
R E S E A R C H Open Access

© The Author(s) 2025. Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material.
You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party
material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit ​h​t​t​p​:​/​​/​c​r​e​a​​t​i​v​e​c​o​​m​m​o​n​​s​.​o​r​g​​/​l​i​c​e​​n​s​
e​s​/​b​​y​-​n​c​​-​n​d​/​4​.​0​/.

Ortiz-Garces et al. Discover Internet of Things (2025) 5:108
https://doi.org/10.1007/s43926-025-00196-4

†William Villegas-Ch and
Sergio Luján-Mora contributed
equally to this work.

*Correspondence:
William Villegas-Ch
william.villegas@udla.edu.ec
1Escuela de Ingeniería en
Ciberseguridad, Facultad de
Ingenierías y Ciencias Aplicadas,
Universidad de Las Américas,
Redondel del Ciclista, Antigua Via
a Nayon, 170125 Quito, Pichincha,
Ecuador
2Department of Software and
Computing Systems, University of
Alicante, San Vicente del Raspeig,
s/n, 03690 Alicante, Pichincha,
Spain

Implementation of edge AI for early fault
detection in IoT networks: evaluation
of performance and scalability in complex
applications
Iván Ortiz-Garces1, William Villegas-Ch1*† and Sergio Luján-Mora2†

1  Introduction
In the last decade, the Internet of Things (IoT) has transformed industries by intercon-
necting devices and systems through smart networks, enabling real-time data collection
and analysis [1]. However, the rapid expansion of IoT networks introduces significant
challenges, including security vulnerabilities, reliability issues, and operational ineffi-
ciencies. Early failure detection is critical for ensuring system resilience and operational

Discover Internet of Things

Abstract
The exponential growth of Internet of Things (IoT) deployments has introduced
critical demands in reliability, energy efficiency, and real-time fault detection.
Traditional cloud-based solutions suffer from excessive latency and energy overhead
due to continuous data transmission and centralized analysis. To address these
limitations, this study introduces an edge-based artificial intelligence (AI) architecture
tailored for early fault detection in heterogeneous IoT networks. The architecture
leverages recurrent neural networks and autoencoders optimized for time-series
anomaly detection, enabling local inference directly on edge nodes. The system
was evaluated under realistic laboratory conditions using a range of IoT devices and
edge computing platforms, including Raspberry Pi and Nvidia Jetson. Experimental
results demonstrate a 92.0% fault detection rate with a response time consistently
under 150 ms, significantly outperforming cloud-based approaches in both latency
and energy metrics. Energy consumption was reduced to 50 Wh under standard
conditions, and the architecture successfully scaled to support up to 500 IoT
devices, maintaining stable detection accuracy above 88%. These results validate
the proposed edge AI system as a scalable and energy-efficient alternative for
real-time fault monitoring. Its low-latency, decentralized nature makes it suitable for
deployment in industrial automation, smart city infrastructure, and mission-critical
IoT applications where operational continuity and autonomous decision-making are
essential.

Keywords  Edge AI, IoT fault detection, Network resilience, Energy efficiency

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1007/s43926-025-00196-4
http://crossmark.crossref.org/dialog/?doi=10.1007/s43926-025-00196-4&domain=pdf&date_stamp=2025-10-8

Page 2 of 33Ortiz-Garces et al. Discover Internet of Things (2025) 5:108

efficiency, particularly in applications such as healthcare, manufacturing, and smart
cities [2].

Traditional fault detection methods often rely on centralized architectures, where data
is transmitted to cloud servers for analysis [3]. While these approaches provide high
computational capacity, they incur substantial latencies and energy consumption due to
constant data transmission. Centralized processing also creates single points of failure,
increasing security risks. In contrast, edge artificial intelligence (AI) systems process data
locally or near IoT devices, significantly reducing latency and energy consumption [4].

Edge computing nodes, such as Single Board Computers (SBCs) like Raspberry Pi and
Nvidia Jetson, facilitate real-time data processing by operating closer to data sources [5].
This distribution of computational power enhances the resilience of IoT networks by
mitigating latency and minimizing dependency on centralized systems.

Despite recent advances in edge AI, most existing implementations rely on shallow
models or static, rule-based systems, which limit their ability to adapt to dynamic and
noisy environments. This work proposes a novel edge-based architecture that combines
Recurrent Neural Networks (RNNs) and Autoencoders (AEs), specifically designed
to handle time-series data and detect multivariate anomalies typical in IoT telemetry.
RNNs are particularly suitable for modeling temporal dependencies and capturing
evolving behavior, while AEs enable unsupervised learning of fault patterns through data
reconstruction error. This combination enhances detection accuracy and robustness in
resource-constrained scenarios.

This study focuses on early detection of IoT network failures, including sensor data
anomalies, network communication issues, and device malfunctions. By leveraging edge
AI, patterns and trends are analyzed in real-time, enabling the identification of com-
plex faults that may not be detectable through conventional methods. This capability is
crucial for preventing cascading failures and ensuring operational continuity in critical
environments. The main novelty of this work lies in the integration of temporal deep
learning models with a lightweight edge computing infrastructure, allowing decentral-
ized and low-latency anomaly detection without relying on cloud assistance. Unlike
prior approaches, this system is fully autonomous, scalable, and validated under realistic
conditions.

