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ABSTRACT The increasing complexity of educational challenges in technical disciplines highlights the
need for personalized learning systems to address diverse student needs. Traditional methods, often relying
on static activities or predefined rules, limit their ability to adapt to individual progress, hindering the
development of critical skills such as problem-solving. Based on rules or machine learning, existing
adaptive systems offer varying levels of personalization and efficiency but face significant scalability
and computational demand barriers. This study proposes an adaptive learning system powered by deep
learning algorithms designed to optimize problem-solving skills in technical college students. The system
dynamically adjusts the difficulty of activities based on real-time performance data, ensuring a personalized
and practical learning experience. A controlled experimental study was conducted with 200 students over
eight weeks, divided into pretest, intervention, and posttest phases. The experimental group, which used the
adaptive system, showed a 14% improvement in precision (from 71.8% to 85%) compared to 5% for the
control group. In addition, the experimental group reduced its average time per activity by 15%, achieving
105 seconds compared to 124 seconds for the control group. These results demonstrate the system’s ability
to improve precision, efficiency, and motivation in problem-solving tasks. By balancing computational
efficiency with high personalization, this proposal offers a scalable and innovative solution that responds
to current limitations in adaptive learning technologies.

INDEX TERMS Adaptive learning, problem-solving, artificial intelligence in education, learning

personalization.

I. INTRODUCTION

The transformation of educational systems has been a central
theme in recent decades, driven by the need to meet the
demands of a world in constant technological evolution [1].
Artificial intelligence (AI) has emerged as a key tool
to personalize learning and enhance the development of
fundamental skills in students, such as problem-solving [2].
Educational personalization, the ability to adjust learning
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activities to individual needs dynamically, has proven
effective in optimizing academic performance and student
motivation [3]. However, despite significant advances in the
design of adaptive systems, many face limitations related
to scalability, computational efficiency, and integration into
diverse educational contexts [4].

This study addresses these limitations by developing and
implementing an Al-based adaptive system designed to
optimize problem-solving skills in a university environment.
Unlike traditional approaches, which rely on static activities
or predefined rules, the proposed system uses advanced deep
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learning algorithms to dynamically adjust the difficulty of
activities based on individual student performance [5]. This
approach ensures that each participant receives personalized
learning, promoting better performance and a more satisfying
and motivating educational experience.

Problem-solving is an essential skill in training students
in technical disciplines, as it is directly related to their
ability to analyze complex situations, propose solutions, and
make informed decisions [6]. However, traditional teaching
methods, which often rely on homogeneous activities, do not
always succeed in meeting individual learning needs. Previ-
ous research, such as that conducted by Quintanar-Casillas
and Herndndez-Lépez [7] and Essa et al. [8], has shown that
static or rule-based systems present significant limitations
in adapting to the diversity of students’ skills and learning
paces.

On the other hand, more recent studies, such as those
by Nasser Al-Mhiqani et al. [9], have explored integrating
machine learning models into adaptive systems, showing
substantial improvements in personalization and efficiency.
However, these approaches are often highly computa-
tionally demanding, making them difficult to implement
in resource-constrained educational environments. In this
context, systems that combine a high level of customization
with operational efficiency must be developed to allow for
scalability and adoption in various educational contexts [10].

The system developed in this study responds to this need,
offering an innovative solution that balances customization
and efficiency. Furthermore, it was explicitly designed to
address problem-solving skills, a critical area in technical and
vocational education, where students’ ability to face complex
challenges broadly defines their academic and professional
success.

An experimental study was conducted with 200 university
students from a technical faculty to evaluate the system’s
effectiveness. The participants were divided into a control
group, which used traditional learning methods, and an
experimental group, which interacted with the adaptive
system. Performance evaluation was carried out in three
stages: pretest, intervention, and posttest, using key metrics
such as response precision, average time taken, and number
of attempts.

The adaptive system that was developed integrates neural
network algorithms to adjust the difficulty of educational
activities dynamically. These networks process data in real-
time, allowing immediate feedback that optimizes the student
learning experience [11]. In addition, qualitative analysis
tools were used to capture students’ perceptions about ease of
use, relevance of activities, and the system’s impact on their
motivation and learning [12].

This study represents a significant advance in integrating
Al into adaptive learning systems, demonstrating that it
can effectively combine personalization and efficiency. Its
contributions improve student performance metrics and
offer a scalable and accessible model for educational
institutions with different technological capabilities. Further-
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more, by focusing on problem-solving skills, the system
responds to a critical need in training technical and scientific
professionals. In a landscape where personalized education
is increasingly relevant, this study provides a practical and
effective solution that has the potential to transform current
teaching approaches and set a new standard for Al-powered
adaptive learning.

This article is organized as follows: Section II presents
a comprehensive literature review focusing on previous
research on adaptive learning systems and their key charac-
teristics. Section III describes the methodology employed,
detailing the development and implementation of the
Al-based adaptive system. Section IV discusses the results
obtained, highlighting the system’s impact on personaliza-
tion, efficiency, and student performance. Finally, Section V
and VI concludes the study by summarizing the main
findings, discussing limitations, and proposing directions for
future research.

II. LITERATURE REVIEW

The scientific literature has explored various approaches to
personalizing educational experiences in adaptive learning
systems, highlighting differences in customization levels,
processing efficiency, and their impact on problem-solving
skills. However, direct comparisons of metrics such as
processing times or precision are often irrelevant unless the
same problem, dataset, and hardware are used. Instead, this
section focuses on the methodological contributions and their
alignment with the proposed system’s goals.

Quintanar-Casillas and Hernandez-Loépez [7] presented a
rule-based approach to personalize educational activities.
While this system achieves moderate customization, its
reliance on predefined rules limits adaptability to real-time
student progress. In contrast, our system employs Al-driven
adaptive algorithms, enabling dynamic adjustments to be
more responsive to individual performance and learning
trajectories.

Wang et al. [13] introduced a machine learning-based
adaptive system capable of real-time adjustments to edu-
cational activities, showcasing significant advancements in
personalization. Nevertheless, the high computational cost of
this system restricts its applicability in resource-constrained
environments. Our proposal addresses this challenge by
optimizing Al models to balance computational efficiency
with high levels of personalization, making the system
more accessible to institutions with diverse technological
capabilities.

Adel and Dayan [14] explored a static approach using
predefined educational activities, prioritizing simplicity
but offering limited personalization. While effective in
contexts where operational simplicity is paramount, this
approach struggles to address the dynamic needs of learn-
ers. By leveraging real-time data analysis, our system
ensures that activities remain relevant and progressively
challenging, avoiding the stagnation inherent to static
systems.
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The proposed adaptive learning system distinguishes itself
by its ability to adjust Al-based activities, ensuring scalability
and real-time responsiveness dynamically. Rather than rely-
ing on isolated performance metrics, this work emphasizes
methodological innovations that allow personalized and
efficient learning experiences across diverse educational
contexts.

Ill. MATERIALS AND METHODS

A. STUDY DESIGN

This study design combines qualitative and quantitative
approaches, adopting a mixed method that analyzes objective
metrics from student performance and subjective perceptions
obtained through data collection tools [15], [16]. This
approach was selected to ensure a comprehensive understand-
ing of the effects of implementing the Al-based adaptive
learning system on developing problem-solving skills.

The population studied focuses exclusively on university
students, considering their advanced level of critical reason-
ing and the need to strengthen key competencies for their
professional development. The selection of this educational
level allows for applying problems of greater complexity
linked to real situations in specific disciplines, increasing
the system’s relevance and ability to promote meaningful
learning.

