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ABSTRACT The increase in the sophistication and volume of cyberattacks has made traditional malware
detection methods, such as those based on signatures and heuristics, obsolete. These conventional techniques
struggle to identify new malware variants that employ advanced evasion tactics, resulting in significant
security gaps. This study addresses this problem by proposing a hybrid model based on deep learning that
integrates static and dynamic analysis to improve the precision and robustness of malware detection. This
proposal combines the extraction of static features from the code and dynamic features from the behavior at
runtime, using convolutional neural networks for visual analysis and recurrent neural networks for sequential
analysis. This comprehensive integration of features allows our model to detect known malware and new
variants more effectively. The results show that our model achieves a precision of 98%, a recall of 97%,
and an F1-score of 0.975, outperforming traditional methods, which generally reach 88% to 89% precision.
Furthermore, our model outperforms recent deep learning approaches documented in the literature, which
report up to 96% precision. In work, it offers a significant advancement in malware detection, providing a
more effective and adaptable solution to modern cyber threats.

INDEX TERMS Malware detection, deep learning, static and dynamic analysis, cybersecurity.

I. INTRODUCTION
Malware detection is a critical concern in cybersecurity due
to the increasing number and sophistication of cyberattacks.
Based on signatures and heuristics, traditional detection
methods have proven insufficient to identify new malware
variants that employ advanced evasion techniques [1].
These conventional methods present significant limitations,
as signature-based techniques rely on predefined patterns
that cannot quickly adapt to malware evolution. In contrast,
heuristic methods, which look for suspicious behavior,
often result in high false favorable rates due to the
difficulty distinguishing between legitimate and malicious
behavior [2].

In response to these limitations, deep learning (DL)
techniques have emerged as a promising solution for their
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ability to learn and generalize complex patterns in large
volumes of data [3]. However, even these recent methods face
challenges, such as detecting obfuscated malware samples
and generalizing them to new threats.

This study proposes a deep learning-based model that
integrates static and dynamic analysis to improve accuracy
and robustness in malware detection [4]. The proposal
combines static feature extraction from code and dynamic
features from runtime behavior, using convolutional neural
networks (CNN) for visual analysis [5]. This integration
allows our model to detect known malware more effectively
and new variants [6]. The results show a precision of 98%,
a recall of 97%, and an F1-score of 0.975, significantly out-
performing traditional methods and some modern approaches
documented in the literature. In comparison, signature- and
heuristic-based methods typically achieve 88% to 89% [7],
while previous studies using convolutional neural networks
achieved up to 96% [8].
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This work presents several important contributions. First,
it introduces a hybrid model combining static and dynamic
analysis using CNN and RNN, improving the detection
of known and new malware [9]. Furthermore, the model
achieves an accuracy of 98%, significantly outperforming
traditional and recent techniques. Limitations of the model
are also addressed, highlighting the need for more flexible
and adaptive architectures and the representativeness of the
dataset. Finally, future research directions are proposed,
suggesting the need for more diverse and representative
datasets and the development of more robust architectures for
malware detection.

The article is structured as follows: the Introduction
presents the context, a literature review, the definition of
the problem, and our proposal. The literature review covers
traditional methods and recent advances in deep learning
for malware detection. Materials and methods include data
selection and preprocessing, model architecture, and training.
The Case Study details the implementation of the system on a
mobile application platform and the evaluation of the results.
The Results and Discussion present an analysis, a comparison
with other approaches, and the study’s limitations. The
Conclusions summarize the findings, potential impact, and
future research directions. Finally, the References used in the
study are included.

II. LITERATURE REVIEW

Malware detection using deep learning techniques has gained
considerable attention in the last decade due to its ability
to identify complex patterns in large and heterogeneous
data [10]. Recent studies have explored various neural
network architectures to improve accuracy and robustness in
malware detection.

A study by Liu et al. [11] introduced a deep neural network
for malware detection using static features extracted from
binary code. This work showed an accuracy of around 95%,
but malware obfuscation and mutation techniques limited
the model’s effectiveness. Compared to our study, which
achieved a precision of 98%, the difference can be attributed
to incorporating dynamic analysis techniques and using a
more complex neural network architecture.

Another significant work is Yadav et al. [12], where a CNN
was implemented for malware detection based on visualizing
binaries as images. This method achieved a precision of
around 96%, highlighting the effectiveness of CNNs in
detecting complex visual patterns. However, this approach is
limited to static features and may be less effective against
malware that uses behavior-based evasion techniques. Our
study combined static and dynamic features, which allowed
for better generalization and superior performance.

Yao et al. [13] proposed using recurrent neural networks
(RNNs) for malware detection by sequencing system calls,
achieving an accuracy of around 94%. RNNs are effective at
capturing temporal dependencies and sequential patterns, but
their ability to handle large volumes of sequential data may be
limited. In contrast, our model used a combination of RNNSs
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and CNNgs to take advantage of sequential and visual features,
thereby improving accuracy and generalization.

The work of Chen and Cao [14] combined static and
dynamic analysis using a deep neural network, achieving a
precision of 93%. Although this approach is similar to ours,
the difference in results can be attributed to our dataset’s
greater diversity and size and the optimization of model
hyperparameters. Incorporating advanced preprocessing and
feature selection techniques also played a crucial role in
improving performance.

Deep learning-based methods have proven more effective
in detecting unknown malware variants than traditional
malware detection methods such as signature-based and
heuristic-based ones. For example, signature-based methods,
such as those discussed by Pandit and Mondal [15],
showed an accuracy of 88%, which is less effective against
new malware variants. Although more adaptive, heuristic
techniques achieved an accuracy of 89% but suffer from
high false favorable rates due to the difficulty distinguishing
between legitimate and malicious behavior. Our study, with
an accuracy of 98%, demonstrates the superiority of deep
learning techniques in detecting modern malware.

Despite the strides made, deep learning for malware
detection has challenges and limitations. The generalization
of new samples and the representativeness of the dataset are
critical issues. Our study identified that approximately 5% of
the latest samples were not detected due to advanced evasion
techniques. Moreover, the representativeness of the dataset is
limited, with 80% of the samples representing only five types
of malware. These issues underscore the urgent need for more
diverse and representative datasets to bolster the robustness
and effectiveness of the models.

Hybrid approaches, which combine static and dynamic
analysis with advanced neural networks, have been explored
to bridge these gaps. For instance, Dong et al. [10] employed a
combination of CNN and DNN to detect malware on Android
devices, enhancing accuracy by integrating multiple features.
Furthermore, Yerima et al. [16] proposed a model that incor-
porates a balancing optimizer with deep learning techniques
for Android malware detection, demonstrating the effective-
ness of hybrid approaches in improving accuracy and gen-
eralization. This progress should reassure the audience that
malware detection techniques are continuously improving.