This work’s primary contributions include implementing and evaluating an edge AI
system that improves operational efficiency by significantly reducing latency and energy
consumption compared to traditional cloud-based methods. The system’s scalability is
validated by demonstrating its ability to maintain high fault detection accuracy even as
the number of connected IoT devices increases. Advanced AI models, such as Recurrent
Neural Networks (RNNs) and Autoencoders, detect complex patterns in heterogeneous
IoT environments, enhancing the system’s robustness and security.

To achieve these objectives, controlled experiments were conducted using various IoT
devices [6], edge computing nodes, and advanced AI algorithms in a university labora-
tory environment. The selected IoT devices included temperature and humidity sensors,
surveillance cameras, asset tracking devices with RFID technology, and motion sensors.
Edge computing nodes such as Raspberry Pi and Nvidia Jetson were configured to pro-
cess data locally. The communication network utilized Wi-Fi and Ethernet, with routers
and switches optimized for data traffic management [7]. Uninterruptible power supplies
(UPS) and solar panels also ensured a stable and sustainable energy supply.

Page 3 of 33Ortiz-Garces et al. Discover Internet of Things (2025) 5:108

The chosen AI models were trained and validated using historical failure data,
employing cross-validation and hyperparameter tuning techniques. Data preprocessing
involved cleaning, normalization, and feature extraction to enhance model precision.
Optimization through model compression and hardware acceleration further improved
system performance.

Experimental results show that the edge AI system achieves a fault detection rate of
92.0% with response times below 150ms, significantly outperforming cloud-based alter-
natives regarding latency and energy consumption. Scalability tests indicate that the
system maintains efficient performance with a fault detection rate above 88% and a
moderate response time increase to 160ms when handling up to 500 IoT devices. These
findings underline the advantages of edge AI in improving operational efficiency, resil-
ience, and energy sustainability for IoT networks.

2  Literature review
Integrating AI for early fault detection in IoT networks is a critical area of research that
enhances resilience and efficiency. Previous studies have addressed AI-based IoT sys-
tems’ fault detection, performance optimization, and scalability. This review highlights
relevant works and positions the present study within this context.

Ahmad et al. [8] demonstrated the potential of deep neural networks (DNNs) for
anomaly detection in cloud-based IoT networks, achieving high accuracy. However,
their centralized approach introduced latency and energy inefficiencies, critical chal-
lenges in real-time applications. Similarly, Santo et al. [9] explored fault detection at the
edge, achieving improved response times and detection accuracy compared to cloud-
based solutions. However, their work did not evaluate scalability. In contrast, this study
demonstrates that edge AI maintains performance under increased loads, as detailed in
Table 1, which compares techniques and key results across studies.

In addition to addressing latency and scalability, our approach leverages advanced AI
models, such as RNNs and Autoencoders, optimized for time-series analysis and anom-
aly detection in IoT environments. Recent works, such as Lee et al. [10], have shown the
effectiveness of autoencoder architectures for detecting subtle anomalies in industrial
IoT, providing insights that align with this study’s focus on edge AI. These comparisons
emphasize how distributed processing at the edge reduces latency and enhances system
resilience.

Energy efficiency is another crucial factor in deploying intelligent detection models in
IoT networks. Wang et al. [11] demonstrated that cloud-based systems require signifi-
cant energy for data transmission and centralized processing, which can compromise
autonomy in energy-constrained environments. In contrast, Ahmad et al. [12] and Thein
et al. [13] explored federated learning techniques that reduce communication overhead
by keeping data local, resulting in a reduced energy impact but at the cost of increased
model management complexity. Additionally, Thwal et al. [14] proposed lightweight
convolutional transformers optimized for edge deployment, striking a balance between
detection performance and minimal computational load.

Page 4 of 33Ortiz-Garces et al. Discover Internet of Things (2025) 5:108

3  Materials and methods
The materials used to implement and evaluate an edge AI system for early fault detec-
tion in IoT networks involves a combination of IoT devices, edge computing nodes, and
advanced AI algorithms. Multiple IoT devices were strategically installed and config-
ured in a laboratory environment to simulate real-world conditions. Edge computing
nodes like Raspberry Pi and Nvidia Jetson were deployed for local data processing [15,
16]. The development of fault detection algorithms used historical fault data and vari-
ous machine learning techniques to ensure accurate and efficient fault detection [17].
The communications network and electrical infrastructure were optimized to support
the experimental setup, providing reliable data transmission and sustainable energy use.
Detailed experiments were conducted to evaluate the system’s performance, scalability,
and energy efficiency compared to traditional cloud-based approaches.

Figure 1 illustrates the overall architecture of the proposed edge AI system for early
fault detection in IoT networks. The diagram outlines the main components and data
flow, beginning with the collection of data from heterogeneous IoT devices (such as sen-
sors, cameras, and trackers), followed by local processing at edge nodes using AI models.
Faults are detected in real-time through a dedicated module, and the results are routed
to a real-time alerting system, which not only provides immediate notifications but also
supports monitoring and visualization through dedicated interfaces. This architecture
minimizes latency and energy consumption by leveraging edge computing, ensuring
scalability and robustness in fault detection tasks.

