[5] Stephan Diehl and Carsten Goerg, Graphs, They Are Changing, Graph Drawing
2002, Springer-Verlag Berlin 2002

[6] Wim DePauw et. al. Jinsight , www.alphaworks.ibm.com/tech/jinsight

[7] Wim DePauw, Richard Helm, Doug Kimelman and John Vlissides, Visualizing the
Behaviour of Object-Oriented Systems, OOPSLA 93, October 1993

[8] Wim DePauw, Doug Kimelman and John Vlissides, Modeling Object-Oriented
Program FEzxecution, ECOOP 94, July 1994

61

Refactoring in the Presence of Aspects

Jan Wloka
Fraunhofer FIRST
Jan.Wloka@first.fraunhofer.de

Abstract

Refactoringand Aspect Orientation (AO) are both

concepts for decoupling, decomposition, and
simplification of object-orientedcode. Refactoringis

meantto guide the improvementof existing designs.
For this reasonit is the main practicein eXtreme
programmingo implementembracechangein a safe
andreliableway. Aspectorientationon the otherhand
offers a new powerful encapsulation concept
specifically for coping with so called crosscutting
concerns.

Although refactoringand AO have the samegoals
their current forms impede each other. Since the

developmentof modular systemshas becomemore
and more difficult a combined application of

refactoringandAO is still a desirablegoal andwould

be a great help for developers.

In this positionpaperwe compareboth with the focus

on their capabilities as code transformation
technigues,and try to reveal influences and direct

dependenciebetweenthem. Finally, we discusshow

refactoringandaspecirientationcanhelp eachother
to achieve more modular systems.

Keywords:
Refactoring, Aspect Orientation, AOSD, Crosscutting
Concerns, Code Transformation, Evolvability

1 Introduction

Softwaredeveloperavork everyday on therealization
of requirementsthat are induced by an changing
environment.Often theserequirementsare treatedas
fixed in orderto build a solid specificationfrom it,
which in turn should be usedas a stablefoundation
for the further realizationstages However,it is often
the casethat the environmentchangedasterthanthe
given requirementsare accomplished.In a world
where“moving targets”aredaily businessdevelopers
have to considerpresentand future requirementsn
several stages of the development process.
However,predictingwhatwill be neededn the future
is adifficult task.Usually newrequirementappearor
existing change during the development. Those
unanticipatedchangescause many modifications or
evena completere-implementatiorof variouspartsof

the system.On the otherhand, focussingto much on

potentialchange®f requirementsn advancewill lead
to anover-designedgsystemwith a complex,opaque
and, in effect, unevolvable structure. Hence,
developersare faced every day with changesto

existingpartsof a softwaresystemin orderto adaptit

to changed environmentsor to incorporate new
features.

A techniquewhich allows to change“... a software
systemin suchaway thatis doesnot alterthe external
behavior of the code yet improves its internal
structure”[Fowler99] is called Refactoring. It offers
a disciplinedand safe way to improve the designof
existing code while minimizing the chances to
introduce new bugs. Refactoring deals with
restructuringa systemin sucha way thatthe resulting
changes can be implemented without problems.
Within eXtreme programming ‘embrace change'
togetherwith refactoringallows to keepthe software
system simple without pre-planning its complete
design.

Besideskeeping software soft, the primary goal of
refactoring is simplicity — keeping the systemas
simpleas possible From this the more concretegoals
of elimination of codeduplications,good distribution
of responsibilitiesand codewith low complexitycan
be derived. In general, refactoring decomposes,
decouplesand simplifies structureinto smallertypes
and methods. Thus it improves the readability,
modularity and therefore the evolvability of a
software system.

Aspect Orientation (AO), or more preciselyAspect-
Oriented Software Development (AOSD), is a
softwaredevelopmenparadigmthat was found to be
able to cope with the issuesarisenby crosscutting
concerns.Aspectsare introducedas new first class
entitiesin orderto encapsulaterosscuttingconcerns.
An aspectcanbe implementedn a separatanodule,
though the functionalitiesprovided by it are spread
acrosghe applicationprobablyevencrosscuttedThis
distributionof aspecfunctionalitiesis performedby a
specific integration tool which allows to put a
crosscuttingimplementationof a concernat a single
place, i.e. inside of an aspect.

At the programminglanguagdevel aspectarea new
artefactwhich mainly consistsof the aspectcodeand
connectordefinitions. The aspect code is the code

—1-

62

which isto be woven into the base system. In terms of
Aspect] [Aspect]] it is called “advice code’. The
connector definitions specify the join-points where
the aspect code should be merged with the base code.
With the specification of join-points the connector
definition links to the structure and semantics of the
base code.

Evolving a system means that its (base) code is
refactored or at least modified during the course of
software development or maintenance. In current
aspect-oriented systems the linkage between aspects
and base code is realized using the names of structural
elements. Modifications by refactorings, for instance
to the names or to methods representing join-points,
can render these connections invalid. Therefore, both
refactoring and aspect-oriented programming
languages in their current forms cannot be used with
each other.

In this paper we explore whether refactoring and AO
can coexist and what changes are necessary so that
both are applicable at the same time. Furthermore, we
analyze how refactoring and AO could help each
other reaching their common goal of improving the
modularity of software systems. We compare the
technique refactoring with from a technical point of
view aspect weaving based on the assumption that
both of them are code transformation techniques.

The rest of the paper is organized as follows. Section
2 introduces the key features of refactoring as well as
of AO, and motivates the following analysis. Section
3 compares refactoring and aspect weaving as code
transformation techniques. Section 4 reveals possible
problems induced by simultaneous use of refactoring
and AO. In section 5 we discuss solution possibilities
for cooperation and mutual improvement and in
section 6 we present related work. Finally, in section 7
we offer some thoughts for future directions.

2 Motivation

Both refactoring and AO strive to increase the
modularity of source code. The technique refactoring
offers a safe modification of the structure of code
elements. Several concrete ways to refactor in specific
circumstances have been identified and presented by
Martin Fowler in an initial catalogue [Fowler99].
They are described by a name, the problem, the
context, and the solution in form of a step-by-step
guide. Because the form of a pattern as pioneered by
Alexander [Ale77] is fulfilled, these specific guides
for performing refactoring can be called Refactoring
Patterns.

During the modification process the devel oper follows
such pattern, which define modifications in small,
atomic, and invertible steps. Lets consider an example

refactoring pattern, Extract Method:*

voi d saveState()

{

State state = _nodel.getState();
XM Witer witer
_db. openConnection();

/1 transformto XM

Buf f er buf new Buffer();

buf . add(st at e. get Person().toXM());
buf . add(state.getData().toXM());
buf . add(stat e. get Charge().toXM());

witer.wite(buf);

voi d saveState()

{
State state = _nodel.getState();
XM Witer witer =
_db. openConnection();
wirter.wite(
t oXML(_nodel . get State()));
}
Buf fer toXM_(State state)
{
Buf fer buf = new Buffer();
buf . add(st at e. get Person().toXM());
buf . add(state.getData().toXM());
buf . add(stat e. get Charge().toXM());
return buf;
}

The method saveSt at e() does actualy more as
saving the state of the enclosing object. It aso
converts the object's state to an XML representation.
Therefore, the statements to realize the XML
conversion have to be extracted into a separate
method.

To achieve this, inside of an existing class a new
method is created and given a reasonable name. The
desired statements are copied into it, possible
temporary variables and parameters are identified and
passed into the new method, and finally the extracted
code in the source method is replaced by a suitable
call to the new method.

The appendant mechanics for this Extract Method
refactoring pattern would look like the following:
1. Create a new method, and name it after the
intention of the method ...
2. Copy the code in question from the source

1 For more details the reader is referred to [Fowler99], page 110.

—2_

63

method into the new target method.

Scan the extracted code for references to
any variables that are local in scope to the
source method. ...

See whether any temporary variables are
used only within this extracted code. If so,
declare them in the target method as
temporary variables.

Look to see whether any of these local-
scope variables are modified by the
extracted code. If only one variable is
modified, see whether you can treat the
extracted code as a query and assign the
result to the variable concerned. ...

Pass into the target method as parameters
all local-scope variables that are read from
the extracted code.

Compile when you have dealt with all the
locally-scoped variables.

Replace the extracted code in the source
method with a call to the target method. ...
Compile and test.

8.
9.