Ill. MATERIALS AND METHODS

A. DATA SELECTION

This work was developed in a cybersecurity research environ-
ment within the University’s Computer Security Laboratory,
equipped with advanced computing resources and access to
multiple malware databases. The lab is configured with high-
performance servers, large storage capacity, and specialized
software tools for security analysis. The infrastructure
includes GPU clusters to efficiently train deep learning
models and sandboxing systems to execute malware samples
safely.
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Several public and private databases were used to obtain
malware and benign software samples. Public databases
include Drebin [17], a widely used collection of malicious
Android applications, and VirusShare [18], which offers
extensive malware samples for multiple platforms. Internal
repositories of samples collected and labeled by the lab were
accessed, including executable files for Windows systems and
mobile applications for Android and iOS.

The dataset used in this study is classified into two
main categories: static analysis and dynamic analysis. The
static analysis includes features extracted from application
source code and binaries, such as code signatures, requested
permissions, and code structure [19]. On the other hand,
dynamic analysis focuses on the behavior of applications
during their execution, capturing information such as system
call sequences, network activities, and system resource
usage [20]. This duality allows for more complete and robust
malware detection, combining static patterns with dynamic
behaviors.

The dataset used in this study includes 50,000 samples,
distributed between 30,000 malware samples and 20,000
benign software samples. These samples cover a wide range
of malware types, including Trojans, ransomware, adware,
and spyware, as well as benign applications from various
categories, such as games, productivity tools, and social
networking applications. The diversity of malware types and
target platforms (Windows, Android, iOS) ensures that the
deep learning model can effectively generalize and detect
various threats in different operating environments.

B. DATA PREPROCESSING

Data cleansing is crucial in preparing malware and benign
software samples for deep learning analysis. This process
involves several steps to ensure that the data is consistent
and high-quality. First, duplicate samples were identified and
removed using hashing techniques to ensure each sample
was unique [21]. Subsequently, samples that do not provide
relevant information, such as empty files or containing only
non-executable data, are discarded. The data is normalized
to ensure format consistency, such as file names and folder
structures, thus facilitating subsequent analysis [22].

Feature extraction is essential to convert raw data into
useful information that deep learning models can process.
This study used both static and dynamic features. Static
features were obtained through static analysis of the code
without executing it, extracting code signatures, permissions
requested by applications, and structures from the source
code [23]. In contrast, dynamic characteristics were captured
by monitoring the behavior of applications during their
execution in a controlled environment (sandbox) [24].
Sequences of system calls, network activities, and system
resource usage were recorded, providing a dynamic profile
of each sample’s behavior.

Several transformations were performed to prepare the data
for the deep learning model. Binaries of the malware samples
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TABLE 1. Features extracted for malware and benign software analysis.

Feature Type Examples Extraction Method
Static Code signing, Permissions Static analysis
Dynamics System calls, Network activi- | Sandbox monitoring
ties
Data Binary Images, Sequence | Conversion to suitable
Transformation | Vectors formats
Malware
14000 Benign

12000

10000

8000

6000

Number of Samples

4000

2000

System Calls Network Activities

Characteristics

Code Signing Permissions

FIGURE 1. Distribution of extracted features between malware and
benign software samples.

were transformed into images by representing bytes as pixels.
This technique allows CNNs to analyze the samples as if
they were images, identifying visual patterns characteristic of
malware [25]. Additionally, system call sequences and other
dynamic features were converted into numerical vectors using
one-hot encoding and embeddings for RNNs and extended
short-term memory networks (LSTMs).
Specific Examples of Extracted Features: Static Features:
o Code Signatures: Byte patterns in binary code that help
identify similarities between different malware samples.
« Requested Permissions: Permissions that applications
request, such as access to sensitive data or device
functionality, which may indicate potentially malicious
behavior.
Dynamic Features:

o System Call Sequences: These are the software’s
interactions with the operating system, providing a
detailed profile of the software’s actions.

o Network Activities: Traffic generated by the application
is relevant to identifying malicious behavior, such as
communication with command and control servers.

Table 1 summarizes the features extracted for analysis,
including the techniques and data types generated. It also
clearly shows the static and dynamic characteristics and the
transformations carried out.

Figure 1 illustrates the distribution of extracted features,
comparing the number of extracted features between malware
and benign software samples. The graph shows four main
categories of features: code signatures, permissions, system
calls, and network activities. Each category is important for
deep analysis of the samples, providing multiple perspectives
on the software’s behavior and structure.
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Code signatures and permissions are static features
obtained without running the applications. Code signatures,
represented as byte patterns, help identify similarities
between different malware samples. At the same time,
permissions requested by applications can indicate potential
malicious behavior, such as access to sensitive data or
device functionalities [7]. The graph shows more code
signatures and permissions in malware samples than in
benign applications. This is consistent with the hypothesis
that malware requests excessive permissions and exhibits
characteristic code patterns.

On the other hand, system calls, and network activities
are dynamic features captured during application execution
in a controlled environment. System calls to record the
interactions of the software with the operating system,
providing a detailed profile of the actions performed by the
software [26]. Network activities include traffic generated by
the application, which is particularly relevant for identifying
malicious behavior, such as communication with command-
and-control servers. By looking at the relative proportions of
each feature category, the relevance and potential impact of
each data type on the accuracy and effectiveness of the deep
learning model can be inferred.

C. MODEL ARCHITECTURE

The architecture of the deep learning model selected for this
study is a CNN optimized for malware detection. Although
CNN s are traditionally used for image analysis, in this case,
malware and benign software binaries were transformed into
images to take advantage of CNNs’ capabilities in identifying
complex patterns [27]. This technique has proven effective in
several recent studies where binaries are represented visually,
allowing the neural network to detect malicious patterns that
would not be apparent using traditional methods.

The model starts with an input layer that receives 256 x
256 pixel images generated from the application binaries.
This visual representation allows CNN to analyze the data
effectively. Next, several sequential convolution layers are
introduced, each followed by a ReL.U (Rectified Linear Unit)
activation layer. These convolutional layers have 32, 64, and
128 filters, respectively, with kernel sizes 3 x 3. Convolutional
layers are responsible for detecting local features by applying
filters that sweep over the input image, activating neurons
based on the presence of specific patterns.