Table 1  Comparison of techniques and results in the literature
A B C D E F
Ahmad
et al. [8]

Deep Neural
Networks
(DNN)

Cloud Anomaly detec-
tion rate, power
consumption

High detection ac-
curacy, high energy
consumption

Lower energy consump-
tion and latency with
edge AI

Lee et
al. [10]

Deep-Learning
Autoencoders
(DLAE)

Edge Anomaly detec-
tion accuracy,
adaptability

Effective in detecting
early anomalies
in manufacturing,
optimized for indus-
trial IoT

Provides a relevant com-
parison, extends analysis to
predictive signal detection
and real-time processing in
IoT environments

Santo et
al. [9]

Machine learn-
ing at the edge

Edge Response time,
detection
accuracy

Improved accuracy
and response time,
does not evaluate
scalability

Expands by evaluating
scalability with more
devices

Wang et
al. [11]

Cloud-fog
architecture

Cloud and
edge

Power consump-
tion, latency

Higher cloud
consumption, better
latency at the Edge

Confirms energy efficiency
and improvements in early
detection

Ahmad
et al.
[12]

Mini-batch fed-
erated learning
with MLP

Edge
(federated)

Detection
accuracy, false
alarm rate

98.85% accuracy,
0.09% FAR, low re-
source usage

This study matches ac-
curacy while simplifying ar-
chitecture and integration

Thein et
al. [13]

Adversarial
transformer for
time-series

Edge/cloud
hybrid

F1-Score, recon-
struction error

F1-score >0.89 on 4
datasets

This study avoids two-
stage GAN training, focuses
on real-time IoT signals

Thwal
et
al. [14]

Lightweight
convolutional
transformer

TinyML/on-
device FL

Accuracy, MACs,
model size

Superior accuracy
with < 1.3 M params,
< 0.1G MACs

This study complements
by prioritizing detec-
tion rather than image
classification

A: Reference; B: Technique Used; C: Deployment Environment; D: Performance Metrics; E: Key Results; F: Comparison with
this study

Page 5 of 33Ortiz-Garces et al. Discover Internet of Things (2025) 5:108

3.1  Environment description

3.1.1  Setup and configuration of IoT devices and edge nodes

This study implements and evaluates an edge AI system for detecting early failures in
IoT networks. It identifies and mitigates issues before they impact the network’s perfor-
mance. Controlled experiments were conducted in a university laboratory environment,
focusing on the installation of diverse IoT devices, the configuration of edge computing
nodes, and the development of AI algorithms.

The selected IoT devices include temperature and humidity sensors, surveillance cam-
eras with real-time streaming capabilities, asset tracking devices equipped with RFID
technology, and motion sensors. These were strategically deployed to simulate a hetero-
geneous network environment representative of real-world operating conditions. Table
2 outlines the technical specifications and selection criteria for the devices used, provid-
ing a detailed overview of their capabilities and relevance to the study.

By leveraging these devices in conjunction with edge computing nodes, the experi-
mental setup ensures a robust platform for evaluating the performance of AI algorithms
under varied conditions. It captures diverse data inputs to emulate realistic IoT network
operations

For this study, devices such as Raspberry Pi and Nvidia Jetson are used, and they are
selected for their local processing capabilities and flexibility in software configuration.

Table 2  Technical specifications and selection criteria for IoT devices
A B C D E F
Temperature sensor DHT22 Every 5 s Wi-Fi − 40 to 80 °C High precision, low

power consumption
Humidity sensor DHT22 Every 5 s Wi-Fi 0 to 100% High precision, low

power consumption
Surveillance camera Arlo Pro 3 Continuous Wi-Fi Up to 300 ms High resolution, good

connectivity
RFID Zebra RFD8500 Continuous Blue-

tooth,
RFID

Up to 10 ms High precision,
versatility

Motion sensor HC-SR501 Every second Wi-Fi 0 to 7 ms High sensitivity, low cost
A: Device; B: Model; C: Data Rate; D: Communication Protocol; E: Operation Range; F: Selection Criteria

Fig. 1  General architecture for early fault detection using edge AI

Page 6 of 33Ortiz-Garces et al. Discover Internet of Things (2025) 5:108

The first step is installing compatible operating systems, such as Raspbian for Rasp-
berry Pi and Ubuntu for Nvidia Jetson. Subsequently, development environments are
configured, including the installation of Python and machine learning frameworks such
as TensorFlow and PyTorch [18]. In addition, node monitoring and management tools,
such as Nagios and Grafana, are implemented to ensure the correct operation and per-
formance of the nodes during the experiments.

These devices were selected based on specific criteria: low power consumption, sup-
port for edge AI deployment (through CUDA compatibility or optimized TensorFlow
Lite support), and widespread adoption in IoT prototyping environments. Raspberry
Pi 4B was chosen for its cost-effectiveness and compatibility with lightweight AI mod-
els, whereas Jetson Nano was selected for its superior GPU capabilities and ability to
handle more complex neural networks. This combination enables the benchmarking of
AI model performance under various hardware constraints. The criteria align with the
study’s goals of achieving both low-latency inference and broad scalability in real-world
settings.