Performing these steps manualy however is costly
and error prone, so tools are the preferred way to
handle the transformations in a fast and reliable way.
The so called Tool-supported Refactoring is offered
as an integral part of many modern IDE's, such as
Eclipse or IDEA. A developer usudly selects a
desired refactoring pattern for a certain source code
element, and the refactoring tool then applies it
automatically. Every desired design improvement
seems to be just one click away.

Design improvements performed by refactoring are
limited to object-oriented modularization concepts.
Hence, some design conflicts cannot be solved, often
complexity is only reduced locally. In such cases
complex structures are not decoupled or removed.
They are just moved around or more precisely when
ever a certain structure was simplified at one place it
has been introduced even more complexity to other
structures. The relationships between globally
dependent parts of the system are often difficult to
refactor.

Such design conflicts are often caused by so called
“Crosscutting Concerns’. A concern in genera can
be seen as a particular goal, concept, or area of
interest. The term “crosscutting” indicates that a
concern affects multiple implementation modules. For
object oriented system the implementation of such a
crosscutting concern is spread across many types and
methods. Typical examples for crosscutting concerns
are: synchronization, notification, logging, exception-
handling, memory-management.

Globa design improvements through refactoring are
impeded by crosscutting concerns. Therefore they
could be seen as an indicator for the weakness of
object-oriented modularization concepts. Refactoring

of crosscutting concerns causes “oscillating” structure
— no fixpoint can be found where every required
improvement has been reached. A new concept for
encapsulating those crosscutting implementation of
concernsisrequired.

Aspect-oriented Software Development (AOSD) was
invent to cope with crosscutting concerns. It provides
a new first-class entity — the aspect — to encapsulate
crosscutting concerns. Whereas the new artefact
aspect seems to solve any problem with crosscutting
the underlying aspect-oriented languages need alot of
technical infrastructure to get aspects working.

From a technical point of view — here explained in
terms of AspectF — AO provides two major concepts:
Control flow and Type Modification. The former
enables modifications of specific points within the
control flow, so called join-points. These exposed
points are for example method and constructor
invocations, field references and assignments. Aspect
code can be inserted directly into the control flow
before or after such join-points. Additionaly, it is
alowed to completely replace the code of a join-
point.?

The following example illustrates how control flow
modifications are defined in AspectJ:

cl ass Myd ass

{
public void doSonet hing()
{
/* do something inportant */
}
}
aspect MyAspect
before(): execution(
voi d Myd ass. doSonet hi ng())
/* do something before */
}
}
The class MWC ass contans a method
doSonet hi ng() providing some important
functionality. The aspect MyAspect provides

functionality that should be performed every time
before the method doSonet hi ng() is caled. As
indicated by the keywords bef or e and execut i on
the aspect code is inserted at the very beginning of the
body of the method doSonet hi ng() .

Control flow modifications often require a change to

2 We have chosen AspectJ because it seems to be the most known
AO technology.

In this paper concentrates on so-called static crosscutting, because
dynamic crosscutting and especially dynamic weaving do not
modify source code statically, which makesit difficult to compare it
to source code transformations, e.g. refactoring.

3

—-3-

64

the structure of types that contain join-points. To this
end aspect-oriented programming languages offer the
introduction of new fields and methods. Additionally,
the inheritance relationships can be changed. Type
modifications are used to adapt the internal structure
of a type to be suitable for an aspect code. In
particular, aspect code added to a certain join-point
needs sometimes additional fields are features.

Control flow and type modifications can be defined at
one place —inside of an aspect — yet alow a wide
spread application of changes to many code elements.
The connector definitions specify where an aspect
crosscuts the software system using specific rules for
the selection of join-points which represent the links
between aspects and the remaining system.

Finally, the aspect code must be physically integrated
according to the connector definitions. As mentioned
above, the system and the aspects are composed by a
specific integration tool, called Aspect Weaver. It
applies al regquired changes to the existing code
elements and inserts the additional aspect
functionality. In the example above the aspect weaver
would generate the following code:

cl ass Myd ass

{
public void doSoret hi ng()

{
/* do something before */
/* do something inportant */
}
}

3 Refactoring and Aspect
Weaving compared

In this section we compare the technique refactoring
with aspect weaving from a technical point of view
focussing on code transformation as an underlying
base technology. Aspect weaving is the technique to
integrate aspect-oriented with object-oriented code
which have to be applied before and AO system offers
its complete functionality. That's why we consider in
the following only aspect weaving for the comparison.

The technique refactoring offers a safe way to modify
the structure of code elements. During the
modification process the developer follows
refactoring patterns, which define modifications in
small, atomic, and invertible steps. Every step defines
a distinct modification which can be applied by a tool
in an automated way. In the case of tool supported
refactoring the developer only selects the desired
refactoring pattern, enters parameters (e.g. name for a
new method), and then the tool performs every source
code transformation automatically. Hence, a

refactoring tool can be seen as a source code
transformator.

Also aspect weaving may employ transformation of
source code to adapt the base system. Of course, not
all aspect-oriented approaches employ source code
transformation. For example byte code
transformations as used by Hyper/J and changes to the
runtime environment without modifying the code at
al [DucEstMor02] are common approaches, as well.
However, to have an uniform base for comparison we
only consider aspect weaving as a transformation of
source code. In that case, aspect weaving performs
transformations which are very similar to those of
refactoring, e.g. the insertion of a new method to an
existing class'.

Considering refactoring and aspect weaving from that
point of view, both deal with the application of
changes to object-oriented code but with different
goas.

Refactoring on the one hand transforms source code
elements in order to improve their structure in such a
way that it does not ater the externa behavior. Its
primary goal is simplicity — keeping the code as
simple as possible. To this end, the internal structure
isimproved to ease comprehension and maintenance.
In terms of the visibility to the developer, refactoring
isaways invasive, because the source is changed after
the application of refactoring. For example, the
methods of a class have been simplified after
performing Extract Method - they are doing less in
terms of statements — but the number of methods has
increased. The class now offers a new interface, which
means the way of using that class from other parts of
the system has changed. Therefore, every
modification performed by refactoring has a direct
impact on the developer as they are directly visible to
him.

On the other hand aspect weaving also transforms
source code elements but for a quite different reason.
The major goa of aspect weaving is the explicit
modification of the system's behavior. In particular, an
aspect weaver modifies the object-oriented code in
order to insert additional functionality at certain join-
points, and properly modify existing methods or their
enclosing types.

Compared to refactoring, a weaver transforms source
code in a non-invasive way, because the source code
isn't viewed by the developer anymore after the
aspects are woven into it. Weavers are used prior to
compilation or execution not during coding. The
woven source code is a physically separated copy of
the original source code which is left completely
unchanged. Aspect weaving has therefore no direct

4 Which transformations are used mainly depends on the
implementation of the employed aspect weaver.

To prevent confusion, Refactoring and Aspect Orientation have
the same goal: an improved modular system structure. However, the
application of code transformations performed either by a
refactoring tool or by an aspect weaver follow different goals.

5

—4—

65

impact on the developer and is also invisible to clients
of agiven class.

Despite of their different goals, refactoring and aspect
weaving have much in common especially regarding
tool support. Both aspect weavers and refactoring
tools may change object-oriented source code by
applying transformations on the source code elements,
possibly in an automated fashion. They even use the
same transformations while some other
transformations are used in the opposite direction. A
refactoring tool extracts code into a new method,
whereas an aspect weaver may append some code to
the very end of a method. With this in mind, one
could say refactoring is something like “un-weaving”.

To summarize, both can be used to apply
modifications in an automated way. Refactoring on
the one hand is invasive, visible to the developer,
semantic preserving per definition, but it probably
changes the system's structure. Aspect weaving on the
other hand modifies code non-invasively, is invisible
to the clients of the given class, and purposely
changes the system's structure but aso its behavior.
Source code transformation is a base technology to
which both refactoring and aspect weaving can be
mapped; cf. [Recoder] (in case weaving is regarded as
the static modification of source code).

4 Does Aspect Orientation
impede Refactoring?

The application of an aspect-oriented language in real
industrial projects seems to offer a powerful
modularization concept for the realization of difficult
design problems. In this section severa problems
caused by an integration of refactoring activities and
AO arediscussed in detail.

Refactoring is about changing the structure and
naming of source code elements, for example moving
amethod to a more suited class sinceit uses or is used
by more features of that class.

With AOSD, developers have to dea with new
artifacts. They have to handle and implement aspects,
that is, the aspect code which is to be woven into the
base program and the connector definition, specifying
the join-points where the aspect code should be
merged with the base code. By specifying of join-
points, the connector definition links to the structure
and semantics of the base code.