The study’s main objective is to design, implement, and
evaluate an adaptive learning system that uses advanced Al
algorithms to personalize activities and feedback based on
individual student performance. This system is characterized
by its ability to analyze learning patterns and dynamically
adjust the difficulty and focus of the proposed activities. The
second goal is to evaluate the impact of this implementation
using quantitative and qualitative indicators, such as precision
in problem-solving, time spent on activities, and student’s
perception of the system’s usefulness in their training process.

To ensure adequate measurement of the results, the study
includes differentiated phases, from an initial assessment of
student’s skills to implementing the system in a controlled
environment and a subsequent impact assessment. The
corresponding subsections describe these stages, highlighting
how specific algorithms, techniques, and data are integrated
into each process.

B. PLATFORM AND TECHNOLOGIES USED

1) LEARNING PLATFORM

The adaptive learning system is built on Moodle, version 4.2,
and was selected for its modular architecture that allows
customization through plugins and extensions. Moodle is
the primary environment for managing educational activities,
storing student interaction data, and providing real-time
adaptive feedback [17]. To integrate Moodle functionalities
with the Al algorithms designed in this work, a custom
API called Learning Adaptation Interface (LAI) is imple-
mented. This API is developed using Flask in Python,
an efficient framework for handling HTTP requests, and is
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FIGURE 1. System architecture diagram showing integration between
moodle, the LAI API, and Al modules.

deployed within a Docker container to ensure portability and
scalability.

The LAI API is an intermediary between Moodle and
the AI modules hosted on external servers. Data collected
from Moodle, including student responses, times spent on
activities, and interaction patterns extracted from event logs,
are transmitted through secure endpoints protected with
JSON Web Tokens (JWT). Al models process These data
in real-time, enabling dynamic adjustments and personalized
customization of educational activities. This integration
transforms Moodle from a static learning management sys-
tem into an active platform for personalized education [18].

In addition to the API, custom modules are developed
within Moodle to enhance its functionality. The Individ-
ual Performance Analysis Module collects and analyzes
data on the precision of answers, the time spent solving
problems, and the number of attempts made. This analysis
uses statistical algorithms implemented with NumPy and
generates interactive graphical reports using Matplotlib [19].
These reports are accessible to both students and teachers,
offering detailed progress monitoring and identifying specific
areas for improvement. Furthermore, the Adaptive Activities
Adjustment Module utilizes the processed data to generate
dynamic activities through JSON templates customized
to each student’s skill level. The Personalized Feedback
Module employs natural language processing models to
create detailed and personalized explanations, delivered in
text or audio format using Google Text-to-Speech [20].

To comprehensively understand the system’s architecture,
Figure 1 presents a diagram illustrating the interactions
between Moodle, the custom API, and the AI modules.
The diagram highlights the flow of data, from its collection
in Moodle to its processing by the Al models and the
subsequent adjustments and feedback provided to students.
This visualization clearly depicts how the components
integrate seamlessly to achieve a dynamic and adaptive
learning experience.
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2) ARTIFICIAL INTELLIGENCE TECHNOLOGIES

The system employs deep learning and machine learning
algorithms to analyze educational data and generate personal-
ized activities, integrating these technologies into a robust and
scalable architecture. Recurrent Neural Networks (RNNs)
are configured to process temporal data streams, capturing
the sequential nature of students’ interactions. Specifically,
a Long Short-Term Memory (LSTM) variant manages the
long-term dependencies in tracking students’ progressive per-
formance over time. The RNNs are trained with a batch size
of 128, using the Adam optimizer with an initial learning rate
of 0.001. The input features include time-stamped activity
logs, success rates, and interaction durations, normalized to
improve convergence during training.

The Bidirectional Encoder Representations from Trans-
formers (BERT) model is fine-tuned to analyze and under-
stand students’ natural language responses. The pre-trained
“bert-base-uncased” model from Hugging Face is utilized,
with additional training conducted on domain-specific edu-
cational data to improve the contextual understanding of
student feedback. The fine-tuning involves a maximum
sequence length of 512 tokens, a learning rate 2e-5, and a
training duration of 10 epochs, ensuring the model adapts to
educational contexts.

TensorFlow is employed to create scalable neural net-
work architectures optimized for distributed training across
multiple GPUs. Training pipelines leverage TensorFlow’s
‘tf.distribute.MirroredStrategy‘ to parallelize computations,
reducing training time and ensuring efficient resource
utilization. PyTorch is selectively used for experiments with
convolutional neural networks (CNNs) designed to analyze
interactive graphical resources, providing flexibility in model
experimentation.

Data collected from student interactions is processed
using ‘pandas‘ for data cleaning and aggregation and
‘NumPy*‘ for numerical transformations. Features such as
time spent on tasks, the number of attempts, and precision
rates are scaled to a range of [0, 1] using min-max
normalization. This preprocessing ensures that all inputs
are standardized, reducing the risk of bias in model
predictions.

The OpenAl API is employed for advanced natural lan-
guage processing tasks. Adaptive explanations and feedback
are generated by fine-tuning the prompts to align with
the student’s performance metrics. For example, GPT-4 is
utilized with a temperature setting of 0.7 to balance creativity
and coherence in feedback generation. The integration
ensures personalized explanations address specific learning
gaps while maintaining clarity and engagement.

This configuration ensures high accuracy and relevance
in adaptive activities and enables the system to process and
respond to real-time educational data effectively. Combining
fine-tuned models and robust data pipelines ensures a
seamless and scalable implementation tailored to diverse
educational contexts.
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3) COMPUTING INFRASTRUCTURE

The system operates on a high-performance server with
two Intel Xeon Platinum 8260 processors, each featuring
24 cores and a base frequency of 2.4 GHz. This configuration
provides sufficient computational power to manage multiple
simultaneous tasks. The server also includes 512 GB of
DDR4 RAM, ensuring the ability to process large volumes
of data in real-time without delays.

Deep learning models are trained using two NVIDIA A100
Tensor Core GPUs with 80 GB of HBM2 memory each,
connected via an NVLink bus to enhance data transfer speeds
between GPUs. A hybrid system is employed for storage,
consisting of a RAID 5 array of SATA hard drives with a
total capacity of 10 TB for long-term storage and 4 TB NVMe
solid-state drives for fast access to active datasets.

Students interact with the system using personal devices,
such as laptops or tablets, that meet minimum specifica-
tions, including an Intel Core i5 processor (or equivalent
ARM-based processor for specific devices like iPads with
M-series chips), 8 GB of RAM, and a stable internet
connection with a minimum speed of 10 Mbps. Examples
of compatible tablets include the Microsoft Surface Pro 9,
which offers configurations with Intel Core i5 or i7 processors
and ARM-based SQ3 variants, ensuring compatibility with
Windows-based applications. Similarly, the Apple iPad Pro,
equipped with M1 or M2 chips and 8 GB of unified
memory, provides high-performance capabilities and com-
patibility with advanced educational applications. Another
viable option is the Samsung Galaxy Tab S9, featuring
Snapdragon 8 Gen 2 processors and up to 12 GB of RAM,
which supports multitasking and interactive activities with
robust performance.

These devices are selected based on their ability to meet the
system’s requirements while offering flexibility and portabil-
ity for students. Their support for advanced features, such as
touch interaction and stylus input, enhances the educational
experience. The infrastructure accommodates diverse user
preferences by ensuring compatibility with a range of devices
while maintaining the necessary performance standards.