3.1.2  Network architecture and experimental setup

This study employs two distinct network architectures: one for cloud-based fault detec-
tion and another for edge-based detection. The cloud-based architecture leverages cen-
tralized servers at a data center 500 km from the experimental site. Each server is a Dell
PowerEdge R740, equipped with dual Intel Xeon Silver 4214 CPUs, 64 GB of RAM, and
NVIDIA Tesla T4 GPUs. This system can handle large data volumes but introduces
latency due to the physical distance and reliance on centralized processing. The data
center’s power management system monitors energy consumption, including cooling
and idle power.

Conversely, the edge-based setup places computational nodes such as Nvidia Jetson
Xavier NX devices closer to the data source. These nodes, equipped with a 6-core Car-
mel ARM CPU, a 384-core Volta GPU with 48 Tensor Cores, and 8 GB of LPDDR4x
memory, enable localized data processing. Energy consumption is measured in real-time
using inline power meters, providing detailed insights under various operational condi-
tions, including regular operation, high workload, low power mode, and failure recovery.
The energy efficiency of these setups is rigorously compared to highlight the advantages
of edge computing.

Figures 2 and 3 illustrate the network structures. Figure 2 shows the cloud-based sys-
tem, where IoT devices transmit data to a distant data center via a network backbone.
Figure 3 highlights the edge-based system, emphasizing localized processing and redun-
dant connections between nodes, ensuring faster response times and higher fault detec-
tion precision.

The system detects various IoT network failures, such as sensor anomalies, network
communication disruptions, and device malfunctions. Temperature and humidity sen-
sors monitor for anomalies, while surveillance cameras and RFID devices detect con-
nectivity issues or abnormal activity patterns. By processing this data locally, the edge AI
system identifies subtle patterns and anomalies, surpassing the capabilities of traditional
rule-based methods.

The communication network employs Wi-Fi and Ethernet, with routers and switches
optimized for efficient data transmission. Security measures, including WPA2

Page 7 of 33Ortiz-Garces et al. Discover Internet of Things (2025) 5:108

encryption and firewalls, safeguard data integrity and confidentiality [19, 20]. Energy
infrastructure, comprising uninterruptible power supplies (UPS) and solar panels,
ensures system reliability and sustainability [21]. Energy consumption is continuously
monitored to maintain efficiency and stability.

Advanced AI models such as Recurrent Neural Networks (RNNs), Autoencoders, and
time series models are employed for fault detection algorithm development. Historical
IoT failure data is collected, cleaned, normalized, and used for feature extraction [22].
Models are trained and validated using cross-validation and hyperparameter tuning.
Adaptive mechanisms are implemented to update the models with new data, ensuring
long-term effectiveness.

AI enables proactive fault detection. Unlike simple threshold-based alerts, AI mod-
els analyze patterns to predict failures, such as calibration drifts or impending hardware
issues, enabling preemptive maintenance. This capability significantly enhances the resil-
ience and reliability of IoT networks.

Experimental simulations replicate IoT network failures, including device disconnec-
tions, sensor faults, transmission anomalies, and cyber-attacks. Real-time monitoring
tools evaluate system performance, and results are analyzed using statistical methods.

Fig. 3  Network structure for edge fault detection

Fig. 2  Network structure for cloud-based fault detection

Page 8 of 33Ortiz-Garces et al. Discover Internet of Things (2025) 5:108

The edge AI system is benchmarked against cloud-based solutions, highlighting its
reduced latency, improved energy efficiency, and scalability. Scalability tests demon-
strate the system’s capacity to maintain fault detection accuracy and performance even
with increasing devices and data volumes.

The work of Asonye et al. [23] is referenced for further understanding of network
configurations in IoT environments. This study provides a detailed analysis of network
topologies such as mesh, star, and tree, discussing their influence on data transmission,
latency, and energy consumption, supporting the arguments presented in this study.

3.2  Experimental environment configuration

The experimental setup involves the strategic deployment of IoT devices, including ten
temperature and humidity sensors, four surveillance cameras, five RFID-enabled asset-
tracking devices, and six motion sensors. These devices are positioned to capture diverse
operational data, ensuring comprehensive coverage and enabling failure detection across
varied scenarios [24].

Edge computing nodes, comprising Raspberry Pi and Nvidia Jetson devices, are dis-
tributed throughout the environment to minimize transmission distances and reduce
latency. This placement enhances real-time processing and mitigates cumulative delays
caused by network congestion and centralized server processing. Localized processing at
the edge eliminates routing and queuing delays often encountered in cloud-based archi-
tectures, offering a 50 ms latency improvement crucial for applications requiring imme-
diate response, such as industrial automation and critical infrastructure monitoring.

Each Raspberry Pi node operates with the Raspbian OS, and Nvidia Jetson nodes
utilize Ubuntu, both configured with Python and frameworks like TensorFlow and
PyTorch. These environments enable the execution of machine learning models directly
at the edge, ensuring near real-time fault detection. Tools like Nagios and Grafana are
implemented for node monitoring and management, ensuring optimal system perfor-
mance throughout the experiments [25].