As an example for a connector definition lets consider
an AspectJ pointcut. It provides the developer the
means to select a set of join-points by enumeration or
by the application of name patterns:

poi nt cut enumar ati onBasedSel ecti on():
wi t hi n(Myd ass)
&& (execution(void MyQ ass. put(int))
| | execution(void Myd ass.get()))

poi ntcut patternBasedSel ection():
wi t hi n(Myd ass)
&& (execution(* put*(*))
| | execution(* get*(*))

The first pointcut enumerates the join-point names
within the context of their enclosing type, that is,
name and structure information are stated explicitly
and are therefore directly bound to the aspect.

The second selects join-points by name patterns
using wildcards. This allows a more generic
description, however it is to some extent bound to
names, as well. In general, name-based connector
definitions as employed by current aspect-oriented
programming languages cause a tight coupling
between aspects and the base system.

If a source code element is targeted by an aspect, and
it is renamed perhaps by using a refactoring, the
connector definition will be rendered invalid.
Refactoring — unaware of AO — changes the structure
of code fragments and with it the names and
relationships of the contained corresponding code
elements. If these elements are targeted by such name-
based connector definitions they have to be updated as
well. Otherwise, the associated aspect code defined to
alter the system's behavior at a specific join-point will
not be woven, which means that the system will lack
the desired behavior.

The tight coupling between aspects and the base
system impedes most kinds of modification, and
therefore it prevents refactoring almost entirely. After
performing a refactoring, verification of the related
connector definitions is required in order to ensure its
correctness. Broken linkages are hopefully indicated
by the aspect compiler, so amanual verification is not
required.

Talking about broken linkages between aspects and
the base system, renaming is one of the most obvious
prablems, though many other refactoring patterns also
affect aspect orientation. For example “Inline
Method” will remove apossible join-point and “Inline
Class” will even remove a complete set of possible
join-points. “Move Method” will remove the join-
point and put it elsewhere. Bigger refactoring patterns
like “RemoveMiddle Man” are composed of severa
smaller refactoring patterns and thus will cause many
problems at once.

Thus, refactoring has to be aware of the linkage
between aspects and the base; it must always know
the exact definition language it is applied to.

Ancther approach to solve this problem might be a
more robust connector definition. Today's aspect-

—5—

66

oriented programming languages lack on expressive,
systematic, powerful pointcut languages. The proposal
by Kris Gybels and Johan Brichau in [GybBri0O3]
employs a logic meta programming framework with
specific predicates to link the aspect to desired join-
points. Concrete names can be replaced by queries
and thus aspects and the base system to become more
loosely coupled.

Currently, the use of AO, especidly the use of
pointcut languages, make a software system more
fragile and sensitive against many kinds of changes.

5 Working hand-in-hand

We have presented several connections of refactoring
and aspect orientation. In the following we want to
discuss how refactoring and AO could be integrated
and how both could help each other to achieve better
modularity. At first we state in which way AO may
support refactoring and then we show possibilities for
refactoring support for AO.

Aspect Orientation alows not only the distribution of
responsibilities across classes but aso their
assignment to aspects; it therefore adds a new
dimension of modularity. When the modularization by
means of aspects is reached by the use of refactoring
then new — even more powerful — refactoring
patterns can probably be found.

Such refactoring patterns would guide the devel oper
step-by-step for instance in extracting some behavior
from different classes into an aspect. However, the
patterns would have to be specific to an underlying
programming model. For example, the programming
model Aspect] offers introductions and advices,
therefore particular refactorings like “Move to
Introduction” or “Move to Advice’, will be needed to
extract object-oriented code into aspects. In contrast
to that, the programming model Object Teams
[Herrmann02] provides teams, roles, and connectors,
which give rise to refactoring patterns like “Move to
Tean”’, “Extract Role Behavior”, and “Expose to
Connector”.

Regardless of the actual programming model these
new refactoring patterns will be a great help for the
extraction and manipulation of aspectsin general.

Apart from that, AO may also be helpful to achieve
the major goal of refactoring: the enforcement of
“once and only once’. Code duplication provides a
good example for the limits of object orientation.
Duplicated code, or even worse, very similar (but not
duplicated) code may be hard to encapsulate by means
of object orientation. Especially widespread
duplication is made up of often nearly the same code
but used in very different contexts. Some aspect
weavers create a lot of duplicated or similar code

across the system if the aspect code is statically
woven at the source code level. It might be interesting
to evauate if a “reverse” action — extracting
duplicated or similar code into aspects — is aso
possible.

Refactoring may alow the restructuring of aspect-
oriented programs in a safe way similar to how it does
for object-oriented software. Every change like
“renaming”, “moving”’, or “extraction” can be
performed in a disciplined and safe way. With tool
support the restructuring of code would be even more
effective and faster. In addition to the links between
objects, as caused by inheritance or use relationships,
AO introduces a new linkage between different code
elements: the aspect — base code relationship. Due to
the invisibility of this linkage [Vollmann02] a
developer does not know whether a certain code
element is connected to an aspect. A solution could be
the enhancement of current refactoring patterns in
order to take care of existing name-based connector
definitions. Furthermore, refactoring tools must be
improved to verify and probably adapt these
definitions in an automatic fashion.

Besides having aspect-oriented code as the target of
refactoring, refactoring can also be a great help in
other areas such as to expose a desired point of the
control flow. Today's aspect-oriented languages like
Aspect) or Hyper/J [Hyper/J provide powerful
mechanisms to crosscut a program's code, but
sometimes they are not expressive enough to access
every desired join-point within the control flow. The
syntax is limited to exposed source code elements like
fields and methods. Refactoring could help here to
expose a certain point of the control flow and make it
accessible. For example, the Extract Method
refactoring pattern allows the extraction of a block of
statements into a new method. An aspect is then able
to place its aspect code right before the extracted
statements. Here, refactoring improves structure not in
the usual sense (simplification), but to insert hooks to
ease adaptation. Hence, the safe preparation of join-
points for being accessible by aspects is apossible aid
for aspect orientation.

6 Related Work

In general, aspect-oriented approaches can be
distinguished into language extensions and
approaches with a tool-like character. Language
extensions provide new syntax elements for an
existing programming language. Their primary goal is
to provide a single programming language for the
implementation of the software system, its aspects, as
well as for the definition as to where and how both
should be composed. Typical examples are Aspect]
[Aspect]], Composition Filters [CF], and Object

—6—

67

Teams[Herrmann02].Tool-like approacheslefine a
secondmoredescriptivelanguageto expresshow the
differentpartsof the softwarearecomposedA typical
exampleis Hyper/Jfrom the IBM hyperspacepeople
[Hyper/J].In this paperwe concentratesn language
extensionsmainly becauserefactoringis about the
transformation of source code. Additionally, it
simplified the discussion because only one

programming language had to be considered.

However,for a technicalpoint of view it would also
be possibleto provide a refactoring tool which is
aware of Hyper/J's hyperspace definitions and
composition rules.

In addition to the discussedapproachesno other
researchwork aboutthe influencesof refactoringto
other AO approachesseemsto be available. Only
somebrief ideaswere proposed,e.g. abouteXtreme
programming and AOP in general [KirJaiCor02].
Apart from that, anothervery importantissuewhich
arise togetherwith refactoring seemsnot very well
investigatedunit testingof aspectsCurrently, just a
few thoughts about the employmentof data flow
testingin order to test aspectshave beenpublished
[Zhao02].

7 Future Directions

Some connectionsbetween aspect orientation and
refactoringhavebeenshown,but thereare othersthat
might be worth to investigate in future research.

Aspectweavinglike refactoringmaytransformsource
code.It would be interestingto evaluatewhatkind of
relationships between source code elements are
changedby whom. It is not clear what kind of
relationships typical implementations of aspect
weaversand refactoring tools change.Moreover, it
would beinterestingto determinewhat propertiesof a
specific relationshipare modified by refactoringand
by aspectweaving. Also, there are generalpurpose
transformation tools like [Recoder], which can
perform generic transformationsupon source code.
We wantto explorewhethersuchtools canbe usedas
the foundation for refactoring and aspectweaving
tools in order to improve the control of code
transformation.