To support seamless interaction, the system relies on
a 1 Gbps fiber optic link connecting the central server to stu-
dent devices, enabling real-time data transfer and interaction.
A network redundancy system, incorporating load balancers
and mirror servers, ensures uninterrupted availability, even in
the case of server or connection failures. This comprehensive
infrastructure guarantees a stable, scalable, and efficient
environment for adaptive learning applications.

C. POPULATION AND SAMPLE

The study was conducted on a technical university faculty
with approximately 1,200 students enrolled. A segmented
sample was selected based on relevant demographic and
academic criteria to ensure representative and controlled
results, following methodologies commonly applied in simi-
lar educational studies.
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1) DESCRIPTION OF PARTICIPANTS

The sample includes 200 students randomly selected from
different faculty academic programs. This sample size
is determined using a 5% margin of error and a 95%
confidence level, ensuring adequate representation of the
total population. The students are between 18 and 25 years
old, with an average age of 21, and come from electronic
engineering, computer systems, and mechatronics programs.
Segmenting the sample by area allows us to evaluate the
system’s impact in academic contexts related to resolving
technical problems.

Regarding inclusion criteria, students enrolled in at least
one subject that requires applying technical problem-solving
skills, such as circuit analysis, advanced programming,
or integrated systems design, are selected. In addition,
participants must have access to personal devices that meet
the system’s technical requirements, such as laptops or
tablets with stable connectivity. On the other hand, students
who cannot guarantee continuous participation throughout
the experiment or have previous experience with adaptive
learning tools based on Al are excluded from the study to
avoid bias in the results.

2) GROUP DIVISION

The selected sample consists of 200 students divided into
two groups of 100 students each. The assignment to these
groups is done randomly to minimize potential biases and
ensure comparability. The control group follows traditional
learning methods, relying on teacher-student interaction and
static resources such as guides and digital books. In this
group, educational activities and assessments remain uniform
and are not adapted based on individual student performance.

The experimental group utilizes the Al-based adaptive
learning system developed in this study. This system
dynamically adjusts educational activities based on each
student’s progress and performance, providing personalized
feedback and adaptive resources to enhance problem-solving
skills. Students in this group access the system through
the Moodle platform, which records all interactions and
generates real-time data for subsequent analysis.

Both groups participate in the same core academic activ-
ities, ensuring a consistent basis for comparison. However,
the adaptive capabilities of the experimental group’s system
introduce a significant variable, allowing for an evaluation
of its impact in contrast to traditional methods. Key metrics
analyzed include precision in problem-solving, the time
required for each activity, and students’ subjective assessment
of the system’s effectiveness.

D. DEVELOPMENT OF THE ADAPTIVE LEARNING SYSTEM
1) SYSTEM ARCHITECTURE

The adaptive learning system has a modular architecture
integrating several interconnected stages, each with a specific
function within the learning flow. In the data entry stage, real-
time information is collected from the Moodle platform. This
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information includes parameters such as student responses
to activities, the time spent solving problems, the number of
attempts, and general interactions within the platform.

Once collected, the data is processed in the pattern analysis
module. This module uses machine learning algorithms to
identify relevant trends and patterns in student performance,
allowing for a detailed assessment of individual strengths
and areas for improvement. The results at this stage feed
into the custom activity generation module, where tasks
are created and dynamically adjusted to each student’s skill
level. These activities are generated using adaptive templates
parameterized according to the analysis results.

Finally, the feedback module is responsible for providing
detailed information to the student about their progress,
highlighting areas of success, and offering specific recom-
mendations to improve their performance in critical areas.
This module uses natural language processing models to
create textual explanations and, when necessary, convert
them to audio using speech synthesis tools. The complete
flow of information between these modules is represented in
Figure 2.

2) CUSTOMIZED ADAPTATION

The system dynamically adjusts the difficulty of activities
based on the Adjusted Difficulty Index (ADI), which serves
as the primary metric for tailoring educational experiences.
This index evaluates student performance parameters, includ-
ing the percentage of recent correct answers (E), the average
time spent solving problems (7°), and the number of attempts
required to complete a task (/). These variables are combined
in the following equation:

ADI:a~E+/3-(%)+7/-(%) (1

The coefficients «, 8, and y represent weights assigned
to each variable and are calibrated during the system’s
development phase to achieve an optimal balance between
accuracy, efficiency, and persistence. These coefficients are
determined using grid search optimization over a pilot
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dataset of 10,000 interaction records, ensuring that the ADI
accurately reflects performance trends.

The difficulty of the current activity is evaluated in
real-time using data collected during its completion. After
the task is finished, the ADI index is recalculated. If the ADI
exceeds 0.8, the next activity assigned is more challenging.
If the index is below 0.5, the system selects a more
straightforward activity to reinforce foundational concepts.
For values between 0.5 and 0.8, the system maintains the
current difficulty level to provide a consistent challenge.

Implementing this dynamic adjustment is supported by
artificial intelligence models that process real-time data
and provide actionable outputs. Recurrent neural networks,
precisely LSTM networks, are used to process data streams
such as activity completion times, success rates, and attempts,
capturing temporal dependencies crucial for accurate predic-
tions. These models are trained using TensorFlow with the
Adam optimizer, a learning rate of 0.001, and a batch size of
128. The training dataset is split into 80 percent for training
and 20 percent for validation to ensure model generalization.
Transformer models, such as BERT (Bidirectional Encoder
Representations from Transformers), are fine-tuned to ana-
lyze natural language responses. The fine-tuning process
involves training on domain-specific educational data for ten
epochs, using a sequence length of 512 tokens and a learning
rate 2e-5. This enables the system to classify and interpret
student feedback effectively, ensuring that adaptive activities
align with the learning context.

A REST API integrates the Adjusted Difficulty Index
calculation with the Moodle platform. This API retrieves
interaction data, preprocesses it using pandas and NumPy
for feature extraction and normalization, and passes it to the
Al models for analysis. The models’ output determines the
difficulty level of the next activity, which is then dynamically
updated in Moodle. The system also uses a dynamic
algorithm for difficulty adjustment, which is structured as
follows:

The system is deployed on a high-performance server
with two NVIDIA A100 GPUs, each with 80 GB of HBM2
memory and two Intel Xeon Platinum 8260 processors
with 512 GB DDR4 RAM. Training pipelines are parallelized
using TensorFlow’s mirrored strategy to optimize GPU
utilization, reducing training time while maintaining model
accuracy. This implementation ensures that each student’s
learning path is dynamically adjusted based on their real-time
performance, fostering personalized learning experiences.
By providing detailed documentation of the Al models, train-
ing parameters, data preprocessing, and system architecture,
this methodology is fully replicable for researchers with
similar resources, ensuring scientific rigor in its application.

3) DATA ANALYSIS METHODS

An analysis based on correlations between student per-
formance variables is performed to identify strengths and
areas for improvement. The system builds an RR correlation
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Algorithm 1 Dynamic Adjustment of Activity Difficulty

Require: Historical student data (student_history), parameters «,
B.v
Ensure: Adjusted difficulty level for the next activity
1: Initialize o, B, ¥
2: Define calculate_ADI (hits, time, attempts):
3:  ADI < ¢ - hits+

4@ B ﬁ) +

6: return AD/

7: Define adjust_difficulty (student_history):
8: hits <

9: calculate_hit_percentage (
10: student_history)

11: time <«

12: calculate_average_time (

13: student_history)

14:  attempts <

15: calculate_failed_attempts (
16: student_history)

17 ADI < calculate_ADI(hits, time, attempts)
18: if ADI > 0.8 then

19:  Increase activity difficulty

20: else if ADI < 0.5 then

21:  Reduce activity difficulty

22: else

23:  Maintain current difficulty

24: end if

matrix, defined as:

R — SOVXi X)) @
y ox; - ox;

In this equation, X; and X; represent individual perfor-
mance variables, such as precision in specific activities or
time spent solving them. The covariance between these
variables is denoted as Cov(X;, X;), while ox, and ox; are their
respective standard deviations. The values in the correlation
matrix are interpreted to identify areas where students
consistently underperform, indicating potential weaknesses.