The network architecture supports low-latency communication through Wi-Fi and
Ethernet connections, directly linking IoT devices to edge nodes. This setup enhances
system resilience by reducing reliance on centralized servers. Unlike cloud-based solu-
tions, which face inherent delays due to centralized data processing and queuing, edge
AI systems process data locally, enabling rapid decision-making critical for safety-criti-
cal environments. The network employs WPA2 encryption and firewalls to secure data
transmission while subnet segmentation isolates traffic, improving security and opera-
tional efficiency.

Energy infrastructure includes UPS systems and solar panels to provide a reliable and
sustainable power supply. Continuous energy consumption monitoring ensures sys-
tem stability and prevents interruptions that could compromise experimental validity.
Figure 4 illustrates the block diagram of the experimental environment, detailing the
interconnections between IoT devices, edge nodes, network architecture, and power
infrastructure.

The diagram highlights how IoT devices connect edge nodes through segmented net-
works for secure and efficient data processing. Edge nodes perform real-time analysis
and are equipped with monitoring tools to maintain system reliability. The power system

Page 9 of 33Ortiz-Garces et al. Discover Internet of Things (2025) 5:108

ensures uninterrupted operation, reinforcing the experimental environment’s robustness
and sustainability.

3.3  Development of fault detection algorithms

The development of fault detection algorithms employs AI models such as RNNs, Auto-
encoders, and time series models, which are particularly suited for addressing the vari-
ability and complexity of IoT network failures. The training and validation data are
sourced from open datasets, including the KDD Cup 1999 IoT network dataset and the
IoT-23 dataset and datasets generated through simulations in the experimental environ-
ment, amounting to approximately 500 GB and 10 million records [26].

Data preprocessing ensures high-quality inputs for model training. This includes
cleaning to eliminate duplicates and handle missing values using imputation tech-
niques (mean, median, or predictive models). Statistical methods such as Z-score and
IQR are used to filter outliers. Normalization scales numerical features using Min-Max
Scaling or Z-score normalization. At the same time, categorical variables are encoded
with methods like One-Hot Encoding or embeddings, depending on the model require-
ments [27]. Feature extraction focuses on temporal patterns in time-series data and spa-
tial features in image data using convolutional techniques.

The choice of RNNs and Autoencoders is motivated by their proven capacity to handle
sequential and high-dimensional data, respectively. RNNs, and particularly their LSTM
and GRU variants, are designed to retain temporal dependencies across time steps, mak-
ing them ideal for identifying anomalies in sensor sequences where short-term patterns
alone may not reveal faults. This temporal memory enables the model to distinguish
between transient noise and consistent deviations that indicate emerging problems.
Autoencoders, on the other hand, are effective in capturing the expected behavior of
high-dimensional data by learning compressed representations; their ability to recon-
struct inputs makes them naturally suited for detecting deviations caused by faults or

Fig. 4  Block diagram of the experimental environment for fault detection in IoT networks

Page 10 of 33Ortiz-Garces et al. Discover Internet of Things (2025) 5:108

unexpected behavior. This unsupervised nature is particularly advantageous in IoT,
where labeled failure data is often scarce. Together, these models form a complementary
framework: RNNs offer temporal resolution, while Autoencoders provide sensitivity to
structural and statistical irregularities.

The AI models address specific failure scenarios. RNNs analyze sequential data to
detect temporal anomalies, such as irregular sensor readings over time. Autoencoders
identify deviations from normal states by learning compact data representations and
flagging inputs that fall outside the expected range. Time series models track trends and
outliers indicative of gradual sensor degradation or network issues.

A key innovation is the predictive capability of these models. Traditional methods
often react to evident failures, whereas using RNNs and Autoencoders enables the
detection of subtle anomalies that precede critical faults. For instance, these models can
recognize patterns such as increasing latency or intermittent connectivity issues before
a device disconnects. This capability is validated by studies like Lee et al. [10], which
highlight the effectiveness of Autoencoders in detecting early anomalies in industrial IoT
environments.

Compared to centralized approaches like Ahmad et al. [8], which employ DNNs in
cloud settings, this study leverages edge computing to optimize real-time processing.
Lightweight models, including LSTM-based RNNs, are tailored for edge deployment,
reducing latency and computational overhead while maintaining high accuracy. This
edge-based architecture eliminates delays associated with centralized data transmis-
sion and processing, enabling real-time fault detection critical for applications requiring
immediate responses.

The training phase employs cross-validation to ensure model robustness and prevent
overfitting. Hyperparameters such as learning rates, number of layers, and units per
layer are tuned for optimal performance. The data is split into training (70%), validation
(15%), and testing (15%) sets, and metrics like precision, recall, and F1-score are used to
evaluate effectiveness.

The datasets generated during the simulation phase were created using a custom
Python-based framework designed to replicate the behavior of real-world IoT devices
under controlled fault conditions. These simulations incorporated signal delays, com-
munication errors, sensor drift, and intermittent failures to reflect a range of operational
scenarios.