Each convolutional layer is followed by a pooling layer
(max-pooling) of size 2 x 2, which reduces the dimen-
sionality of the data by selecting the maximum values in
non-overlapping regions of the convolutional output [28].
This pooling process helps reduce computational complexity
and prevent overfitting to the model, extracting the most
relevant features more efficiently. Subsequently, the data
passes through two fully connected (FC) layers with 256 and
128 neurons, respectively, followed by a ReLLU activation.
These fully connected layers act as high-level classifications,
combining the features extracted by the convolutional layers
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Input layer |
(256x256) \

Conv Layer 1 | Pooling 1
(32, 3x3) | (2x2)
Conv Layer 2 | Pooling 2
(64, 3x3) | (2x2)
Conv Layer 2 | Pooling 3
(128, 3x3) (2x2)
FC Layer 1 FC Layer 2
(256) (128)

‘ Out Layer ‘
(Softmax)

FIGURE 2. Block diagram of CNN model architecture.

to make the final prediction. Finally, an output layer with a
SoftMax activation function is used for binary classification,
determining whether the sample is malware or benign soft-
ware. Figure 2 illustrates the model’s architecture, showing
how the different layers are interconnected to process and
classify the samples.

The hyperparameters selected for training the model are
crucial for its performance and precision. The learning rate
was set to 0.001, a low rate that ensures that the model stably
converges toward the global minimum of the training error.
The number of epochs was set to 50, allowing sufficient
training of the model without the risk of over-fitting. The
batch size was set to 64, an intermediate size that balances
training efficiency and gradient stability. Additionally, the
Adam optimizer was used for its ability to adapt to changes
in the gradient dynamically, accelerating the convergence
process.

Widely recognized tools and frameworks in deep learning
were used to develop the model. TensorFlow was the
primary framework used to build and train the model. Keras,
a high-level API integrated with TensorFlow, simplified
the definition and training of neural networks [29]. Python
was the programming language to implement the entire
data preprocessing and model training pipeline. Jupyter
Notebooks was the interactive environment for developing
and experimenting with the model, facilitating visualization
and parameter adjustment.

D. MODEL TRAINING

To ensure that the deep learning model generalizes well
to previously unseen data, the data was divided into three
sets: training, validation, and testing. Of the total 50,000
samples, 70% (35,000 samples) were used for the training
set, 15% (7,500 samples) for the validation set, and the
remaining 15% (7,500 samples) for the test set. This balanced
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split allows you to evaluate the model’s performance at
each training stage and adjust parameters as necessary. The
samples were randomized to avoid bias and ensure that each
set adequately represented data types, malware, and benign
software. Additionally, class balances were ensured within
each set to prevent the problem of class imbalance, which
could lead to a biased model.

The model training procedure involves several steps to
optimize the model’s performance and ensure its robustness.
The training was carried out in a high computing environment
using GPU clusters, specifically NVIDIA Tesla V100, which
provide the power needed to handle the large volume of data
and complexities of the deep learning model. The choice of
GPUs was based on their ability to perform massively parallel
calculations, which is essential to accelerate the training
process of deep convolutional neural networks.

The first step in the training procedure was setting up
the environment. The TensorFlow framework was used
with Keras, running in a development environment based
on Jupyter Notebooks, allowing easy manipulation and
visualization of data and results [30]. The training scripts
were implemented in Python, taking advantage of the
advanced deep-learning libraries and tools available in this
ecosystem. Additionally, Docker containers were used to
ensure the development environment’s reproducibility and
facilitate the model’s deployment on different operating
systems and hardware configurations.

Several regularization techniques were applied during
training to prevent overfitting and improve the model’s
generalization ability. The dropout technique was used in
the fully connected layers, with a dropout rate of 50%. This
technique randomly turns off a fraction of the neurons during
each training step, forcing the model to learn more robust and
distributed representations. Additionally, batch normalization
was implemented after each convolutional layer [31]. This
technique normalizes the activations of each mini-batch,
stabilizing and accelerating the training process by reducing
the problem of fading and gradient explosion.

The training process was carried out for 50 epochs,
with a batch size of 64 samples. The loss function used
was binary crossentropy, which is suitable for binary
classification. The Adam optimizer, known for its ability to
adapt to changes in the gradient dynamically, was used to
minimize the loss function. During training, model perfor-
mance was continuously monitored on the validation set,
adjusting hyperparameters to optimize precision and reduce
error.

Several evaluations were performed during the training to
monitor model performance and ensure that overfitting did
not occur. These evaluations included cross-validation, where
the training set was further divided into k-subsets, and the
model was trained and evaluated k times, each time using a
different subset as the validation set and the remaining k-1
subsets as the validation set training [11]. This technique
helps ensure that the model generalizes well and is not overly
dependent on any specific subset of the data.
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In addition, data augmentation techniques were imple-
mented to increase the diversity of the training data and
improve the model’s ability to generalize to new samples.
These techniques included rotating and scaling the images
generated from the binaries and introducing Gaussian noise,
which helps simulate variations in the data and makes
the model more robust to different representations of the
malware [32]. The training process was monitored using
precision and loss plots for the training and validation
sets. These visualizations made it possible to quickly
identify any signs of overfitting or underfitting and adjust
the hyperparameters accordingly. Additionally, Keras used
callbacks to implement early stopping, stopping training if the
loss on the validation set stopped improving for a predefined
number of epochs, thus preventing overfitting.

E. VALIDATION AND EVALUATION

Model validation and evaluation ensure that the deep learning
model performs optimally and can adequately generalize to
unseen data. Several evaluation methods and metrics were
used to evaluate the model’s performance. Cross-validation
was used to assess the stability and generalization of the
model. This study applied k-fold cross-validation, dividing
the training set into k subsets (folds). The model is trained k
times using k-1 subsets for training and the remaining subset
for validation [33]. This is repeated k times so that each subset
is used exactly once as a validation set. Cross-validation
helps ensure the model does not overfit a specific part of
the training data set. The primary evaluation metric on each
fold is calculated, and then the metrics across all folds are
averaged to obtain a robust estimate of model performance.

To evaluate the model’s performance, the following metrics
were used: precision, recall, Fl-score, and the area under
the ROC curve (AUC-ROC) [34]. These metrics provide a
comprehensive view of model performance regarding binary
classification (malware vs. benign).