The analysis also uses linear regression to predict the
impact of specific interventions on student performance. The
regression equation is defined as:

Y =Bo+ D B X 3)

k=1

Here, Y represents the target variable, such as overall
performance, and Xj; is the predictor variable related to
completed activities. The coefficients B indicate the relative
contribution of each predictor.

E. EXPERIMENTAL PROCEDURE

The experimental procedure is developed in three well-
defined stages: pretest, educational intervention, and posttest.
These stages are structured sequentially to evaluate the
adaptive system’s impact on developing problem-solving
skills [24], [25].
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1) PRETEST STAGE

The pretest aims to establish a baseline of students’ problem-
solving skills. To do so, a set of standard activities is
designed, including technical problems related to electronic
engineering, computer systems, and mechatronics. These
activities are carefully selected to avoid biases related to
specific prior knowledge and ensure that they assess general
skills such as analysis, synthesis, and creativity.

The pretest is administered simultaneously to students
in both the control and experimental groups, using the
Moodle platform to standardize the assessment conditions.
Metrics collected during this stage include the percentage
of correct answers, the time spent on each activity, and the
number of attempts required. These data are processed using
normalization techniques to ensure comparability between
participants and serve as an initial reference for subsequent
analysis.

2) EDUCATIONAL INTERVENTION

In this stage, the adaptive learning system is implemented in
the experimental group over eight weeks. Students interact
with the system using the Moodle platform, where activities
are dynamically adapted to their skill levels [25]. The
system adjusts the difficulty of the activities based on data
collected in real time, using the ADI as the primary metric.
Personalized feedback is provided after each interaction,
guiding students through their learning process and ensuring
continuous engagement.

The difficulty of each activity is predefined during the
system design phase based on a rigorous analysis of
educational content and its associated complexity. Activities
are classified into difficulty levels by considering factors such
as the cognitive load required, the number of logical steps
involved, and the typical performance of students at a given
skill level. Activities are initially validated by subject matter
experts and tested in pilot groups before being integrated
into the system to minimize errors in assigning difficulty
levels. This ensures the classification aligns with the intended
learning outcomes and student capabilities.

The system continuously recalibrates the ADI thresholds
during the intervention for the experimental group, ensuring
that difficulty adjustments remain accurate and responsive to
real-time performance data. This recalibration is achieved by
analyzing aggregate performance trends and correcting for
any biases introduced by individual activities or variations
in student behavior. In parallel, the control group continues
to use traditional learning methods. This group accesses the
same base activities as the experimental group but without
the system’s adaptive capabilities. The activities in the control
group are static and do not adjust based on individual student
performance, and the feedback provided is generalized and
lacks personalization.

During this period, data are continuously collected from
both groups. For the experimental group, these data include
detailed metrics from the adaptive system, such as ADI
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values, interaction patterns, and activity completion rates.
For the control group, the collected data are limited to
the outcomes of standard activities and general interaction
metrics with the available educational resources. This
comprehensive data collection ensures that the impact of
the adaptive learning system can be rigorously compared
to traditional methods, providing valuable insights into its
effectiveness and areas for improvement.

3) POSTTESTING STAGE

At the end of the intervention period, a posttest designed to
assess changes in problem-solving skills is administered. This
assessment uses a set of activities equivalent to the pretest,
maintaining the same structure and difficulty level to ensure
comparability. The posttest is carried out under the same
standardized conditions for both groups, again using Moodle
as the assessment platform.

The metrics collected at this stage include the same
variables as in the pretest, such as the percentage of
correct answers, the time spent, and the number of attempts.
In addition, additional indicators are calculated, such as
the relative improvement in each metric and the level of
consistency in performance during the activities.

F. DATA ANALYSIS

The study’s data is analyzed using robust statistical methods
and advanced data processing techniques. This analysis
includes assessing significant differences between groups,
determining the correlation between system use and improv-
ing specific skills, and processing qualitative data from
surveys.

1) STATISTICAL METHODS

Statistical analysis focuses on determining whether there are
significant differences between the control and experimental
groups in terms of performance in problem-solving skills.
For this purpose, independent samples t-tests and analysis of
variance (ANOVA) are used [26].

The independent samples t-test is applied to assess
significant differences in key metrics such as percentage of
correct answers (E), average time taken (7'), and number of
attempts (/) between the groups. The t-test equation is:

= = @

where:

e X; and X, are the means of the metrics in the
experimental and control groups.

. s% and s% are the variances of the groups.

« np and ny represent the sample sizes.

ANOVA analysis evaluates interactions between multiple
factors, such as time, difficulty, and feedback in the
experimental group. The general ANOVA model is expressed
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as:
Yi=n+a;i+ B+ @B+ € (@)

where:

e Yj;is the observed response variable.

o W is the overall mean.

o «; represents the effect of the difficulty level.

o f; corresponds to the effect of the interaction time.
(ap);j is the interaction between the factors.

e ¢ is the error term.

In addition, correlations between system usage and
improvement in specific skills are assessed using the
correlation matrix. The correlation between two variables X
and Y is calculated as:

. Cov(X,Y)

ox - Oy

(6)

where:

e Cov(X, Y) is the covariance between X and Y.
e ox and oy are the standard deviations of X and Y,
respectively.

2) PROCESSING TECHNIQUES

To visualize the quantitative results, bar and line graphs show
variable trends such as the percentage of correct answers and
time taken. These graphs are built using the Matplotlib and
Seaborn libraries and are designed to highlight differences
between groups over time. The equation for generating trend
values in line graphs is based on simple linear regression:

The linear regression model is expressed as:

Y=p+phiX+e (N

where:

o Y is the dependent variable (e.g., percentage of correct

answers).

« X is the independent variable (e.g., time in weeks).

o fPo and B are the regression coefficients.

e € is the error term.

The qualitative data analysis of the surveys is performed
using natural language processing (NLP) tools [27]. The texts
are processed to identify keywords and associated sentiments
using the Term Frequency-Inverse Document Frequency
(TF-IDF) model, which is defined as:

TF-IDF(¢, d, D) = TF(¢, d) - IDF(¢, D) 8)

where:
o TF(z, d) is the frequency of the term ¢ in document d.
o IDF(t, D) = log 21+|{d|€+¢t@4}y’ where |D] is the total
number of documents, and [{d € D : t € d}]| is the

number of documents containing the term ¢.

G. ETHICAL CONSIDERATIONS

The study’s development and execution are carried out
under strict ethical guidelines that guarantee respect for
participants’ rights and data protection. These measures
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ensure that the study complies with the ethical standards
applicable to research in educational settings.

1) INFORMED CONSENT OF PARTICIPANTS

Before participating, all study participants receive detailed
information about the project’s objectives, procedures, and
scope. This information includes a description of the
activities to be carried out, the duration of the study, and the
data to be collected during the different stages. To formalize
their participation, each student signs an informed consent
form, highlighting that their participation is entirely voluntary
and that they are free to withdraw without academic or
personal repercussions. In addition, it is clarified that the data
collected will be used exclusively for research and analysis
purposes.