Ensemble models are employed to minimize false positives, requiring consensus
among models before flagging faults. Post-processing filters analyze detected anomalies’
context and consistency, reducing spurious detections. This approach ensures sensitiv-
ity and specificity, maintaining system reliability. Continuous adaptation mechanisms
enable models to update their parameters based on new data, thereby ensuring their
effectiveness in evolving IoT environments. This is achieved through periodic retraining
with fresh data and real-time feedback.

This retraining process incorporates mechanisms to detect data drift and evolving
fault patterns. For instance, autoencoders are equipped with adaptive reconstruction
error thresholds that adjust based on recent input distributions, allowing the system to
remain sensitive to emerging failure modes. Additionally, edge nodes maintain short-
term temporal buffers that capture recent data trends and outliers. These buffers serve
both as real-time feedback mechanisms and as input for scheduled incremental updates

Page 11 of 33Ortiz-Garces et al. Discover Internet of Things (2025) 5:108

of the model. This design allows the system to adapt not only periodically but also con-
tinuously to dynamic environments, improving resilience against rapidly evolving faults.

Techniques such as structured network pruning and post-training quantization are
applied to compress models before deployment on resource-constrained edge nodes,
such as Raspberry Pi. Pruning removes neurons and synaptic connections with mini-
mal impact on inference output, while quantization maps floating-point weights to 8-bit
integer representations to reduce memory usage and improve inference latency. These
operations are applied after the complete training phase to preserve model accuracy.
Compressed models are exported in lightweight formats, such as TensorFlow Lite or
ONNX, allowing for compatibility with hardware-accelerated edge runtimes. When sup-
ported, hardware accelerators such as edge TPUs or embedded GPUs are used to opti-
mize execution [28, 29].

3.4  Conducting experiments

To evaluate the ability of the edge AI system to detect failures in IoT networks, several
experiments were designed and executed to simulate different types of failures in IoT
devices and communication networks. These experiments include device disconnec-
tions, sensor failures, cyber attacks, and data transmission anomalies and are detailed in
Table 3.

3.5  Evaluation and validation

For experiment 1, one or more IoT devices, such as temperature and humidity sensors,
surveillance cameras, and RFID devices, were suddenly disconnected. The disconnection
was carried out manually and controlled to evaluate the system’s ability to detect and
respond to a loss of communication. The disconnection detection time and the system’s
ability to notify and manage the failure were measured. Evaluation metrics included mil-
liseconds (ms) detection time and false positive and false negative rates.

In experiment 2, failures were induced in specific sensors, such as temperature and
humidity sensors. Failures were simulated by altering sensor readings to generate
anomalous data. The objective was to evaluate the system’s accuracy in detecting these
anomalies. Fault injection techniques included manipulation of input data to represent
non-real conditions. The evaluation metrics were precision, recall, and F1-score.

Table 3  Examples of experiments and evaluation metrics
Example Description Purpose Evaluation metric
Device
disconnection

Simulation of sudden
device disconnection

Measure failure detection and
management time

Detection time (ms), false
positive rate (%), false negative
rate (%)

Sensor failure Induction of failures in
temperature and humid-
ity sensors

Verify identification of abnor-
mal readings

Precision (%), recall (%), F1-score

Cyber attacks Execution of cyber
attacks

Measure effectiveness in de-
tecting and mitigating attacks

Attack detection rate (%),
response time (ms), impact on
system performance (%)

Data transmis-
sion anomalies

Introduction of anoma-
lies in data transmission

Maintain the integrity and
precision of transmitted data

Packet loss rate (%), latency (ms),
retransmission rate (%)

Energy efficien-
cy assessment

Measurement of energy
consumption under dif-
ferent conditions

Compare energy consumption
with traditional approaches

Energy consumption (Wh), ener-
gy efficiency (%), energy savings
compared to the cloud (%)

Page 12 of 33Ortiz-Garces et al. Discover Internet of Things (2025) 5:108

For experiment 3, cyber-attacks, such as denial of service (DoS) attacks and data
manipulation, were conducted to evaluate the system’s resilience to external threats.
DoS attacks were performed by sending many requests to IoT devices to overload the
network. Data manipulation was performed by altering data in transit to evaluate the
system’s ability to detect unauthorized modifications. Evaluation metrics included attack
detection rate, response time, and impact on system performance.

Experiment 4 introduced data transmission anomalies such as packet loss and network
delays. These failures were simulated by controlled errors introduced into the commu-
nication network. The objective was to evaluate the system’s robustness to maintain the
integrity and accuracy of the transmitted data. Evaluation metrics included packet loss
rate, latency, and retransmission rate.

In experiment 5, the system’s energy consumption under normal and fault conditions
was measured to evaluate the energy efficiency. Electrical consumption measurement
devices were used to record consumption in different operating scenarios. The objective
was to compare the energy consumption of the edge AI system with traditional cloud-
based approaches. Evaluation metrics included energy consumption in (Wh), efficiency,
and energy savings compared to the cloud. The table summarizes the experiment exam-
ples, objectives, and evaluation metrics.

3.6  Statistical analysis and validation

The results of the experiments will be analyzed using statistical and analytical methods
to evaluate the accuracy and robustness of the fault detection system. The performance
of the edge AI system will be compared with cloud-based solutions, highlighting the
advantages and limitations of both approaches. Additionally, the energy efficiency of the
edge AI system is evaluated, and scalability tests will be performed to measure its ability
to handle an increase in the number of IoT devices and data volume. Various evaluation
metrics will be used to assess the accuracy and robustness of the fault detection sys-
tem [30]. These metrics include precision, recall, F1-score, and false positive and nega-
tive rate.