Precision: Precision is the proportion of correct predictions
over the total predictions. TP is the number of true positives,
TN is the number of true negatives, FP is the number of
false positives, and FN is the number of false negatives. It is
calculated as:

. True positives
Precision = — — ()
True positives + False positives

Recall (Sensitivity or True Positive Rate): Recall measures
the model’s ability to identify all positive samples correctly.
It is calculated as:

Recall = True positives

2
True positives + False negatives )
F1-score: The Fl1-score is the harmonic mean of precision
and recall, balancing the two. It is calculated as:

2 x Precision x Recall
F1 Score = — 3)
Precision + Recall

AUC-ROC: The ROC curve is a graph that shows the
relationship between the true positive rate (TPR) and the
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false positive rate (FPR). The AUC provides a single
measure of performance, where a value of 1 indicates
perfect performance and a value of 0.5 indicates random
performance. The AUC is calculated using the integral of the
ROC curve. The TPR and FPR are defined as:

TP
TPR= — )
TP + FN
FP
FPR= — 5)
FP+ TN

The independent test set (15% of the total data) was
used to conduct the evaluation, which was not seen by
the model during training. This approach ensures that the
evaluation metrics reflect the model’s actual performance on
unseen data, accurately measuring its generalization ability.
In addition, confusion matrices were generated to analyze the
model predictions in detail. Confusion matrices allow you to
identify and quantify true positives, false positives, and false
negatives, providing a detailed view of areas where the model
can improve.

F. REAL-TIME IMPLEMENTATION

Deploying the deep learning model in a production envi-
ronment requires careful integration with other software
components to ensure efficient and reliable operation. The
trained model is deployed on a highly available server,
integrated with a micro-services architecture to facilitate
interaction with other systems and applications. The system
architecture includes several main components. First, a ded-
icated inference server that uses GPUs to speed up request
processing. This server is connected to a RESTful web
service that allows external applications to submit real-time
software samples for analysis.

Additionally, a NoSQL database stores records of the infer-
ences performed, including classification results, response
times, and any errors found. This allows for continuous
monitoring and rapid response to operational problems [35].
The preprocessing pipeline ensures that software samples
undergo a feature extraction and transformation process
like during training, ensuring consistency in the input data.
The threshold-based alert system notifies administrators of
detected anomalies, such as an unexpected increase in false
positives or high response times.

Several techniques were implemented to optimize
real-time model performance, ensuring fast and efficient
inference without compromising model precision. Compres-
sion techniques such as quantization and weight pruning were
applied to reduce the model’s size and improve its inference
efficiency. Quantization reduces the precision of the model
weights from 32 bits floating point to 16 or even 8 bits. At the
same time, pruning removes insignificant weights that do not
significantly affect the precision of the model. The model
runs on high-performance GPUs, such as the NVIDIA Tesla
V100, capable of massively parallel calculations.

Additionally, the use of TPUs (Tensor Processing Units)
was evaluated for specific inference tasks, which could offer
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additional benefits in terms of latency and performance.
A cache system was implemented to store recent inference
results to improve efficiency and reduce latency. This is
particularly useful for samples analyzed repeatedly, avoiding
the need to process the same samples multiple times. Using
a load balancer distributes inference requests across multiple
inference server instances, ensuring no single point of failure
and improving system scalability.

Several continuous monitoring and evaluation methods
were implemented to ensure the malware detection system
works effectively in a real production environment. Stress
tests were performed to evaluate system performance under
load, simulating a high volume of inference requests to
identify potential bottlenecks and ensure the system can
handle traffic spikes without performance degradation [36].
A continuous monitoring system was implemented using
tools such as Prometheus and Grafana, which allow tracking
key metrics such as inference latency, error rate, and resource
utilization in real-time. This helps detect operational issues
quickly and take corrective action before they impact end
users. In addition to operational metrics, model precision
in production was monitored by collecting and analyzing
ground truth labels for a subset of the analyzed samples. This
allows you to continually evaluate the model’s effectiveness
and adjust parameters as necessary. A feedback loop was
established where newly labeled samples are fed back to the
model to perform periodic adjustments and retraining, thus
continuously improving its detection capacity and adapting
to new threats.

G. ETHICAL AND SAFETY CONSIDERATIONS

Implementing a deep learning-based malware detection
system involves technical challenges and ethical and security
considerations important for its acceptance and effectiveness
in real environments. Data privacy is a priority in designing
and implementing the malware detection system. Several
measures were adopted to ensure the privacy and security
of the data used and generated by the system. First, all
sample data is anonymized before use in model training and
evaluation. This includes removing personally identifiable
information (PII) from software samples and inference logs.
Before the anonymization process, the risk of explicit or
implicit inferences shall be assessed; that is, the structure
and information within an attribute shall be identified and
understood to ensure that all inference records have been
removed. Data is also encrypted at rest and in transit
using advanced encryption algorithms, such as AES-256,
to prevent unauthorized access. Data accesses are restricted
to authorized personnel through role-based access controls
(RBAC), ensuring only users with appropriate credentials can
access sensitive information [37].

Malware detection carries ethical implications that must
be carefully considered. One of the main challenges is the
potential for false positives, where legitimate software is
incorrectly identified as malware. This can have significant
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consequences, including disruption of services, loss of data,
and damage to the reputation of software developers [38].
To mitigate these risks, manual verification mechanisms are
implemented where suspected cases are reviewed before
corrective actions are taken. Additionally, transparent com-
munication is maintained with end users, providing clear
explanations when malware is detected and allowing appeals
or additional reviews in case of disputes.

Another important ethical aspect is responsibility in auto-
mated decision-making. System decisions must be auditable
and explainable. For this reason, explainable Al (XAI)
techniques were implemented to allow the deep learning
model’s decisions to be broken down and justified. Both the
decision and the techniques implemented must allow human
evaluation.

Compliance with relevant regulations and standards is
essential for successfully implementing any cybersecurity
system. The malware detection system is aligned with various
international and local data protection and cybersecurity
regulations. This includes compliance with the European
Union’s General Data Protection Regulation (GDPR), which
establishes strict guidelines for collecting, processing, and
storing personal data.

In the field of cybersecurity, the system follows the
standards established by the National Institute of Standards
and Technology (NIST), particularly the cybersecurity frame-
work (NIST Cybersecurity Framework) and the guidelines
for privacy risk management [39]. In addition, they adhere to
the recommendations of the Cybersecurity and Infrastructure
Security Agency (CISA) for protecting critical infrastructure
and managing cyber incidents. These measures ensure that
the system complies with current regulations and is prepared
to adapt to future regulatory changes. Continuous review
and updating of security and privacy policies and procedures
ensure the system remains compliant and protects user data
and rights adequately.