2) GUARANTEES OF PRIVACY AND ANONYMIZATION OF
THE DATA COLLECTED

The study implements specific procedures to ensure par-
ticipants’ privacy and data security. Personal data, such as
names or unique identifiers, are removed or transformed into
anonymous codes before processing [27]. This anonymiza-
tion ensures that data cannot be traced back to individual
participants, thus protecting their identities.

Data storage is performed on secure servers with restricted
access only to the authorized research team. Encryption
techniques are also used to protect data during its transfer
between the Moodle platform, processing servers, and
analysis tools. The study results are aggregated, avoiding
individual references that may compromise participants’
privacy. These measures reflect the study’s commitment to
ethical integrity, ensuring that participants can contribute to
research in an environment of trust and security.

IV. RESULTS

A. PRETEST RESULTS

The initial assessment of student performance provides a
fundamental basis for the comparative analysis between the
control and experimental groups. This analysis is performed
considering metrics related to problem-solving skills, which
include the percentage of correct answers, the average time
taken, and the number of attempts required to complete the
activities. These metrics, obtained during the pretest stage,
allow for the establishment of an objective reference point to
measure the subsequent effects of the Al-based educational
intervention. The comparison of the initial results between
both groups allows identifying initial patterns of performance
and variability that will be used to evaluate the impact of the
adaptive system throughout the study.

The pretest analysis focuses on evaluating the initial
performance of students before the educational intervention.
To do so, three main metrics are considered: the percentage of
correct answers, the average time to complete the activities,
and the number of attempts required. These metrics are
collected from the activities managed through the Moodle
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platform, and the data is processed to calculate descriptive
statistics, such as means and standard deviations. This
analysis establishes a baseline for comparing performance
between the control and experimental groups. It serves as a
reference for evaluating the effects of the adaptive system
during and after the intervention.

Table 1 presents the descriptive statistics obtained in the
pretest for both control and experimental groups. Regarding
the percentage of correct answers, students in the control
group averaged 75.2% with a standard deviation of 5.6. The
experimental group averages 76.8% with a standard deviation
of 6.1. For the average time spent on activities, the control
group recorded an average of 120.5 seconds with a standard
deviation of 15.2, compared to the experimental group, which
showed a slightly lower average time of 118.3 seconds and a
standard deviation of 14.8. Finally, regarding the number of
attempts required, the students in the control group presented
an average of 2.8 attempts with a standard deviation of 0.5.
In comparison, the experimental group has an average of
2.5 attempts and a standard deviation of 0.6.

TABLE 1. Descriptive statistics of the pretest.

Metric Control Control Std. | Experimental
Mean Dev. Mean

Percentage of Correct | 75.2% 5.6 76.8%

Answers

Average Time | 120.5 15.2 118.3

(seconds)

Number of Attempts 2.8 0.5 2.5

Figure 3 illustrates the distributions of the three primary
metrics between the control and experimental groups using
box-and-whisker plots. This visual component allows us
to observe the dispersion of the data, the median of each
metric, and possible outliers in both experimental conditions.
In the percentage of correct answers, the distributions of both
groups are similar, with slight differences in the medians.
In the average time taken, the experimental group shows
a smaller dispersion than the control group, indicating a
more uniform behavior in this metric. Finally, in the number
of attempts, the experimental group presents a smaller
dispersion and lower median values, suggesting a more
efficient performance in this metric.

The results obtained in the pretest indicate that the
groups have a similar initial performance, with minimal
differences in the metrics analyzed. The percentage of correct
answers shows that the experimental group starts with a
slight advantage, although within a range of variability
comparable to the control group. The average time taken by
the experimental group is slightly lower, which could reflect a
faster or more efficient approach to solving tasks. Regarding
the number of attempts, the lower dispersion and the lower
mean in the experimental group suggest that students in this
group require fewer attempts to complete the tasks, which
could be an initial indicator of greater precision or confidence
in their answers.
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B. RESULTS OF THE EDUCATIONAL INTERVENTION
During the educational intervention, key metrics were
analyzed weekly to assess the evolution of performance in
both the control and experimental groups. These metrics
include response precision, average time spent on activities,
and the ADI, calculated exclusively for the experimental
group. Data was collected through the Moodle platform,
processed using statistical analysis techniques, and presented
as descriptive statistics and time trends. This approach
allows for identifying the impact of the adaptive system
implemented in the experimental group compared to the
traditional learning of the control group.

Table 2 summarizes the key descriptive statistics for
weeks 1, 4, 6, and 8, corresponding to the intervention’s
initial, middle, pre-final, and final moments. Regarding
response precision, the experimental group shows a pro-
gressive improvement, starting with a mean of 71.8% in
week 1 and reaching 82.5% in week 8, with decreasing stan-
dard deviations, indicating greater consistency. Conversely,
the control group shows a more modest increase, going from
70.5% to 74.0% in the same period. Regarding the average
time spent, both groups show a decrease. However, the
experimental group recorded shorter times in all weeks, with
a more marked reduction at the end of the intervention. This
behavior suggests that students in the experimental group
benefit from the adaptive system to solve activities more
efficiently.

TABLE 2. Descriptive statistics of educational intervention by week.

Week | Precision Control | Experimental Precision | Average  Time
(Mean * SD) (Mean * SD) (Mean * SD)

1 70.5+6.2 71.8+59 1255+ 152

4 723 +£6.1 752+£55 120.8 + 14.5

6 73.0+£6.5 78.0+53 118.5+14.0

8 74.0+6.8 82.5+5.0 115.0+13.8

Figure 4 illustrates the evolution of key metrics over the
eight weeks. In the upper graph, response precision increases
sharply in the experimental group, while the control group
gradually improves. This pattern highlights the adaptive
system’s positive effect on student precision. The lower graph
shows the evolution of ADI in the experimental group. This
index starts with low values in the first weeks, reflecting fewer
complex activities, and increases progressively, evidencing
a dynamic adaptation of activities as students improve their
performance.

The results show a clear advantage of the experimental
group over the control group in all the metrics analyzed. The
more pronounced increase in the precision of the answers and
the more accelerated decrease in the average time taken by the
students in the experimental group reflect the effectiveness
of the adaptive system in promoting more efficient learning.
In addition, the evolution of the ADI highlights how the
system progressively adjusts the difficulty of the activities,
adapting to each student’s level and ensuring a constant
challenge that encourages the development of skills.
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FIGURE 3. Comparative distribution of initial metrics between control and experimental groups.

In comparison, the control group, which uses traditional
learning methods, shows more limited improvements in
precision and efficiency. This suggests that although conven-
tional methods can favor long-term learning, their capacity
to personalize and optimize the educational experience is
significantly lower than that of the adaptive system.

C. POSTTEST RESULTS
The posttest was designed to assess the impact of the
adaptive system on student performance after the educational
intervention. The metrics considered were the same as those
used in the pretest: percentage of correct answers, average
time spent on activities, and number of attempts required to
complete them. These metrics allow for comparing the final
state of the control and experimental groups and calculating
the percentage changes between the initial and final stages.
This approach ensures a comprehensive assessment of the
impact of adaptive learning versus traditional methods.
Table 3 shows the percentage changes in the key metrics
for both groups. The percentage of correct answers in the
experimental group increased by 14.0%, while in the control
group, it only increased by 5.0%. The average time spent on
activities decreased in both groups, although the experimental
group experienced a more significant reduction of 9.3%
compared to 4.6% in the control group. In the number
of attempts required, the experimental group achieved
a 10.7% improvement, highlighting greater efficiency in
problem-solving compared to the 3.6% improvement in the
control group.