More robustlinkagesbetweenaspectsand the object-
oriented code are needed.We want to investigate
typical changego sourcecodewhich affectconnector
definitions, and we will find out whetherthere are
general differencesbetween control flow and type
modifications. Other approachesfor more robust
connectordefinitions shall be evaluated.That means
in particular how can the required structure
information be obtained,is static program analysis
sufficient and how can the validity of dynamic
connector definitions benecked?

Extensionsto existing refactoring patterns are not
only neededthey are essentiafor the applicationof
current refactoringtools in the presenceof aspects.
We want to investigate how existing refactoring
patternsshouldbe extendedparticularlyin the caseof
aspect-orientegprogrammingmodel, Object Teams.
In doing so, we want to discover what has to be
consideredn detail for eachknown refactoringandif

there are recurring changes to all refactoring patterns.

Finally, somenew refactoringpatternsare neededor
guiding the extraction of aspects.What kind of
refactoring patterns are needed,in particular for
ObjectTeams?Therefore we haveto determinethose
transformationghat aremostoften appliedduring the
decomposition of object-oriented code into teams.

Acknowledgements

Thanksto StephanHerrmannand ThomasDudziak
for valuable feedback and discussions on this
research.

8 References

[Ale77] Christopher Alexander et &
Pattern Language: Towns, Buildings,
Construction”. Oxford University
Press, 1977.

[Aspect]] The AspectJ project, www.aspectj.org

[AspectJProg] AspectJ Team: The AspectJ
Programming Guide.
http://aspectj.org/doc/dist/progguide/.

[CF] The Composition Filters homepage,
http://trese.cs.utwente.nl/composition_

filters/

[DucEstMor02] Frédéric Duclos, Jacky Estublier, and
Philippe Morat."Describing and
Using Non Functional Aspects in
Component Based Applicationgh
Proc. of AOSD, 2002.

[Fowler99] Marting Fowler.“Refactoring:
Improving the Design of Existing
Code”. Addison-Wesley Longman,
1999.

[GybBri03] Kris Gybels and Johan Brichau.

“Arranging Language Features for
More Robust Pattern-based
Crosscuts’ In Proc. AOSD'03, Boston
2003.

—7-

68

[HanUnl03]

[Herrmann02]

[Hyper/J]

[KirJaiCor02]

[MyAOP1]

[ObjectTeams]

[Recoder]

[Vollmann02]

[Zhao02]

Stefan Hanneberg and Rainer Unland.
“ Parametric Introductions” . In Proc.
of AOSD, 2003.

Stephan Herrman. “Object Teams:
Improving Modularity for Crosscutting
Collaborations’. In Proc. of
Net.ObjectDays, Erfurt, 2002.

IBM alphaworks, Hyper/J Homepage,
http://www.al phaworks.ibm.com/tech/
HyperJ

Michael Kircher, Prashant Jain, and
Angelo Corsaro. “ XP + AOP = Better
Software?” . In Proc. XP02, Alghero,
Sardinia, Italy.

Ramnivas Laddad. “ | want my AOP!,
Part 1" . JavaWorld Online Magazine,
January 2002.

Homepage of the 2 generation aspect-
oriented programming language Object
Teams, http://www.objectteams.org.

Homepage of the transformation
framework Recoder,
http://recoder.sourceforge.net

Detlef Vollmann, “ Visibility of
Joinpoint in AOP and other
I mplementation Languages’ , 2002

Jianjun Zhao. “ Tool Support for Unit
Testing of AspectOriented Software” .
OOPSLA'02 Workshop on Tools for
Aspect-Oriented Software
Development, Seattle, WA, USA,
2002.

8-
69

An Example of generating the synchronization code of

a system composed by many similar objects

Szabolcs Hajdara, Balazs Ugron

(Budapest, Hungary)

Abstract. In this paper we take a synchronization specification of a parallel system
in language MPCTL*, then we produce an abstract synchronization skeleton, using
an object-oriented extension of P. C. Attie’s and E. A. Emerson’s method, and
finally a concrete Java code will be generated. The described method should ease
the handling of synchronization by generating the synchronization code of object-

oriented systems, so it should be unnecessary to code the synchronization by hand.

1 Introduction

Synchronization code and real computation code can be separated in the case of most par-
allel programs. If so, the synchronization part of the program can be specified separately
and the synchronization code can be generated from the specification. Let us remark,
that this idea might be derived from the base thought of Aspect-Oriented Programming,
because the synchronization can be considered as an aspect of the system. More informa-
tion about AOP can be found in [15]. Other synchronization techniques can be seen for
instance in [1] and [6].

The synthesized system of K similar objects is a mechanically constructed correct
solution of a precise problem specification given by MPCTL* (Many-Process CTL*) for-
mulas. K is an arbitrary large natural number and an MPCTL* formula consists of
a spatial modality followed by a CTL* state formula over uniformly indexed family of
atomic propositions.

The method used in this paper applies the technique suggested by P. C. Attie and E.
A. Emerson in [10], and it inherits an important advantage of their method, namely how
to deal with an arbitrary number of similar objects without incurring the exponential
overhead due to the state explosion problem.

To use the method developed by P. C. Attie end E. A. Emerson in [10], we had to
solve the handling problem of shared variables by the similar objects. The details can be
found in [12].

70

SynthesisObject SharedObject

- int state;

+ void setState(int value);
+ int getState();

Sick Infectious
- Vector stateSet; <
+ void setState(int value); + void setState(int value);
+ int getState(); + int getState();

Figure 1: The class diagram of the example

2 The Task

We show the method through an example of a simulation program of a surgery.

Given a surgery, which is accepting patients. Patients can be infectious or non in-
fectious. The doctor suggests that the patients, who think they are infectious, should
not stay in the waiting-room if there is some other person in the room, and if there is
an infectious patient in the waiting-room then the other patients should stay outside in
the bright spring sunhine until the infectious patient in the waiting-room leaves. For the
sake of simplicity we do not consider that patients can stay in the surgery, too, we only

consider the synchronization of the the patients in the waiting-room.

3 The solution

According to the method described in [12], a new class (SharedObject) should be intro-
duced for the synchronization, which class takes part in the synchronization of two objects.
Moreover, all classes implement an interface (SynthesisObject), which defines the methods
needed for the synchronization. According to the above, the class diagram of the system
can be designed like in Figure 1.

There will be particular number (defined by the method) of SyntesisObject type objects
in the class SharedObject. The exact description of SharedObject can be found in [12].
The overriding of get and set methods is necessary, because the states of the infectious

patients should be distinguished from the states of non infectious patients.

71

3.1 The temporal logic specification

It is clear from the description of the example, that every patient (which is represented by
object P;) can be in one of the following states: N; (normal), 7; (trying) and S; (surgery).
However, the S state of the infectious patients should be distinguished from the S state of
the non infectious patients (so let it be C'), because the presence of an infectious patient
precludes the possibility of the presence of any other patient.

Using the set of states means that the states of entity P; (a sick or an infectious) are
in set {N,T,S,C} (the appropriate atomic propositions are N;, T;, S; and C;).

An interconnection relation I is introduced to store the process pairs needed to be
synchronized. I(3,j) iff processes i and j are interconnected (see [10]).

The temporal logic formulas, which define the restrictions that the system should
satisfy, are the following (information about temporal logic can be found in [2], [3], [5],
[9], [10] and [11]):

1. initial state (Every object is initially in its normal state. The statement is trivially

true for the objects that are not entered into the system yet, because they are not

in I):
AN

2. it is always the case that any move that P; makes from its normal state leads into

its trying state, and such a move is always possible:

N\ AG(N; = (AV:T; A EXT)))

3. it is always the case that any move that P; makes from its trying state leads into

its surgery or infectious in the surgery state:

N\ AG(T; = (AYi(S; v C1))

4. it is always the case that any move that P; makes from its surgery state leads into

its normal state, and such a move is always possible:

/\ AG(S; = (AY;N; A EX;N;))

5. it is always the case that any move P; makes from its infectious in the surgery state

is into its normal state, and such a move is always possible:

/\ AG(C; = (AY;N; A EX;N;))

6. P, is always in exactly one of the states N;, T;, S; or Cj:
/\ AG(N; = ~(T; v S; v C)))

3

72

/\.AG(TZ- =-(N; VS V()
/\ AG(S; = ~(N; VT; v Cy))

/\AG ~(N; VT,V S;))

7. P; does not starve:
/\ AG(T; = AF(S; v C;))

8. a transition by one process cannot cause a transition by another:

/\. AG((N; = AY;N;) A (N; = AY;N;))
(4]

A, AG(T: = AYT) A (T; = AYITy))
tj

/\. AG((S; = AY;S;) A (S; = AY;S;))
L]

/\. AG((C; = AY;C;) A (C) = AYiCy))
)

9. the infectious in the surgery state of a process precludes the surgery and the infec-

tious in the surgery states of the other processes:

N\, AG((~(C: A CY) A (<(Ci A 8) A (=(5: A)

3.2 Synthesis of the synchronization skeleton

The synthesis of the synchronization code is processed by an object-oriented extension
([12]) of P. C. Attie’s and E. A. Emerson’s method ([10]), after building the synchroniza-
tion skeleton of a pair-system by E. A. Emerson and E. M. Clarke’s method ([9]), so the
abstract synchronization code of the full system is generated. Object-oriented techniques
can be found in [7] and [14].