Precision: measures the proportion of true positives and true negatives over the total
number of cases evaluated.

Precision = TP + TN
TP + TN + FP + FN � (1)

Recall: measures the proportion of detected true positives over the total of actual true
positives.

Recall = TP
TP + FN � (2)

The F1-score is the harmonic mean of precision and recall, balancing the two.

F1 Score = 2 × Precision × Recall
Precision + Recall � (3)

False Positive Rate (FPR): measures the proportion of false positives over the total num-
ber of true negatives.

Page 13 of 33Ortiz-Garces et al. Discover Internet of Things (2025) 5:108

FPR = FP
FP + TN � (4)

False Negative Rate (FNR): measures the proportion of false negatives over the total true
positives.

FNR = FN
TP + FN � (5)

where TP are the true positives, TN are the true negatives, FP are false positives, FN are
false negatives.

Parallel tests will be carried out using both approaches to compare the performance
of the edge AI system with that of cloud-based solutions. Latency, responsiveness, and
accuracy in fault detection will be measured in both systems. Differences in performance
will be quantified through statistical tests such as the student t-test for related samples,
which allows the means of two related samples to be compared and determine if there
are significant differences.

t = X1 − X2

Sdiff/
√

n
� (6)

where X1 − X2 are the means of the two samples. Sdiff is the standard deviation of the
differences between the samples. n is the sample size.

The energy efficiency of the edge AI system will be evaluated by measuring the energy
consumption under different operating conditions. Electrical consumption measure-
ment devices will record consumption in (Wh). Energy efficiency will be calculated by
comparing the energy consumption of the edge AI system with cloud-based approaches.

Energy efficiency =
(

CEC − PEC
ECC

)
× 100� (7)

where CEC: Cloud Energy Consumption, representing the total energy consumed by a
cloud-based system. This includes the energy required for data transmission, process-
ing, and storage in remote data centers and the power consumed by network infrastruc-
ture. PEC: Perimeter Energy Consumption, representing the energy consumed by the
edge AI system, including local data processing and network communication at the edge
devices. ECC: Energy Consumption for Cloud Processing, referring specifically to the
energy used for data processing and storage within the cloud infrastructure, excluding
the energy consumed during data transmission from IoT devices to the cloud.

Scalability tests measure the system’s ability to handle increased IoT devices and data
volume. These tests involve simulating an increasing number of devices and analyzing
how this affects system performance. Latency, processing time, and error rate are mea-
sured as system load increases.

3.7  Real-time implementation

The trained model is integrated into the production environment, ensuring optimized
performance and robustness. The system architecture consists of IoT devices, edge
computing nodes, a robust communication network, and monitoring tools, as shown

Page 14 of 33Ortiz-Garces et al. Discover Internet of Things (2025) 5:108

in Fig. 5. This architecture ensures seamless interaction between components, enabling
quick and accurate responses to detected failures.

Techniques such as model compression and hardware-accelerated inference enhance
real-time performance. Model compression, achieved through network pruning and
quantization, reduces the model’s size and complexity without significantly impacting
accuracy. Hardware acceleration using GPUs and TPUs ensures faster data processing
and improved system responsiveness.

System performance in production is evaluated using stress testing and continu-
ous monitoring. Stress testing simulates high workloads to assess the system’s behav-
ior under extreme conditions. Metrics such as latency, response time, and error rate are
continuously monitored to identify potential bottlenecks and optimize performance.
Maintenance and updates follow established procedures, including:

 	• Continuous monitoring: Tools like Nagios and Grafana monitor system performance
in real-time. Automated alerts notify administrators of anomalies or failures,
enabling prompt intervention [30].

 	• Model updates: Mechanisms are in place to periodically update the AI models with
new data collected from the production environment. These updates ensure the
system remains adaptable to changing conditions and performs well.

 	• Incident documentation and Reporting: All detected incidents are documented,
detailing the nature of the failure and the system’s responsibility. The corrective
actions are taken. This builds a comprehensive incident history to improve future
performance and resilience.

This end-to-end approach to real-time deployment, which combines advanced optimi-
zation techniques with robust maintenance procedures, ensures that the edge AI system
operates efficiently in production environments.

3.8  Ethical and safety considerations

Developing and deploying an edge AI system for fault detection in IoT networks must
prioritize data privacy, security, and ethical compliance. Robust technical and organi-
zational measures are implemented to protect data and ensure the system aligns with
applicable regulations and ethical standards.

Data Privacy and Security To safeguard data privacy, personal information is anony-
mized or pseudonymized, minimizing the risk of identification even in a breach. Data in
transit and at rest is encrypted using AES-256, ensuring protection against unauthorized

Fig. 5  Real-time implementation architecture

Page 15 of 33Ortiz-Garces et al. Discover Internet of Things (2025) 5:108

access [31]. Strict access controls, including multifactor authentication (MFA) and role-
based privilege management, restrict data access to authorized personnel [32]. Con-
tinuous monitoring with tools such as Nagios and Grafana, alongside periodic security
audits, ensures real-time detection and response to suspicious activity.