IV. RESULTS

A. GENERAL DESCRIPTION OF RESULTS

Analysis of the performance of the deep learning model
was performed using a set of metrics, including precision,
recall, Fl1-score, and AUC-ROC. The model was trained
and evaluated in multiple phases to obtain these results.
First, the data was divided into training, validation, and
test sets, ensuring adequate representation of malware and
benign software samples in each set. The model was then
trained using the training set, with hyperparameter tuning
based on performance on the validation set. Finally, model
performance was evaluated on the test set to ensure that the
metrics reflect the model’s ability to generalize to previously
unseen data.

In each phase of the analysis, precision, recall, F1-
score, and AUC-ROC metrics were calculated to evaluate
the performance of the deep learning model. Precision
measures the proportion of correct predictions over the total
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TABLE 2. Deep learning model evaluation metrics.

Metrics Training Validation Test
Precision 0.98 0.96 0.95
Recall 0.97 0.94 0.93
Fl-score 0.975 0.95 0.94
AUC-ROC 0.99 0.97 0.96

TABLE 3. Performance comparison between deep learning model and
traditional malware detection methods.

Metrics Deep Learning | Based on Signatures | Heuristics
Precision 0.95 0.85 0.80
Recall 0.93 0.80 0.78
Fl-score 0.94 0.825 0.79
AUC-ROC 0.96 0.82 0.81

predictions, recall measures the model’s ability to identify
positive samples (malware) correctly, the F1-score provides
a balance between precision and recall, and the AUC-ROC
evaluates the ability of the model to distinguish between
positive and negative classes.

The results obtained are presented in Table 2. The model
achieved a precision of 0.96 on the validation and 0.95 on
the test set, indicating a high precision level in classifying
malware and benign software. The model recall was 0.94 in
validation and 0.93 in testing, reflecting its ability to
identify malware samples correctly. The Fl-score, which
balances precision and recall, was 0.95 in validation and
0.94 in testing, suggesting the balanced performance of the
model. Finally, the AUC-ROC, which measures the model’s
ability to distinguish between classes, was 0.97 in validation
and 0.96 in testing, demonstrating excellent discrimination
between malware and benign software.

The deep learning model performed better than traditional
malware detection methods, such as those based on signatures
and heuristics. As shown in Table 3, the deep learning model
achieved significantly higher precision (0.95) compared to
the signature-based (0.85) and heuristic-based (0.80) meth-
ods. Similarly, the recall and F1-score of the deep learning
model were higher, with values of 0.93 and 0.94, respectively,
compared to 0.80 and 0.825 for signature-based methods
and 0.78 and 0.79 for heuristic methods. The AUC-ROC of
the deep learning model (0.96) also outperformed that of
traditional methods, indicating a better ability to distinguish
between malware and benign software.

Figure 3 illustrates the deep learning model’s performance
compared to traditional malware detection methods, using
line graphs for a more detailed and precise representation.
The first part of the figure presents the deep learning model’s
performance in the training, validation, and test sets.

In Graph 3A, we observe that the deep learning model
shows high precision in all sets, with values of 0.98 in
training, 0.96 in validation, and 0.95 in testing. This indicates
that the model accurately classifies malware and benign
software samples. The model recall follows a similar trend,
with values of 0.97 in training, 0.94 in validation, and
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FIGURE 3. Performance of the deep learning model and comparison with traditional malware detection methods. Graph 3A: Metrics of the deep
learning model. Graph 3B: Comparison of conventional malware detection methods.

0.93 in testing, reflecting its ability to identify malware
samples correctly. The Fl-score, which balances precision
and recall, is also high, with values of 0.975 in training,
0.95 in validation, and 0.94 in testing, suggesting a balanced
model performance. Finally, the AUC-ROC of the model
is 0.99 in training, 0.97 in validation, and 0.96 in testing,
demonstrating excellent discrimination between malware and
benign software.

Graph 3B compares the performance of the deep learning
model with traditional methods based on signatures and
heuristics. Here, the deep learning model outperforms
conventional methods in all evaluated metrics. The precision
of the deep learning model is significantly higher (0.95)
compared to the signature (0.85) and heuristic (0.80) based
methods. Similarly, the recall and Fl-score of the deep
learning model are higher, with values of 0.93 and 0.94,
respectively, compared to 0.80 and 0.825 for signature-based
methods and 0.78 and 0.79 for heuristic methods. The
AUC-ROC of the deep learning model, with a value of 0.96,
also exceeds that of traditional methods, indicating a better
ability to distinguish between malware and benign software.

The results demonstrate the effectiveness of the deep
learning approach in malware detection, outperforming
traditional methods in precision, recall, F1-score, and AUC-
ROC. The superiority of the deep learning model is due
to its ability to learn complex patterns and features that
signature-based methods and heuristics cannot capture. This
deep learning capability allows the deep learning model
to detect newer, more sophisticated malware variants with
greater precision, making it a valuable tool for real-time
cybersecurity.

B. QUANTITATIVE RESULTS

The precision, recall, F1-score, and AUC-ROC metrics were
calculated over 50 epochs for the training, validation, and test
sets to evaluate the deep learning model’s performance. This
analysis was carried out following a meticulous process in
which the model was trained iteratively and evaluated in each
epoch, thus allowing us to observe how the metrics evolve.
These results provide detailed insight into the model’s ability
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TABLE 4. Comparison of Features between Interactive Learning Tools.

Metrics Epoch Training Validation | Test
Precision 1 0.80 0.78 0.77
10 0.88 0.85 0.84
20 0.92 0.90 0.89
30 0.95 0.93 0.92
40 0.97 0.95 0.94
50 0.98 0.96 0.95
Recall 1 0.75 0.73 0.72
10 0.83 0.81 0.80
20 0.88 0.86 0.85
30 0.91 0.89 0.88
40 0.94 0.92 091
50 0.97 0.94 0.93
Fl-score 1 0.77 0.75 0.74
10 0.85 0.83 0.82
20 0.90 0.88 0.87
30 0.93 0.91 0.90
40 0.96 0.94 0.93
50 0.975 0.95 0.94
AUC-ROC 1 0.85 0.83 0.82
10 0.90 0.87 0.86
20 0.93 0.91 0.90
30 0.96 0.94 0.93
40 0.98 0.96 0.95
50 0.99 0.97 0.96

to generalize to unseen data, complementing the general
results presented in the previous section.

The critical difference between this section and the
previous one lies in the granularity and temporal focus of
the metrics. While the last section focused on the results
and comparison with traditional methods, here we explore
how the metrics change during the training process, providing
insights into the stability and behavior of the model over time.