The synchronization skeleton generated by the method related to systems consisting
objects is shown in Figure 2. Notation X; means that object ¢ is in state X, namely
((SynthesisObject)objs.get(i)).getState() =

An infectious patient never can be in state S, and a sick never can be in state C,
so these states may be removed from the synchronization skeletons of the appropriate

objects. The result is shown in Figure 3.

3.3 Implementation

Let us consider the problem of writing and reading I. The methods used for reading

and writing I can be given too; these methods are practically static methods of class
SharedObject.

73

®c i (true — skip)

®ic1iy(N; v (T; A xyy=1i) v S; — skip)

®jc1y((N;V (T; A x5 = i) — skip)

®je 1)(true — skip)

Figure 2: Synchronization skeleton of the example

jerif(Tj — x;;:=] @

Nj vSiv(C— skip

®Ojcii)(N; Vv (T; A x5 = 1) — skip)

®je](l')(true d Sklp)

®ie i (true — skip)

Nj vSivC— skip

Figure 3: Final synchronization skeleton of Infectious (above) and Sick (below)

Of course, the case is not enabled when I is being changed by an object and [is being
read by an other object at the same time. This means that an object can not evaluate
transition conditions while an other object is changing /. Furthermore, writing / has to
have priority against reading /. To implement these restrictions let us introduce a counter
named readCount to count the objects reading I, and a counter named writeCount to
count the objects writing or going to write I as well as counter read Wait to count the
objects which are waiting for I to read. Moreover, let us introduce two semaphores named

readSem and writeSem. Let us consider the possible cases:

e If an object wants to read I and writeCount is zero then readCount should be

incremented by one and the object is allowed to read I.

e If an object has finished reading I then readCount should be decremented by one

74

and if readCount is zero but writeCount is positive then the first object sleeping on

writeSem should be awaken.

e If an object is going to read I but writeCount is positive then read Wait should be

incremented by one and the object is put to sleep on semaphore readSem.

e If an object is going to write I and readCount is zero and writeCount is zero then

writeCount should be incremented by one and the object is allowed to write I.

e If an object has finished writing I then writeCount should be decremented by one

and the following cases are possible:

— If writeCount is positive then the first object that is sleeping on semaphore

writeSem should be awaken.

— If writeCount is zero but read Wait is positive then the first object is sleeping

on semaphore readSem should be awaken.

e If an object is going to write I but readCount is positive or writeCount is positive
then writeCount should be incremented by one and the object is put to sleep on

semaphore writeSem.

The changes of the counters and condition evaluations must work in mutual exclusive
mode so these operations must be protected by a semaphore named mutex. Before every
mentioned operation muter should be let down and mutexr should be lift up before an
object is put to sleep. According to this, we must not lift up muter when an object wakes
up another object but we must lift up the semaphore if no another object will be awaken.
Furthermore, read Wait should be decremented by one before a reader object is awaken.

Let us deal with the evaluation of conditions, namely method setState in the following.
To produce method setState, the abstract program of the synchronization, which is a finite
deterministic automata, is given by the algorithm. Then we make the condition checker
part on the basis of the conditions in the automata and if a given condition is fulfilled
then we execute the action part associated with the condition. The automata may be
given by a list of the transitions. Only one transition can be generated by the synthesis
between two states, so a transition may be built from the following elements: start state,
end state, condition (in Polish form expression in order to simplify the evaluation), the
list of the operations on the shared variables.

We have to solve the problem of synchronization of the condition evaluation and the
execution of the actions belonging to the conditions. Method setState uses the values of
the shared variables and may change the variables, too, in case the transition is enabled.
That is why the shared variables should be changed by at most one object simultaneously.
Let us notice that this restrictioin is not enough, because if an object A has evaluated

the condition of a transition and finds out that the transition is enabled then object B

75

changes the values of the shared variables before A would do the transition and so the
system may be in inconsistent state. That is why we have to assure that an object can not
start evaluating a condition while another object is trying to process a transition (namely,
the object has started the evaluation and has not done the action).

Some level of exclusion has to be provided in order to evaluate the conditions, namely,
no two objects can be in their condition evaluating phase at the same time.

To solve this issue, let us introduce a token for every connection of every object. Then
if an object is going to change its state — so it is going to evaluate a condition — it must
ask the tokens of all the objects connected to it. Hence, every element in I has a token
attribute and a captureToken and a releaseToken method. The token is a reference to a
SynthesisObject type object, and its value shows which object owns the token. Value null
indicates that the token is not owned by any object. The return value of captureToken
may be true or false. Value true indicates that the token is successfully got, and false
indicates that the token is reserved. Method captureToken works in mutual exclusive
mode.

Possibility of deadlock arises in progress of obtaining tokens. Deadlock can be avoided
if an object drops all tokens that it owns if it tried to get a token from an object that is
already waiting for a token, and the object restarts obtaining token some time later after
dropping. It is clear that this implementation may lead to livelock: let us suppose that
objects a, b and ¢ are going to obtain tokens from each other. Let a get the token from b,
b from ¢ and ¢ from a. Then let a ask the token from c. It is not possible, so a drops all
the tokens it owns. Then let ¢ try to get the token from b. It fails, so ¢ drops its tokens
too. Then only b has any token. Then let a get token from b, and ¢ from a, then start
this process again with a simple modification so that ¢ will be the only object that owns
any tokens. And so on.

We mention a method to avoid the possibility of livelock. The method is the intro-
duction of a binary semaphore that is let down by every object for the time while it is
trying to obtain tokens. If an object can not get a token then it releases all tokens it got
and lifts up the semaphore. The implementation of this semaphore practically should be
placed in SynthesisObject, because the obtaining of tokens is associated with I. In this
case only one object is able to obtain tokens at the same time, so livelock can not take
place.

According to the above, taking the abstract code produced by the synthesis into con-
sideration, the algorithm will generate the following concrete code for the class Sick (for
lack of space only the method SetState is considered here; the complete source code can

be downloaded from http://sleet.web.elte.hu/files/surgery.zip):

public class Sick implements SynthesisObject {

public void setState(int value) throws Exception {

7

76

boolean succed = false;
SynthesisObjectPair sop;
SynthesisObject so;
if (!'(((state == N) && (value == T)) || ((state == T) && (value == S)) ||
((state == S) && (value == N))))
throw new Exception("Invalid state transition");
while (!succed) {
succed = true;
while (!captureToken())
Thread.sleep(1);
try {
if ((state == N) && (value == T)) {
for (int i = 0; i < SharedObject.getICount(); i++) {
sop = SharedObject.getI(i);
if (sop.belongToObject(this)) {
so = sop.getOtherObject (this);
if (!'(so.getState() == T) && !((so.getState() == N) ||
(so.getState() == S) || (so.getState() == C)))

succed = false;

}
if (succed)
for (int i = 0; i < SharedObject.getICount(); i++) {
sop = SharedObject.getI(i);
if (sop.belongToObject(this)) {
so = sop.getOtherObject (this);
if (so.getState() ==T)
sop.getSharedObject () .setV_1(so);

}
if ((state == T) && (value == S)) {
for (int i = 0; i < SharedObject.getICount(); i++) {
sop = SharedObject.getI(i);
if (sop.belongToObject(this)) {
so = sop.getOtherObject (this);
if (!((so.getState() == N) || ((so.getState() == T) &&
(sop.getSharedObject () .getV_1() == this)) ||
(so.getState() == 8)))

succed = false;

77

}

if ((state == 8) && (value == N)) ; // nop
}
finally {

releaseToken();
}

if (!'succed)
Thread.sleep(10);
}

state = value;

4 Conclusion

It is clear from the foregoing, that the described method can be applied with ease for
generating the synchronization code of object-oriented systems, so it is unnecessary to
code the synchronization by hand.