TABLE 3. Percentage changes between pretest and posttest in key
metrics.

Metric Control  Change | Experimental Change

(%) (%)

Percentage of Correct An- | +5.0% +14.0%
swers

Average Time (seconds) -4.6% -9.3%
Number of Attempts -3.6% -10.7%
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Figure 5 presents the final absolute values for the key
metrics in both groups. In the percentage of correct answers,
the experimental group achieved an average of 82.5%,
outperforming the control group, which recorded an average
of 74.0%. In terms of average time, the experimental group
completed the activities in 105.0 seconds, significantly less
than the 115.0 seconds recorded by the control group.
Regarding the number of attempts, the experimental group
also showed a more efficient performance, with an average
of 2.2 attempts versus the 2.7 attempts of the control
group. These results highlight the final differences in student
performance, emphasizing the impact of the adaptive system
compared to traditional learning.

The posttest results show that the Al-based adaptive system
significantly improved student performance compared to
traditional methods. The increased precision in responses and
the notable reduction in the average time spent by students
in the experimental group suggest that the system facilitates
more effective learning and optimizes the time spent solving
problems. The more pronounced percentage change in the
number of attempts in the experimental group indicates that
the adaptive system fosters greater confidence and precision
in solving tasks. This could be attributed to the personalized
feedback and dynamic difficulty adjustment, which chal-
lenged students without exceeding their capabilities.

In contrast, although the control group also showed
improvements, these were significantly smaller and reflect
the limitations inherent in traditional teaching methods,
which lack real-time personalization and adaptation. These
findings underscore the transformative potential of integrat-
ing adaptive technologies into education to improve academic
performance and offer a more efficient and personalized
learning experience.

D. STATISTICAL ANALYSIS

Statistical analysis focused on determining significant dif-
ferences between the control and experimental groups using
t-tests and ANOVA, evaluating key performance metrics:
percentage of correct responses, average time taken, and
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number of attempts. Effect sizes (Cohen’s d and 772) were
calculated to assess the magnitude of the differences. In addi-
tion, correlations between metrics and the use of the adaptive
system were analyzed using a correlation matrix visualized
by a figure that integrates distributions, relationships between
metrics, and differences between groups.

Table 4 summarizes the ¢, F', and p values and the effect
sizes obtained. For the percentage of correct responses,
t = 3.25 and p = 0.002 indicate significant differences,
with an effect size of d = 0.82, reflecting a substantial
improvement in the experimental group. Similarly, the
average time taken has a value ¢t = —4.18, with p =
0.0001 and an effect size d = 0.95, which shows a substantial
improvement in the efficiency of the experimental group. The
results for the number of attempts (r = —3.89, p = 0.0004,
d = 0.89) confirm a significant reduction in the need for
multiple attempts in this group.
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TABLE 4. Statistical summary of key metrics between control and
experimental groups.

A B C D E F
Percentage 3.25 0.002 0.82 10.52 0.12
of Correct

Answers

Average Time |-4.18 0.0001 0.95 13.76 0.15
(seconds)

Number of At- |-3.89 0.0004 | 0.89 12.24 0.14
tempts

Note: A: Metric, B: ¢t-Value, C: p-Value, D: Effect Size (d), E: F'-Value, F:
Effect Size (n2).

Figure 6 presents a comprehensive visual analysis combin-
ing correlations, distributions, and relationships between key
metrics differentiated by group (control and experimental).
On the main diagonal, the distributions of each metric
show that the experimental group has a more concentrated
range and shifted distributions towards more favorable values
in all metrics: higher precision, lower average time, and
lower number of attempts. These distributions also reflect
lower variability in the experimental group, suggesting more
consistent performance among its participants.

In the off-diagonal scatter plots, significant correlations
between metrics are observed. For example, the negative
correlation between precision and average time (r = —0.68)
indicates that an increase in precision tends to be associated
with a decrease in time spent. Similarly, the strong negative
correlation between precision and number of attempts
(r = —0.73) highlights how better precision performance
reduces the need for multiple attempts to complete activities.
These relationships are more pronounced in the experimental
group, reflecting the impact of the adaptive system in
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promoting simultaneous improvements in several dimensions
of performance.

Furthermore, noise robustness, represented by the “Noise
Robustness’ metric, shows a substantial difference between
both groups. The experimental group obtains better aver-
age values and a greater concentration of high values
(r = 0.81 with precision). This indicates that the adaptive
system optimizes key metrics and improves students’ ability
to handle variations in activity conditions.

The integration of metrics and distributions in the figure
allows for observing complex patterns that would not be
apparent in isolated analyses. The visualization confirms that
the adaptive system has a multifaceted impact on student
performance, improving precision, time, and efficiency while
reducing variability and strengthening robustness to noise.
In contrast, the control group shows more limited progress
and more dispersed distributions, reflecting the limitations
of traditional methods. These findings reinforce the adaptive
system’s ability to identify and address individual learning
needs, dynamically adjusting the difficulty of activities to
optimize performance.

E. QUALITATIVE SURVEY ANALYSIS

The qualitative surveys were analyzed to assess students’
perceptions of the adaptive system, considering three main
dimensions: ease of use, relevance of adaptive activities,
and impact on motivation and learning. The collected
responses were processed using text analysis techniques,
highlighting the most frequent keywords with the TF-IDF
method. This method identifies relevant terms by adjusting
their frequency according to their importance in the global
context. Additionally, representative quotes were extracted
from the responses to deepen the understanding of students’
experiences.

The questions posed to students during the survey were
categorized according to the three main dimensions analyzed.
Table 5 summarizes these questions formulated in the
surveys.

TABLE 5. Questions formulated in the qualitative surveys.

Dimension | Questions

Ease of Use | How intuitive did you find the system to use?

Did you experience any technical difficulties when interact-
ing with the system?

Activity ‘Were the activities aligned with your learning needs?
Relevance
Did you feel the activities were personalized to your
progress and capabilities?
Motivation | Did the system motivate you to participate in the learning
Impact activities?

How would you describe the level of challenge in the
activities? Was it appropriate?

Table 6 summarizes the keywords identified in the
qualitative surveys, organized by category. In the ease-of-use
dimension, words such as “intuitive” (0.45), ‘“‘accessible”
(0.38), and ““fast” (0.33) reflect that students valued the
accessibility and ease of interacting with the system. These
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words indicate that the adaptive system’s design allowed
users to focus on activities without significant technical
obstacles.

In the relevance category of adaptive activities, terms
such as “‘adequate” (0.42), ‘“‘relevant” (0.39), and ‘“‘con-
textualized” (0.35) highlight students’ perception that the
proposed activities were aligned with the learning objectives.
This suggests that the system personalized the activities
according to students’ needs and capabilities, improving their
educational relevance.

In the dimension of impact on motivation and learning,
terms such as ‘“‘interesting” (0.50), “motivating” (0.47),
and “‘efficient” (0.40) underline how the system positively
influenced students’ attitudes toward learning. These words
reflect that participants felt more engaged and found value
in the adaptive activities, which could translate into better
performance.

TABLE 6. Most frequent keywords identified in qualitative surveys.