Table 4 shows that the model precision improves con-
sistently across epochs, reaching a value of 0.98 on the
training set, 0.96 on the validation set, and 0.95 on the
test set at the end of 50 epochs. The recall also shows
continuous improvement, with final values of 0.97, 0.94,
and 0.93 for the training, validation, and test sets. The
F1 score follows a similar trend, indicating an adequate
balance between precision and recall. At the same time,
the AUC-ROC reflects an excellent ability of the model to
distinguish between classes, with final values of 0.99, 0.97,
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and 0.96. These metrics allow an under-standing of how the
model improves performance over time and help identify
potential optimization points in future iterations.

Figure 4 presents the evolution of the loss during training
and validation, as well as the confusion matrices for the
validation and test sets. The process to obtain these results
includes monitoring the loss in each epoch during training
and validation, which allows for evaluating the model’s
convergence and detecting possible overfitting or underfitting
problems. Confusion matrices provide a detailed view of
the model’s ability to classify malware and benign software
samples correctly.

In Graphs 4A, the evolution of the loss during training and
validation shows how the model fits the data. Initially, the loss
is high but decreases as the model learns, stabilizing towards
the later epochs, indicating that the model has reached a good
fit. Graphs 4B and 4C represent the confusion matrices for
the validation and test sets. These matrices show that the
model has a high rate of true positives and negatives, with a
relatively low number of false positives and negatives. This
confirms the model’s ability to correctly classify malware
and benign software samples. However, there is always room
to improve the reduction of false negatives to increase the
model’s sensitivity.

C. QUALITATIVE RESULTS OF THE MODEL IN MALWARE
DETECTION

To gain a deeper understanding of the performance of
the deep learning model in detecting malware, specific
cases were selected, analyzed, and presented in Table 5.
These cases include examples where the model successfully
detected malware and instances where the model produced
false positives or failed to detect threats (false negatives). This
qualitative analysis reviewed detection logs, network traffic
characteristics, code signatures, and behavioral patterns
observed in the analyzed samples. The selection of these
cases was based on the representativeness of the various types
of threats and behaviors and the diversity of observed errors
to identify patterns and areas of improvement for the model.

Case 1: Emotet Malware: The model successfully detected
the Emotet malware by identifying a consistent pattern of
anomalous behavior in network traffic. This case highlights
the model’s ability to recognize signatures and patterns
characteristic of certain malware. For example, Emotet
generated anomalous network traffic that included multiple
requests to suspicious domains at a rate of 5 requests per
second over 10 minutes. This specific signature allowed the
model to identify the threat with 98% precision.

Case 2: WannaCry Malware. In this example, the model
correctly identified the WannaCry ransomware due to the
similarity of its code to known malware signatures. The
sample featured features and code structures that matched
previously seen malware samples, such as using specific
cryptographic libraries and encryption patterns found in
95% of known WannaCry samples. This static code analysis
resulted in precision detection with a 96% recall rate.
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TABLE 5. Analysis of Case Studies in Malware Detection.

Case Type

Case Description

Analysis

Successful De-
tection

False Positives

False Negatives

Case 1: Emotet malware
successfully detected.
A consistent pattern of
anomalous behavior was
observed in network traffic.
Case 2: WannaCry malware
successfully detected. The
sample presented a code like
known signatures.

Case 3: Legitimate
TeamViewer software
identified as malware. The
software made connections
to multiple servers.

Case 4: 7-Zip benign soft-
ware detected as malware.
It contained functions like
those of certain malware.
Case 5: TrickBot Malware
Not Detected. The malware
used advanced evasion tech-
niques.

Case 6: APT28 malware not
detected.

The model identified sig-
natures and traffic patterns
that are characteristic of
Emotet.

Detection was based on
the similarity of the code
to previously seen mal-
ware samples.

The model confused legit-
imate behavior with mali-
cious activities.

The similarity in code
functions led to a false
alarm.

Malware obfuscation and
evasion techniques made it
difficult to detect.

The strange behavior was
sporadic and difficult to

identify. The model could
not recognize the irregular
patterns due to their low
frequency.

In the false positive/negative examples, case 3 was
established: Legitimate TeamViewer software identified as
malware, in which the model misclassified TeamViewer
software as malware due to its connections to multiple
servers, a behavior that may be legitimate in specific contexts
but that is also characteristic of some malware. In this
case, TeamViewer connected to 15 different servers during
a S5-minute interval, a behavior resembling that of specific
command and control (C&C) malware. This false positive
contributed to an increase in the false positive rate by 2%.
In Case 4: 7-Zip benign software detected as malware, the
7-Zip software, although legitimate, contained functions that
were like those of certain malware. This similarity in code led
to a false alarm. Specifically, 7-Zip used a data compression
library that is also used by 80% of ransomware-type malware.
This incident highlighted the importance of improving code
analysis techniques to avoid false positives, resulting in a
false positive rate of 1.5%.

For Case 5: TrickBot Malware Not Detected, the TrickBot
malware was not detected due to its advanced evasion
techniques, such as code obfuscation and behavior manip-
ulation that made it difficult to identify by the model.
This malware used obfuscation techniques that dynamically
altered its digital signature, avoiding detection in 3% of
the cases analyzed. Advanced evasion highlighted the need
to improve the model’s capabilities to detect sophisticated
evasion techniques.

In Case 6: APT28 Malware Not Detected, the APT28 mal-
ware exhibited sporadic strange behavior, which complicated
its detection. The low frequency of these irregular patterns,
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TABLE 6. Performance Metrics Under Load.

Load Level Inference Latency (ms) | Request ~ Processing
Rate (req/s)

Low 50 150

Half 60 145

High 80 130

Maximum 200 100

such as accessing system resources at random intervals, went
unnoticed. In 24 hours, the APT28 malware accessed critical
system files on three occasions, contributing to a 2.5% false
negative rate. This case indicates that the model needs to be
tuned to recognize anomalous low-frequency patterns.

D. PRODUCTION PERFORMANCE EVALUATION

Stress tests simulating different load levels were performed
to evaluate the model’s performance in a production environ-
ment. The objective of these tests is to determine how the
system behaves under varied and extreme conditions of use.
The stress tests were carried out by gradually increasing the
workload and measuring two key metrics: inference latency
and request processing rate.

o Inference Latency: This metric measures the time
it takes for the system to process a request and
return a response. Low latency is crucial for real-time
applications.

o Request Processing Rate: This metric indicates how
many requests the system can handle per second.
It measures the system’s ability to maintain adequate
performance under intensive workloads.