The state explosion problem is successfully avoided, although, the generated code

become more difficult and less effective with the increasing number of classes.

5 Future work

Considering that the synchronization skeleton of individual objects may contain states
which can never be taken, the deadlock checker algorithm (the algorithm is detailed in
[11]) may result that deadlock is possible, nevertheless deadlock freedom would be set
out in the original system. Consequently, deadlock checking possibilities and extra work
needed to manage the above issue should be considered.

The implementation of classes SharedObject, Semaphore and SynthesisObjectPair can
be applied directly in any system synthesized by the method described above. The imple-
mentation of the descendants of SynthesisObject should be generated, the implementation

of the generator program is in progress.

References

[1] G. R. Andrews, A Method for Solving Synchronization Problems, Science
of Computer Programming 13 (1989/90) pp.1-21

78

2]

3]

[4]

[5]

[6]

7]

18]

19]

[10]

[11]

[12]

[13]

7. Manna, P. Wolper, Synthesis of Communicating Processes from Temporal
Logic Specifications, ACM TOPLAS 6 (1984) pp. 68-93

E. Récz, Specifying a Transaction Manager Using Temporal Logic, In: Proc.
of the Third Symposium on Programming Languages and Software Tools,
Kaariku, Estonia, (1993) pp. 109-119

L.Kozma, A Transformation of Strongly Correct Concurrent Programs In:
Proc. of the Third Hungarian Computer Science Conference (1981) pp. 157-
170

F. Kroger, Temporal Logic of Programs, Springer-Verlag, Berlin Heidelberg
(1987)

Z. Horvath, The Formal Specification of a Problem Solved by a Parallel
Program - A Relational Model, Annales Univ. Sci. Budapest, Sect. Comp.
17 (1998) 173-191

L. Kozma: Shared Data Abstractions, In: Proc. of Fourth Hungarian Com-
puter Science Conference, M. Arato, 1. Katai, L. Varga (eds) Gyér, pp.
201-210, (1985)

Kozma Laszl6, Varga Lasz16, Parhuzamos rendszerek elmezése ELTE, TTK,

Informatikai Tanszékcsoport, 2002

E. A. Emerson & E. M. Clarke, Using branching time temporal logic to
synthesize synchronization skeletons. Science of Computer Programming, 2,
pp. 241 - 266

P. C. Attie & E. A. Emerson, Synthesis of Concurrent Systems with Many
Similar Processes, ACM TOPLAS Vol. 20, No. 1, (January 1998) pp. 51-115

P. C. Attie & E. A. Emerson, Synthesis of Concurrent Programs for an
Atomic Read/Write Model of Computation ACM TOPLAS Vol. 23, No. 2,
(March 2001) pp. 187-242

Sz. Hajdara, L. Kozma and B. Ugron, Synthesis of a system composed by
many similar objects, Analess Univ. Sci. Budapest., Sect. Comp. 22 (2003)
(Under publishing)

J. Rumbaugh, M. Blacha, W. Premerlani, F. Eddy, W. Lorensen Object-
Oriented Modelling and Design, Prentice Hall Inc. (1991)

10

79

[14] R. Kurki-Suonio, Fundamentals of object-oriented specification and model-
ing of collective behaviors, Object-Oriented Behavioral Specifications (Eds.
H. Kilov and W. Harvey), Kluwer, (1996) pp. 101-120

[15] Aspect-Oriented Software Development, http://www.aosd.net

Szabolcs Hajdara, Balazs Ugron
Department of General Computer Science
Eo6tvos Lorand University

XI. Pazméany P. sét. 1/c.

H-1117 Budapest, Hungary

11

80

Composing Non-Orthogonal Aspects

Andreas 1. Schmied, Franz J. Hauck

Distributed Systems Laboratory - University of Ulm, Germany
{schmied, hauck}@informatik.uni-ulm.de

Separation of concerns is a well known and accepted strategy to handle the vast and various
aspects of complex systems. Especially, distributed systems contain lots of cross-cutted and
tangled code fragments to fulfill their services. Merging formerly separated aspect code
with program code by means of aspect-oriented programming is enabled through a couple
of available technologies that manipulate program sources. Unfortunately, these tools or as-
pect weavers both operate on a distinct coarse-grained level (types, methods) and fulfill
only a restricted a-priori known set of manipulations.

In contrast, we want to weave several aspect code fragments, which could have been con-
structed by independent teams, for more than one concern simultaneously. A composition
that not only concatenates aspects, but also manages joint effects between them, reveals
several complex, possibly interfering weaving demands.

To give feasible development support, our existing code-weaving framework ADK will be
extended to cope with that widely discussed problem of composing conflicting concerns.
We propose the concept of transformation processes. Each code conversion step is paired
with some meta-level object that holds detailed information about its semantics (using pre-
and postconditions) and the composition demands. This information allows the ADK to de-
cide automatically, whether a complete composition of transformations is executable or not.

1 Introduction

Distributed systems contain a vast amount of cross-cutted and tangled code fragments, e.g., to
provide internal synchronization and to support common services like location transparency,
transactionality, persistence, live-cycle management, and for us most important, fault tolerance.
Separation of concerns [Parn72] is a well known and accepted strategy to handle the arising

complexity of the underlying source code.

On the particular field of quality-of-service—aware middleware, one of our [Apx] goals is to
weave non-functional aspect code of the previously mentioned concerns jointly into actual, thus
Sfunctional, program code. This shall even be possible if the aspect code was in parts developed

by independent, mutually unknown teams.

In general, middleware frameworks are giving aid during the process of developing distributed
systems. For instance, their development frameworks provide support with specialized genera-
tors that build the adapters needed to integrate functional code (e.g., business entities and logic)
into the middleware runtime environment. Usually the shape and extent of these adapters is con-
trolled either by an external description of what has to be generated (cp. CORBA-IDL [OMG1])

or according to agreements at the language (cp. Java-RMI with Remote Interfaces [Sunl]), or

81

maybe at the compiler level (cp. stub compilers for both CORBA-IDL [OMG2] and RMI
[Sun2]).

All those similar forms of code generation have one characteristic property: they just add certain
code fragments to existing code. Usually this is even stricter in terms of adding whole new trans-
lation units to a project, i.e., entire new files. In contrast to these additions, complex conversions
inside the code are rarely done, at best changing the inheritance hierarchy when introducing a
special base-class usage. This conversion is hardly ever done by means of transformation tools,

but often manually by the programmer.

Adding files and small code enhancements seems to be sufficient for most daily cases of devel-
oping middleware-based software, except for the task of merging totally cross-cutted aspect
code with program code. In the latter case, the code manipulator faces the challenge of weaving

code fragments at a more fine-grained level into the original program.

One yet simplified example might be to add fault tolerance to all outgoing remote method calls
of'a class: Special added interceptors may delegate method calls to multiple servers, completely
transparent to the programmer’s perspective, and return one safely fetched result to the caller.
This task is achievable following the paradigm of aspect-oriented programming (AOP)
[Kicz97] using aspect weaving technologies like AspectJ [Kicz01], Hyper/J [TaOs01], or by us-
ing our own code weaver AspectIX ADK (application development kit) [Walt01][NennO1]. The
major benefit for the developer is, that the replication logic can be written separated from the
original code as an aspect; it may then be used by means of aspect weaving for several classes

that need replication.

The ADK provides similar functionality of code manipulation with small entities, named
weavelets. They first of all allegorate fundamental manipulations like AddinstanceVariable or
CreateClass. Each weavelet is designed as a Java class and instantiated per action during a
weaver session. Code conversion is potentially ranging from large structures (modules) down
to smallest language elements (statements, expressions, operators). Beyond these simple ac-
tions, weavelets can be composed to larger units—being weavelets themselves—which accom-
plish more complex procedures like CreateDelegateClass or AddInvocationCounter. The latter
proceeds delegating to AddInstanceVariable and then appends an increment statement to each
of the observable methods; the AppendToMethod weavelet, also being incorporated here as a
sub weavelet, takes care of potential returns or throwable exceptions as a pitfall during the task

of “appending to a method’s code”.

82

All mentioned technologies provide some mechanism for constructing such chains of weaving
commands. Critically, the programmer must exactly know all details about the intent and the
effect of each single manipulation step in chain. If we would introduce another code converting
process to the above replica example, e.g. providing some caching facility, it would be neces-
sary to declare where or when it should have effect: is the one result picked out of many replicas
or each single to be cached. Adding another feature, e.g. a security module, one may encounter
the former replication code incompatible with the security code; used together, they may irreg-

ularly change the semantics of our program.