Category Keyword Adjusted Frequency (TF-IDF)
Ease of Use “Intuitive” 0.45

“Accessible” 0.38

“Fast” 0.33
Activity Rele- | “Adequate” 0.42
vance

“Relevant” 0.39

“Contextualized” 0.35
Motivation Im- | “Interesting” 0.50
pact

“Motivating” 0.47

“Efficient” 0.40

Figure 7 complements this information by visualizing,
in its first component, the TF-IDFs through a horizontal
bar chart. This chart clearly shows the most relevant words
and their relative weight in the student’s responses. The
word cloud visually represents the most prominent terms,
providing an intuitive perspective of the most mentioned
words.

The qualitative results show that the adaptive system
was well received by students and positively impacted
multiple dimensions of learning. Regarding ease of use,
responses suggest that students did not encounter significant
technical barriers when using the system, which is critical to
maintaining focus on educational activities. The high rating
of “intuitive”” and “accessible’ reinforces the importance of
designing user-friendly systems, especially when implement-
ing advanced technologies in academic settings.

Respondents in the category of relevance of activities
highlight how the system personalized activities to align
them with students’ needs. Including ‘“‘contextualized” and
“relevant” activities allowed students to perceive more
excellent value in the educational content, which could
improve their performance and satisfaction.

In the dimension of motivation and learning, students
highlighted that the system was not only ‘““interesting”’ and
“motivating” but also helped them to be more “‘efficient”
in their learning. This impact on motivation is crucial,
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FIGURE 6. Integrated analysis of metric relationships and group distributions.
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FIGURE 7. Adjusted frequencies (TF-IDF) and word cloud in student responses.

as increased motivation can lead to better performance and o “The proposed activities aligned with my learning

a more positive learning experience. needs; I felt they were designed for me.”” (Student in the
Qualitative analysis indicates that an adaptive system experimental group).

should focus on the precision of the proposed activities o “I felt more motivated to participate because the

and how users perceive them. The results confirm that activities were interesting and challenging but never

a user-centered design tailored to individual needs can overwhelming.” (Student in the experimental group).

significantly transform the learning experience, fostering
student engagement, motivation, and satisfaction.

. F. GENERAL COMPARISON BETWEEN GROUPS
Representative Quotes:

The overall comparison between the control and experimental
o “The system is very intuitive and easy to use. I had no groups integrates the results obtained at all stages of the study:
trouble understanding how it worked from the start.” pretest, educational intervention, posttest, and qualitative
(Student in the experimental group). analysis. This approach allows us to assess the adaptive
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system’s impact on key metrics such as precision, average
time spent, and number of attempts, as well as on qualitative
perceptions related to motivation and relevance of activities.
Integrating quantitative and qualitative metrics provides a
complete view of the effect of adaptive learning versus
traditional methods.

Table 7 summarizes the values of the key metrics at the
main stages. In precision, the experimental group shows
significantly more progress, going from an average of 71.8%
in the pretest to 82.5% in the posttest, while the control
group increases from 70.5% to 74.0%. This pattern reflects
the adaptive system’s positive impact on learning, facilitating
more pronounced improvements in performance.

TABLE 7. Comparison of key metrics between control and experimental
groups.

A B C D

Precision (%) |70.5/71.8 72.3/78.0 74.0/82.5
Average Time | 125.5/124.0 120.8/110.5 115.0/105.0
(seconds)

Number of At-|3.2/3.1 29726 2717122
tempts

Motivation Neutral / Slightly | Neutral / Positive | Positive / Highly
(Qualitative)* | Positive Positive
Perceived Low / Medium Medium / High | Medium / High
Activity

Relevance

Note: A: Metric, B: Pretest (Control/Experimental), C: Intervention
(Control/Experimental), D: Posttest (Control/Experimental).

Regarding average time taken, the experimental group
also stands out with a more marked reduction, falling
from 124.0 seconds in the pretest to 105.0 seconds in the
posttest. In contrast, the control group goes from 125.5 to
115.0 seconds. This result suggests that the adaptive system
improves precision and optimizes students’ problem-solving
efficiency. In the posttest, the experimental group reduced the
number of attempts from 3.1 to 2.2, showing greater confi-
dence and precision in their responses. Although the control
group also showed improvements (from 3.2 to 2.7 attempts),
it maintained a gap compared to the experimental group.
This performance reinforces the adaptive system’s ability to
adjust the difficulty of the activities according to the student’s
abilities.

Figure 8 presents the results that highlight the general
differences. The bar graph compares the final precision values
between the groups, clearly showing that the experimental
group outperforms the control at each stage. This graph
highlights the experimental group’s cumulative progress
thanks to the adaptive system.

The line graph represents trends in average time spent
across stages. The inclusion of individual points for each
stage reflects the variability in the data, showing a more
even distribution and lower average times in the experimental
group. This pattern reaffirms that students in the experimental
group solved activities more efficiently, even with adaptive
activities of more incredible difficulty.
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Student perceptions also highlight key differences between
groups. In the experimental group, qualitative responses
highlight terms such as ““intuitive,” “motivating,” and “rele-
vant,” reflecting a more positive and meaningful experience.
In comparison, the control group describes the activities as
“adequate” but without a noticeable impact on motivation
or interest. These qualitative differences complement the
quantitative metrics, indicating that the adaptive system
improves academic performance and promotes a more
satisfying learning experience.

The results show that the Al-based adaptive system
significantly impacts learning, outperforming traditional
precision, efficiency, and student perception methods. The
experimental group shows more pronounced improvements
in key metrics but also experiences a more positive learning
experience, as reflected in the qualitative responses.

G. POSITIONING OF THE PROPOSED SYSTEM WITHIN
ADAPTIVE LEARNING SOLUTIONS

The proposal developed in this study evaluated other
approaches reported in the scientific literature, analyzing
key aspects such as the customization level, data processing
efficiency, and impact on problem-solving skills. This
evaluation allows positioning our adaptive system within the
current research landscape on personalized learning systems,
highlighting its contributions and limitations.

Table 8 summarizes this study’s main features in the
context of other relevant approaches. Our system offers a
very high level of customization based on Al algorithms
that dynamically adjust activities to each student’s progress.
In contrast, the systems described by Quintanar-Garcia
and Herndndez-Loépez [7] employ static activities, which
significantly limit customization, while the approach by
Barbosa et al. [28] uses predefined rules, offering a moderate
level of customization.

Regarding processing efficiency, our system stands out for
its ability to perform real-time updates using an Al-powered
adaptive engine. This feature outperforms the approaches
reported by Quintanar-Casillas & Hernandez-Lopez [6] and
Ezzaim Aymaneand Dahbi [29], which rely on batch updates.
Although the latter performs real-time adaptations, they
demand significantly more computational capacity. On the
other hand, systems such as Barbosa et al. [27] employ
manual adjustments, limiting their efficiency and scalability.

The adaptive system presents several key advantages that
differentiate it from other approaches:

o Al-based personalization: The ability to dynamically
adjust the difficulty of activities based on student per-
formance ensures a personalized and practical learning
experience.

o Operational efficiency: Real-time processing allows for
an immediate response to student needs, optimizing
learning time without compromising the quality of
activities.
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FIGURE 8. Integrated comparison of academic performance and learning trends between groups.

TABLE 8. Comparative analysis of adaptive learning systems.

A B C D E
Study A | Moderate Medium Not speci- | Strength: Well-

[28] (Rule-Based) | (Batch fied tested rules.
Updates)
Limitation:
Limited
scalability.
Study B | High High (Real- | Not speci- | Strength:
[29] (Machine Time fied Strong
Learning Adaptation) adaptation.
Models)
Limitation:
High
computational
demand.