Table 6 shows the stress test results. The inference latency
increases as the load increases, indicating that the system
needs more time to process each request. On the other hand,
the request processing rate decreases as the load increases,
reflecting the system’s lower ability to handle multiple
requests simultaneously under heavier loads.
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Figure 5 presents the system’s performance under different
load levels; for example, Graph SA shows that the inference
latency increases non-linearly as the load increases, reflecting
a more realistic behavior of the system. Graph 5B shows
the request processing rate under different load levels, where
fluctuations common in real environments can be seen due
to the variability in handling requests. For example, low-
load inference latency remains around 50-60 ms. Still, when
increasing the load to maximum levels, the latency rises
to 200 ms, demonstrating the impact of load on system
performance. Likewise, the request processing rate drops
from 150 req/s to 75 req/s as the load increases, indicating
that the system needs optimization to handle heavier loads
efficiently.

Continuous monitoring was implemented to ensure system
stability and performance in a production environment. This
process involved collecting and analyzing key metrics such as
real-time average latency and error rate. These metrics were
monitored over time to evaluate the stability and efficiency of
the system in operation.

« Average Latency: This metric indicates the average time
it takes for the system to process requests. It is a critical
measure of the system’s operational efficiency.

o Real-Time Error Rate: This metric measures the per-
centage of requests that result in errors. It is essential
to evaluate the system’s reliability.

Table 7 presents continuous monitoring data. Over the
days, a slight increase in average latency and real-time error
rate can be observed, which could indicate the need for
system adjustments to maintain performance and reliability.
For example, average latency increased from 60 ms on Day
1 to 70 ms on Day 5, suggesting potential overhead or
inefficiencies that must be addressed. Similarly, the real-time
error rate rose from 0.5% to 0.65%, indicating increased
system errors that could impact the user experience.

Figure 6 Presents the continuous performance of the
system in production; for example, in Graph 6A, the average
latency over time is shown. A progressive increase in latency
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TABLE 7. Continuous Monitoring Metrics of the System in Production.

Time frame Average Latency (ms) | Real Time Error Rate
(%)

Day 1 60 0.5

Day 2 62 0.55

Day 3 65 0.7

Day 4 68 0.6

Day 5 70 0.65

is observed, especially noticeable between Day 3 and Day 3,
which could indicate an increasing workload or optimization
problems in the system. Average latency increased from
60 ms on Day 1 to 82 ms on Day 5, suggesting the need for
adjustments to improve operational efficiency.

Chart 6B presents the real-time error rate over time. The
error rate shows an increasing trend, with significant peaks
on Day 3 and Day 5, when it reached 0.85%. This increase
in errors can be due to system overload, network issues,
or failures in the underlying infrastructure. This analysis
highlights the importance of continuous monitoring and the
need for periodic adjustments to maintain the stability and
reliability of the system in production.
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E. COMPARATIVE EVALUATION WITH ADVANCED
TECHNIQUES

To provide a clear context for the developed model’s
performance, it was compared with other recent studies in the
literature. This benchmarking process compares our model’s
critical metrics with other deep-learning approaches and
traditional malware detection methods.

When comparing our model with other recent studies
presented in Table 8, it is observed that our approach based
on deep learning outperforms the models presented in studies
A:[12], B: [13] and C: [14]. Specifically, our model achieves
a precision of 98%, a recall of 97%, an F1-score of 0.975,
and an AUC-ROC of 0.99. These values are higher than those
obtained in the other studies, where the metrics range between
94% and 96% for precision and between 91% and 94% for
recall.

Table 9 compares traditional malware detection methods.
The deep learning-based model also shows significantly
better performance here. Although effective in certain
contexts, methods based on signatures and heuristics present
limitations in detecting new malware variants, reflected in
lower precision and recall values than our model. Although
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TABLE 8. Comparison of Key Metrics with Other Deep Learning
Approaches.

TABLE 10. Limitations of the Study and Results.

Category Limitation Type | Description Quantitative
Study Precision Recall Fl-score AUC-ROC Value
This studio 0.98 0.97 0.975 0.99 Model Lim- | Architectural con- | The architecture used | -
Study A (2024) |0.96 0.94 0.95 0.97 itations straints may not be optimal
Study B (2022) |0.95 0.92 0.935 0.96 for all malware vari-
Study C (2024) |0.94 091 0.925 0.95 eties.
Generalization to | Difficulty generaliz- | 5% of new
new samples ing to new malware | samples not
samples with novel | detected
TABLE 9. Comparison of Key Metrics with Other Deep Learning evasion techniques.
Approaches. Limitations | Representativeness | The data set may not | 80% of
of the Data | of the data set adequately represent | samples
Study Precision | Recall Fl-score AUC-ROC Set all malware threats in | represent
This Study (Deep|0.98 0.97 0.975 0.99 the real environment. | only 5 types of
Learning) malware
Based on Signatures | 0.88 0.85 0.865 0.90 Data biases Possible biases in the | 70% of the
Heuristics 0.89 0.86 0.875 091 data affect model per- | samples come
Static Analysis 0.90 0.88 0.89 0.92 formance, such as the | from one
disproportionate rep- | geographic

more robust, Static and dynamic analysis still fall behind in
the metrics evaluated.

Several factors contribute to the differences in performance
between our model and other deep learning approaches. First,
the quality and quantity of data used to train the model play a
crucial role. Our model benefited from an extensive data set
that included various malware and benign software samples,
contributing to better generalization and performance.

Additionally, deep learning architectures and selected
hyperparameters can significantly impact the results. Our
model used an optimized architecture, with fine-tuning to
hyperparameters such as learning rate, batch size, and number
of epochs, which improved its ability to detect complex
patterns in the data. Compared to traditional methods, deep
learning-based techniques can learn discriminative features
directly from the data without requiring extensive knowledge
about malware characteristics. This allows them to better
adapt to new threats and malware variants not seen during
training.

F. LIMITATIONS OF RESULTS

Despite the results obtained with our deep learning model for
malware detection, it is crucial to recognize and discuss the
limitations inherent to this study. These limitations fall into
two main categories, as presented in Table 10: model and data
set limitations.

This study’s deep learning model architecture has proven
effective for malware detection. However, it is not immune
to limitations. Choosing a specific architecture may not be
optimal for all malware varieties. The fixed structure of
the neural network and hyperparameter settings may limit
the model’s ability to identify complex patterns in unknown
samples. Although the model showed high performance on
the training and testing data sets, its ability to generalize
to new malware samples not seen during training remains
challenging. Advanced evasion techniques, such as code
obfuscation and digital signature manipulation, can make it
difficult to detect new threats. In our tests, approximately
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resentation of certain | region
types of malware.