A fact of utmost importance for all aspect weavers is their semantics-preserving behavior. How-
ever, if the semantics of the origin program needs some adjustments, these should be manage-
able and deterministic. Hence, composition may be viable with some fully-controlled self-made
code manipulations, but grows in complexity with the growth of your aspect code and the
amount of separated concerns. It is getting even harder to manage, if you have no or restricted

access to the aspect code, that was maybe developed by another team.

We try to solve that problem of composing independently created aspect code with several ex-
tensions to our existing tool: weavelets will have reflective data annotated, sufficient to make

their joint effects comprehendable and manageable for the ADK runtime.

In the next sections we will present a summary of composition problems, outline our proposed

solution, and give some more in-depth view of implementational enhancements.

2 Problem Statement

After the last thirty years of intense discussions about how to identify and how to separate cross-
cutting concerns [Parn72][TOHS99], the scientific community strengthened its activities exam-
ining how these separated concerns might again be plugged together. This is very challenging
especially for non-orthogonally interacting concerns [Silv99], which shall be our problem class

of interest.

For this very class of concerns a simple concatenation of weaving operations is not sufficient.
One first reason that renders a simple solution impossible are dependencies between these op-
erations. Even independent weaving operations might not be executable in arbitrary order, as
the result would not be the expected, because not all operations are commutative regarding the

program semantics.

A second and even more interesting reason is that manipulations of one weaving process might

conflict with the demands of another or be mutually exclusive [BTGAO0]. For instance, the op-

83

erators of a first manipulation process may delete a certain class that is to be touched by a second
one. Thus, attention should be paid to the order of our manipulations: even though the class
might have been deleted afterwards, both processes could have taken place consecutively if they

were executed in reverse order.

Beyond this, a programmer has to decide which mutual influence chained manipulation pro-
cesses have on each other. For example, a programmer wants to insert some trace code into ev-
ery method body and some security code that introduces new methods. Both transformations
may be applied in arbitrary order, but the developer may prefer a specific one, as he wants to
decide, whether the newly added security code is also to be traced or not. In general, some es-
sential factors are not clearly defined:

+ the scope of some target quantifier, e.g. the quantifier “all methods”,

+ the point in time, when each single one in a chain of manipulations takes effect,

+ the fixed point of recurring weaving processes, e.g. tracing of traced code.

For sensible and effective development, a programmer has support for the separation of aspect
code from the actual program and for merging aspects back later on, e.g. by aspect languages
and weavers. This support is sufficient if the programmer has full control over the entire code,
but not if parts were created by unrelated development teams and not entirely revealed. It should
be possible to take these parts, add some information about how they have to be woven into the

code, and yield an acceptable and semantically correct program with enhanced features.

In our current research we address the following questions:
* What does this information cover and how is it declared?
* Is this information sufficient to permit at least semi-automatic weaving?
» Up to what extent is it possible to weave automatically?
* How can the automation process be maximized?

* How does the user intervene to deal with the remaining effort in manual control?

This set of prerequisites should be answered to achieve our main purpose: making domain-in-
dependent quality-of-service modules offered by multiple developers integrateable among oth-

ers within domain-specific application code.

3 Sketch of a Solution

We will start with some initial research, unveiling our project-specific needs in composing con-

cerns and weaving them jointly. Next, we continue identifying the elementary operations to ful-

84

fill all required manipulation tasks. These operations will be categorized by demands and

effects, more precisely by pre- and postconditions.

It will be a recurring process due to changes in the demands of other AspectIX subprojects,

which will benefit from the development paradigm outlined in this paper.

These categorizations are necessary preliminaries for the concept of transformation processes
(TPs), which is meant to give us detailed control over the behavior during complex arrange-
ments of weaving processes. It is comparable to process algebras as used in CSP [Hoar85], but

here specifically used in the context of aspect-oriented programming [Andr01].

Every distinct step of manipulation will be equated with a corresponding transformation process
at some meta level. A sequence of steps, thus a sequence of TPs, will itself be a TP. Relating to
the earlier depicted categorization of operations, each TP will have its pre- and postconditions
affixed. As a major consequence, each sequence of TPs—being itself a TP—will also have pre-

and postconditions (cp. [Robe99]), though computed ones as drafted in the following formula:
(pre,; = @pre;...prey)) - (post; Upre,) — ... —» (post ;= X(posty))

¢ is the function that estimates the computed preconditions for all TPs in chain in-

cluding influences by prior TPs, respectively.

X is the function that computes an effective postcondition which includes all influ-

ences introduced by all previous TPs in chain.

Each step of code conversion is itself implemented by means of refactoring [Fowl97]. Hence,
all of its implications on changes of structure and semantics of the program are known before
and under control; for instance, the bitter case of inconsistent method renaming will not occur,
as it will never be done lacking similar changes to all the clients’ call statements. In our opinion,
a sequence of manipulation steps can be arranged in a stable fashion, if each self-contained fun-

damental step is safely conducted based on refactoring.

The crucial point is the impact on these “reliable” manipulations within a composition of TPs.
We believe that a stable composition of TPs can be accomplished, if every single TP is stable
and all of them fulfill certain composition predicates by pairs. Once more compared to CSP, this

is equivalent to a proper parallel composition of process automata with certain join points.

Starting with the first in chain of each TP being composed, we try to place them piece by piece
in serial order. TPs changing disjoint subsets of the code may run in parallel and join afterwards

to a single TP thread at some barrier. If certain TP parts are not composable, then either an error

85

must be signalled to the user and the entire transformation must be revoked, or some alternative

must be chosen to correct the problem—if at all possible.

4 Implementation

The mechanisms, needed to implement the concept of transformation processes, will be outlined
in this section. We present the deficiencies of our existing toolkit and some solutions that might

be appropriate for full TP support in the future.

We need two types of control mechanisms to achieve this: namely a description of what has to
be manipulated and how to put it into practice, and a way of composing multiple code modifi-

cations and govern their joint effects.

Regarding the first need, our ADK provides yet a good basis for source code manipulation but
has several limitations, highlighted below. A major change will be to encapsulate each single
weavelet into an entity (TP object) representing a transformation process. All these TP objects
will be visible on a meta layer (cp. computational reflection [Maes87]) and give an insight view
on the effects gained by the underlying manipulations. Handling corrigible collisions between
TPs, the meta layer will offer several interfaces for the management and the optimization of

transformations.

Regarding the second need, assembling weavelets to larger units seems handy and achievable
for simple, non-conflicting manipulations, except for interfering ones. Therefore, we require
some mechanism and a deployment language to declare how composable manipulations get in

touch with each other.

The deployment language needs the ability to express predicates on the composition and com-
petition on TPs. Examples are depends, (not) after/before, not—in—parallel-with, idempotent,
moveable—in—chain, and further constraints. To find an appropriate set of predicates is subject

of our research.

Furthermore, each weavelet has to express its effects at some abstract language level, regarding
both the structural changes and those on program semantics. Compared towards the semantic
analysis of the actual transformable program, it should be possible to understand clearly what
effect each transformation step and all TPs together have on a certain program. As semantic
analysis in general is very difficult, the ADK will provide some interface, that allows domain-
specific analysis modules being plugged in. Then, each self-contained and well-described TP
can offer its own mechanism of analysis, enabling the generic ADK runtime proving its com-

patibility with the program and concurring TPs.

86

The concept of recursively nested transformation processes gives us great opportunities to op-
timize the overall process and to fix some current ADK problems, one of which is explained
next. The before mentioned AppendToMethod weavelet is a grateful example: one possible im-
plementation would be to wrap the whole former method code with a try—finally sequence. For
a simple implementation, the next AppendToMethod would wrap the freshly generated se-
quence redundantly by its own. To inhibit this behavior, a reusage technique was invented that
splits the creation of administrative code—e.g. the before mentioned sequence—and the addi-
tion of the code being implanted. With this solution an acceptable range of reusage problems
are handled; unfortunately the mechanism fails if other weavelets change certain code parts

close-by.