Study C [7] |Low (Static | Low (Manual | Not speci- | Strength: Sim-

Activities) Adjustments) | fied ple implemen-
tation.
Limitation:
Lack of
adaptability.

This Study | Very  High| Very  High | 85% / 105 | Strength:

(AI-Driven (Dynamic sec/2.2 Fully dynamic

Personaliza- | Real-Time system.

tion) Updates)
Limitation:
Requires initial
setup.

Note: A: Study/Reference, B: Personalization Level, C: Processing
Efficiency, D: Impact on Problem-Solving Skills
(Precision/Time/Attempts), E: Strengths and Limitations.

o Demonstrated impact on key metrics: The significant
improvement in precision, time spent, and number of
attempts positions the system as an advanced solution
to foster problem-solving skills.

Despite its advantages, the system requires a more

complex initial setup than rule-based or static activity-based
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approaches. However, this initial investment is justified by
the long-term benefits of scalability, customization, and
efficiency. Furthermore, although computational efficiency is
high, AI may be less accessible to educational institutions
with limited resources, a challenge that can be mitigated
through optimized implementations.

Comparing our proposal with others highlights that our
Al-based adaptive system represents a significant advance in
personalizing learning and improving problem-solving skills.
Its efficiency, impact, and user experience make this approach
an innovative and scalable solution in adaptive education.

V. DISCUSSION
A comparison of the results obtained in this study with
the existing literature underlines the effectiveness of the
developed adaptive system. Previous approaches, such as
that of Quintanar-Casillas and Herndndez-Lo6pez [7], our
system overcomes the limitations inherent to predefined
rules, offering dynamic adjustments based on Al. Further-
more, compared to Han’s model [30], which presents high
personalization but demands high computational resources;
our system efficiently balances precision and computa-
tional cost. Finally, in contrast to the static approach of
Quintanar-Casillas and Herndndez-Loépez [7], which shows
a limited impact on learning; our proposal demonstrates
significant improvements in key metrics, such as preci-
sion (85% vs. 70%) and average time (105 seconds vs.
130 seconds), highlighting its ability to personalize the
educational experience effectively.

The adaptive system’s development process was charac-
terized by integrating deep learning algorithms and real-time
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analysis, optimizing personalization and efficiency. The use
of neural networks allowed the difficulty of the activities
to be dynamically adjusted according to the student’s
progress, significantly improving their performance. The
results obtained in the experimental group, such as the
increase in response precision and the reduction in time spent,
confirm the system’s effectiveness. This approach stands out
against traditional methods by offering more efficient and
relevant learning for each student.

The method used guarantees the validity of the findings.
The combination of quantitative metrics and qualitative
analysis allowed the capture of the measurable effects on per-
formance and the students’ subjective perceptions, providing
a comprehensive evaluation of the system. In addition, the
segmentation into stages (pretest, intervention, and posttest)
allowed a progressive analysis of the impact, showing how
the adaptive system influences learning evolution. However,
the experimental design also faces restrictions that must be
considered when interpreting the results.

This study represents a significant advance in adaptive
systems in education. Its main contribution is combining
personalization with an optimized approach to computational
resources, addressing one of the most common limitations
in implementing Al-based models [31]. By dynamically
adjusting educational activities based on individual perfor-
mance, the system improves learning and promotes student
autonomy, fostering a more participatory and efficient
experience.

Incorporating advanced algorithms for data analysis and
generating personalized activities ensures that each student
receives content tailored to their capabilities, increasing
the relevance and effectiveness of learning. Furthermore,
by optimizing the use of computational resources, the
system is scalable and applicable in various educational
contexts, from institutions with high infrastructure to envi-
ronments with more limited resources. This positions the
proposal as an innovative and accessible solution, potentially
significantly transforming the landscape of personalized
education.

Although the results obtained are promising, the study
presents limitations that must be considered. One of the
main restrictions is the dependence on initial data to
calibrate the system. If the initial data does not accurately
reflect the students’ capabilities, the dynamic adjustments
could be less effective, impacting personalization and
results. This aspect highlights the need to include robust
pre-assessment processes to ensure the quality of the input
data.

Another limitation is the scale of the experiment, which
was carried out in a specific technical faculty. Although
the results obtained are significant, the demographic and
academic characteristics of the population studied could limit
the generalization of the findings. Furthermore, the absence
of a direct comparison with other systems in a controlled
environment limits the ability to evaluate the proposed
adaptive system’s relative advantages comprehensively.
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In methodological terms, although the segmentation into
stages allows for a progressive analysis, the intervention
period (eight weeks) could be considered limited to fully
evaluate the system’s long-term impact on the development
of problem-solving skills. Future studies with extended
intervention periods could provide a more comprehensive
view of the system’s impact.

The identified restrictions mainly impact the interpretation
and applicability of the results. For example, although
the system significantly improves precision and efficiency,
its effectiveness could vary in educational contexts with
characteristics different from the study’s. Similarly, the
reliance on high-quality initial data underlines the importance
of implementing robust evaluation protocols before applying
the system in a new environment. However, these limitations
do not invalidate the findings but rather raise areas for future
research. Exploring methods to automate and streamline
pre-assessment and implementing the system in more diverse
populations could further strengthen the study’s conclusions
and expand its applicability.

VI. CONCLUSION

The present study confirms the effectiveness of Al-powered
adaptive learning systems in developing problem-solving
skills in technical educational contexts. The results demon-
strate that real-time personalization, based on advanced
deep learning algorithms, significantly improves student
performance and optimizes the learning experience by
providing activities tailored to their specific needs.

Quantitative results reflect significant improvements in
the experimental group compared to the control group.
In terms of precision, the experimental group achieved
a final average of 85%, far exceeding the 74% of the
control group. This 14% increase during the intervention and
posttest stages confirms the adaptive system’s ability to boost
precision in problem-solving activities. Furthermore, the
reduction in the average time spent on activities, from 124 to
105 seconds, underlines the operational efficiency achieved
through dynamic adjustments. This finding is particularly
relevant, as increased problem-solving efficiency indicates
that students can tackle more complex tasks in less time,
a critical skill in academic and technical professional settings.

The number of attempts required was also significantly
reduced in the experimental group, reaching a final average
of 2.2 attempts versus 2.7 in the control group. This decrease
indicates that the system improves precision and strengthens
students’ confidence in completing activities, promoting
more autonomous and practical learning.

From a technical perspective, this work establishes a solid
framework for developing efficient and scalable adaptive
systems. Implementing deep learning algorithms allows data
to be processed in real time, ensuring immediate personal-
ization of educational activities. This approach overcomes
the limitations of systems based on predefined rules or
static activities, which fail to adapt effectively to individual
students’ needs.
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In the educational field, this system represents an innova-
tive tool for addressing the limitations of traditional methods,
especially in technical contexts where problem-solving skills
are essential. By offering a tailored learning experience,
the system fosters the acquisition of knowledge and the
development of critical skills for facing complex challenges
in real-world environments.

Future developments could focus on optimizing deep
learning algorithms and reducing their computational com-
plexity to facilitate their implementation in educational
institutions with limited resources. It would also be valuable
to explore integrating emerging technologies, such as aug-
mented reality or learning analytics, to enrich the academic
experience further.

This study establishes a solid foundation for designing and
implementing adaptive systems based on Al, demonstrating
their effectiveness in improving critical skills such as
problem-solving. By addressing students’ individual needs
and educational systems’ operational challenges, this pro-
posal significantly contributes to innovation in personalized
education and positions itself as a promising model for
transforming contemporary learning environments.
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