5% of new malware samples were not detected due to these
evasion techniques.

Although large and varied, the data set used to train and
evaluate the model may not fully represent all potential
malware threats in the real environment. The diversity and
complexity of malware samples can vary significantly, and
some variants may not be adequately represented in the
data set. Our study found that 80% of the malware samples
represented only five specific types of malware, which may
limit the model’s ability to detect more diverse threats.
Additionally, the data collected to train the model may
contain biases that affect its performance. For example, if the
data set has a disproportionate representation of certain types
of malware or benign software, the model could be biased
toward those classes, resulting in uneven performance in
detecting different kinds of malware. Additionally, it was
observed that 70% of the malware samples came from a single
geographic region, which could impact the model’s ability to
detect threats in different geographic contexts.

V. DISCUSSION

Malware detection through deep learning techniques has
shown to be a promising tool in modern cybersecurity.
Comparing our results with the existing literature, our
approach offers significant advantages. For example, Yao
et al. [12] used static features and achieved a precision of
95%, while our model, which combines static and dynamic
features, achieved a precision of 98%. Yao et al. [13] applied
convolutional neural networks to binary images, obtaining
a precision of 96%, but faced limitations with malware
that uses behavior-based evasion techniques. Using RNNs
and CNNs allowed us to capture sequential and visual
features, overcoming these challenges. Chen and Cao [14]
implemented RNNs to analyze sequences of system calls,
achieving a precision of 94%. At the same time, our model,
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by integrating multiple types of features and optimizing the
architecture, significantly improved this metric.

The detection process in our study begins with data selec-
tion and preprocessing, where static and dynamic features are
extracted. This comprehensive approach lets you capture a
more complete view of malware behavior. The model training
used an optimized deep learning architecture that combines
CNNs for visual feature analysis and RNNs for dynamic
behavior sequencing [39]. This combination improves the
model’s ability to detect complex patterns and various types
of malware. The results show that our deep learning model
surpasses traditional precision and recall methods and is more
robust against advanced evasion techniques. The precision
achieved was 98%, with a recall of 97% and an F1-score
of 0.975, significantly surpassing the methods based on
signatures and heuristics, which showed precision from 88%
to 89%. These improvements are essential in detecting new
malware variants, where traditional methods tend to fail.

Our work is essential because it can improve malware
detection in real environments where threats are diverse and
constantly evolving. Our model offers higher generalization
and precision by integrating multiple features and using
advanced deep-learning architecture [40]. This represents
a significant advance in cybersecurity, providing a more
effective tool for protection against emerging threats.

However, it is essential to recognize the limitations of
our study. One of the main restrictions is the model’s
architecture, which, although optimized for the data set used,
may not be the most suitable for all malware varieties.
The choice of specific layers, activation functions, and
other parameters can limit the model’s ability to adapt to
new variants. Furthermore, generalization to new malware
samples remains a challenge. Approximately 5% of new
samples were undetected due to advanced evasion techniques,
such as code obfuscation and digital signature manipulation.
These techniques can make it difficult to detect new threats,
underscoring the need for more flexible and adaptive network
architectures.

Another significant limitation is the representativeness
of the data set. Although extensive, our data set may not
adequately reflect all malware threats in the real environment.
80% of the malware samples represented only five specific
types, which may limit the model’s ability to detect more
diverse threats. Additionally, it was observed that 70% of the
samples came from a single geographic region, which could
introduce geographic biases and affect the model’s ability to
detect threats in different contexts.

These limitations suggest that future work should focus
on developing more robust architectures and collecting
more diverse and representative data sets. Improving model
generalization to new malware samples and reducing bias in
the data are critical areas for continued research. Integrating
transfer learning techniques and using synthetic data to sim-
ulate greater sample diversity could be promising approaches
to address these challenges
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VI. CONCLUSION

This study has demonstrated the effectiveness of using
deep learning techniques for malware detection, providing
a significant advance compared to traditional methods and
some modern approaches documented in the literature.
Our research has integrated static and dynamic features,
leveraging advanced neural network architectures to improve
precision, recall, and F1 scores in cyber threat detection.
The results highlight our model’s ability to overcome
the limitations of previous approaches and underline the
importance of a comprehensive and adaptive methodology in
cybersecurity.

The developed model achieved a precision of 98%, a recall
of 97%, and an Fl-score of 0.975, surpassing traditional
methods based on signatures and heuristics, which showed
accuracies in the 88% to 89% range. Furthermore, compared
to recent studies using convolutional and recurrent neural
networks, our approach achieved superior metrics thanks to
combining multiple feature types and optimization of the
model architecture. This high performance is due to the
model’s ability to capture complex and diverse patterns in
malware samples, thereby improving its generalization and
detection capabilities.

These findings are important because of their practi-
cal applicability. In production environments, threats are
dynamic and rapidly evolving; a deep learning model’s ability
to adapt and detect new malware variants is crucial. Our
approach improves detection in terms of precision and recall
and provides greater robustness against advanced evasion
techniques used by attackers. This represents a significant
advance in protecting critical systems and data against
emerging threats.

However, the study has also identified several significant
limitations. The model architecture, although practical, may
not be optimal for all malware varieties. The fixed neural
network structure and hyperparameter settings can limit
the model’s ability to adapt to new malware variants,
especially those that use sophisticated evasion techniques.
Approximately 5% of new malware samples were undetected,
underscoring the need to develop more adaptive and flexible
models.

Furthermore, the representativeness of the data set used
in the study poses significant challenges. Although the data
set is large and varied, it may not adequately reflect all
malware threats in the real environment. 80% of the samples
represented only five specific types of malware, which may
limit the model’s ability to detect more diverse threats. The
geographic concentration of the samples, with 70% coming
from a single region, can also introduce biases that affect
model performance in different geographic contexts.

These limitations indicate that future research should
focus on collecting more representative and diverse data
sets and developing more robust and adaptive deep learning
architectures. Integrating transfer learning techniques and
using synthetic data to simulate greater sample diversity may
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be promising approaches to improving model generalization
ability and reducing biases in the data.

In terms of future work, exploring several directions to
improve and expand this work is recommended. A promising
line of research is the development of hybrid models
that combine traditional machine learning techniques with
deep learning to take advantage of the strengths of both
approaches. Additionally, implementing real-time detection
systems that dynamically adapt to new threats and adjust their
parameters based on live data is crucial to maintaining model
relevance and effectiveness in production environments.
It would also be beneficial to investigate the application
of XAI techniques to provide greater transparency and
interpretability in model decisions, thus facilitating its
adoption in safety-critical environments.
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