It should be possible to run advanced restructuring algorithms on the graph of transformations.
This strongly depends on understanding the effects and semantics of our manipulations. As an
example, obsolete weavelets could be detected and eliminated (comparable to the removal of
loop invariants during compilation) if the targets they touched are to be deleted by a competing
weavelet. Certainly, this is only permitted, if the eliminated weavlet has no side effects in evi-
dence. Other weavelets could be reordered or grouped together optimizing the runtime of a long
lasting transformation on large projects. The before mentioned unstable mechanism for weave-
let reusage could be substituted by grouping several code-appending TPs as sub entries under
one singleton providing the administrative structures. Incompatibilities between TPs could be
resolved by rearranging them at non-conflicting positions in the chain of composed TPs, pro-

vided their given constraint predicates allow us to do so.

Further on, if'it is not a—priori recognisable, which additional code will be created, one faces the
problem, that an early running on—all—classes TP will not include sources generated afterwards.

We need to solve the problem of a fluctuating set of source code.

We propose the encapsulation of all transformation processes within nested spheres of transac-
tions. Thus, each TP runs inside a transaction and also does each sequence of TPs up to the top-
level transaction incorporating all others. The trick how to cope with that fluctuating source
code is, that a formerly run process can be (partially) rolled back, restructured on demand to
grasp the newly generated code, and then be restarted, henceforth considering the completed

code.

In addition to using transformation processes inside the ADK machinery, we plan some further

enhancements on the toolkit enlarging the usability of its frontend:

87

We provided an easierly understandable interface to the weavelet architecture. Weavelets can be
assembled using an XML-based script, wherein every weavelet action can be represented by an
XML element, named according to the weavelet’s class name, and may contain nested weavelet
elements inside. During interpretation of such a script, the nodes of its DOM representation are
replaced in memory by the respective weavelet objects, and chained with sub weavelets if nec-

essary — we call this process, weavelet tree expansion.

The ADK next generation aims to treat both the Java and the XML variant equally, by present-
ing a dual, mutually convertible interface of both, but each with the same features instead of the
latter one being just a frontend to Java based weavelets. Analogous to the inversion of Java
Server Pages to Servlets [Sun3], an XML based transformation script should be transformable
into Java code and vice versa; the way back will for sure be the more ambitious one and existing
technologies like XSL Transformations [Xslt] and the Tag Library concept [Sun4] need to be

surveyed for sufficience.

Nevertheless, all supported manipulations must be described in a low level manner, but without
abstract concepts like point-cuts as found in actual aspect languages [KiczO01]. It still has to be
discussed, if we might need a high-level aspect-language for our application area and, if any,
whether to invent this language ourselves or to use an existing and approved one as a frontend.
In addition to existing languages, we need phrases to formulate weavelet templates, as the in-
vention of a TP and the application of its instances on a project’s code are supposed to be inde-

pendent.

Currently all those ideas regarding the ADK were, resp. will be, realized in Java. We intend to
abolish this restriction by making the complete process language-independent: Comparable to
a register transfer language (RTL), used as an intermediate representation of a program during
compilation, weaving targets will be parsed and mapped to a meta grammar, supporting the

style and semantics of ordinary object oriented languages.

The development paradigm of utilizing weavelet-based AOP shall be entirely embedded in a
“development process”, which first of all means to us, that the developer roles are discriminable
and the output of our toolkit is reasonable, understandable, debuggable code without the taste

of wizardry.

5 Conclusion

Writing code transformations on behalf of aspect weaving is a complex but practicable way to

integrate the code of separated concerns back into ones functional code. Modern software sys-

88

tems rely on multiple aspects. It is not enough to weave them independently into functional
code, instead they have to be composed to achieve some joint effect. Interfering weaving de-
mands, in particular those of independently developed aspect code, render solutions impossible

that simply concatenate the aspects with each other.

To cope with dependencies, exclusiveness and causality of composed code transformations, we
propose the concept of transformation processes. Based on a description of the transformation
semantics, pre- and postconditions of each TP step, the next generation of our existing code ma-
nipulation tool ADK will be able to control TP behavior and effects during a transformation ses-
sion. Further on, we plan to use the verbose description of TPs for static and on-demand
restructuring to achieve an optimized runtime behavior during transformation of large projects

and to solve dynamically occurring insufficiencies or incompatibilities between TPs.

References

AndrOl James H. Andrews, Process-Algebraic Foundations of Aspect-Oriented Program-
ming. Proc. of the 3rd Int. Conf. on Metalevel Arch. and Sep. of Crosscutting Con-
cerns (Reflection 2001), Kyoto, Japan, Sept.2001, Springer LNCS(2192), pp.187-209

Apx Website of the AspectIX project: http://www.aspectix.org

BTGAO0 Bergmans, Tekinerdogan, Glandrup, Aksit: On Composing Separated Concerns,
Composability and Composition Anomolies, ACM OOPSLA'2000 workshop on Ad-
vanced Separation of Concerns, Minneapolis, Oct. 2000

Fowl97 Fowler, M. Refactoring: Improving the Design of Existing Code, Addison-Wesley,
Reading MA, 1997 — also see: http://www.refactoring.com

Hoar85 C.A.R. Hoare: Communicating Sequential Processes, Prentice Hall, 1985

Kicz01 Kiczales, G, Hilsdale, E., Hugonin, J., Kersten, M., Palm, J. & Griswold, W. G,, An
Overview of Aspectl, in J. L. Knudsen, ed., ECOOP 2001 — Object-Oriented Pro-
gramming, Vol. 2072 of LNCS, Springer-Verlag.

Kicz97 G. Kiczales, et. al.: Aspect-oriented programming. Proceedings of ECOOP 98, Lec-
ture Notes in Computer Science (LNCS 1241). Springer-Verlag, June 1997.

Maes87 Pattie Maes: Concepts and experiments in computational reflection. Conference pro-
ceedings on Object-oriented programming systems, languages and applications, Or-
lando, Florida, USA, 1987, ACM Press, pp. 147-155

NennOl Andrea Nenni: Design und Implementierung eines Code-Transformators fiir den En-
twurf verteilter Objekte. Diploma thesis DA-14-02-04, Informatik 4, Univ. of Erlan-
gen-Nuremberg, Germany, 2001.

89

OMGl1

OMG2

Parn72

Robe99

Silv99

Sunl

Sun2

Sun3

Sun4

TaOs01

TOHS99

Walt01

Xslt

Object Management Group (OMG): Common Object Request Broker Architecture:
Core Specification, Chap.3: OMG IDL Syntax and Semantics, Dec. 2002

http://www.omg.org/technology/documents/formal/corba_2.htm

Object Management Group (OMG): OMG IDL: Details
http://www.omg.org/gettingstarted/omg_idl.htm

D. L. Parnas. On the criteria to be used in decomposing systems into modules. Com-
munications of the ACM, 15(12):1053-1058, Dec. 1972.

Don Roberts: Practical Analysis for Refactoring. PhD thesis, University of Illinois at
Urbana Champaign, 1999

Antoénio Rito Silva: Separation and Composition of Overlapping and Interacting Con-
cerns. OOPSLA'99 First Workshop on Multi-Dimensional Separation of Concerns in
Object-oriented Systems. Denver, Colorado, USA, Nov. 1999

Sun Microsystems Inc.: Java Remote Method Invocation (RMI) Home Page,
http://java.sun.com/products/jdk/rmi/

Sun Microsystems Inc.: rmic - The Java RMI Compiler,

http://java.sun.com/j2se/1.4.1/docs/tooldocs/solaris/rmic.html

Sun Microsystems Inc.: Java Server Pages — Dynamically Generated Web Content

http://java.sun.com/products/jsp/

Sun Microsystems Inc.: Java Server Pages — Tag Libraries

http://java.sun.com/products/jsp/taglibraries.html

Peri Tarr , Harold Ossher, Hyper/J: multi-dimensional separation of concerns for Ja-
va, Proceedings of the 23rd international conference on Software engineering, p.729-
730, May 12-19, 2001, Toronto, Ontario, Canada

Tarr, Ossher, Harrison, Sutton: N Degrees of Separation: Multi-Dimensional Separa-
tion of Concerns. Proceedings of the International Conference on Software Engineer-
ing, Los Angeles, California, USA, May 1999

Christian Walter: Ein Werkzeug fiir modulare Code-Transformationen zur Entwick-
lung verteilter AspectlX Objekte. Diploma thesis DA-14-01-08, Informatik 4, Univ. of
Erlangen-Nuremberg, Germany, 2001.

W3C Recommendation 16: XSL Transformations (XSLT), Version 1.0, Nov. 1999
http://www.w3.org/TR/xslt

90