Ethical Implications of AI Implementation The AI system is designed to be transpar-
ent and explainable. It documents algorithms and provides comprehensible explanations
for detected faults. By optimizing models through cross-validation and continuous tun-
ing, the system minimizes false positives and negatives, reducing unnecessary alarms or
undetected issues. The impact on users is carefully evaluated, ensuring proportionate
and justified responses to detected faults.

Compliance with European regulations, including the General Data Protection Reg-
ulation (GDPR), is integral to the system’s design. Users provide informed consent for
data collection, and mechanisms are implemented to respect their rights, such as access,
rectification, and data erasure. Data Protection Impact Assessments (DPIAs) are con-
ducted to identify and mitigate risks, with regular reviews ensuring ongoing compli-
ance [33, 34].

Cybersecurity Measures To protect against cyber-attacks, the system incorporates
advanced firewalls, intrusion detection systems, and regular penetration testing to iden-
tify vulnerabilities. Software and hardware are updated with the latest security patches
to mitigate exploitation risks. Additionally, cybersecurity training ensures staff are
equipped with best practices to address emerging threats.

Social and Regulatory Considerations The implementation of edge AI in IoT networks
has significant social implications. Social impact assessments evaluate the effects on
users and communities, ensuring open communication with stakeholders. A data pro-
tection officer (DPO) and an ethics committee oversee the system’s operation, maintain-
ing the highest ethical standards.

Under the European Union Artificial Intelligence Act (EUAIA), the system’s risk level
is evaluated based on its intended application. Compliance consultancy ensures adher-
ence to data quality, transparency, and human oversight requirements. Additional
quality control and risk mitigation processes will be implemented to meet regulatory
standards if classified as high risk.

Specific challenges inherent to edge computing environments are also addressed to
ensure resilience against physical and adversarial threats. Given the distributed nature
of edge nodes and their frequent deployment in unattended or public locations, physi-
cal access attacks pose a significant risk. To mitigate this, tamper-resistant enclosures,
secure boot processes, and hardware root-of-trust mechanisms are employed to prevent
firmware manipulation and unauthorized access to hardware.

Additionally, to counter model inversion and membership inference attacks, par-
ticularly relevant in AI systems deployed on resource-constrained devices, techniques
such as differential privacy and dropout regularization are implemented during train-
ing. These methods help obscure individual training data points and reduce the risk
of sensitive data reconstruction. The models are also obfuscated and signed to ensure
authenticity and prevent reverse engineering. These safeguards collectively enhance the
robustness of the edge AI system under hostile or semi-trusted deployment scenarios.

Page 16 of 33Ortiz-Garces et al. Discover Internet of Things (2025) 5:108

4  Results
The results are divided into system performance, scalability, and energy efficiency. Each
category highlights significant improvements and challenges observed during the exper-
imental phase. The results underline the potential of cutting-edge AI to improve the reli-
ability and efficiency of IoT networks, providing a detailed comparison with traditional
cloud-based approaches.

4.1  Experiment results

The experimental results comprehensively analyze the performance of the edge AI sys-
tem under different conditions. This subsection details the results of several experiments
conducted to test the system’s fault detection capabilities, response times, and power
consumption. We performed a series of tests simulating common IoT device failures and
cyber-attacks, evaluating the accuracy and robustness of the system. The data collected
from these experiments was thoroughly analyzed to extract meaningful insights into
the effectiveness and scalability of the proposed solution. The findings demonstrate the
practical benefits of deploying AI-powered fault detection at the edge, emphasizing its
impact on real-time monitoring and maintenance of IoT networks.

4.1.1  Device disconnection

Sudden disconnection experiments were conducted on various IoT devices, including
temperature and humidity sensors, surveillance cameras, and RFID tags. The objective
was to evaluate the system’s ability to detect unplanned device interruptions using both
temporal analysis and behavioral patterns. For this purpose, a lightweight LSTM-based
model was deployed locally at each edge node to analyze the temporal continuity of data
streams. Unlike simple timestamp verification scripts, this model identifies not only
abrupt halts but also patterns of degradation or instability that precede disconnection,
which are often early indicators of faults.

Table 4 presents the results of the disconnection detection process, including detec-
tion time, FPR, and FNR. These metrics enable us to evaluate the responsiveness and
reliability of the AI-based disconnection detection mechanism across various device
types.

As shown in the table, the system achieves an average detection time of approxi-
mately 155 ms across all device types. The false positive rate remains under 2.7%, and
the false negative rate under 1.3%, confirming the system’s precision. These values sur-
pass those typically achieved using traditional rule-based methods, which rely solely on
heartbeat intervals or timestamp monitoring. By modeling standard communication
sequences and predicting expected data flows, the system can detect silent degradations
or jitter patterns before complete disconnection occurs, improving fault anticipation and
response.

Table 4  Detection of IoT device disconnections: response time and error rates
Device Detection Time (ms) False positive rate (%) False negative rate (%)
Temperature sensor 150 2.5 1.2
Humidity sensor 160 2.7 1.1
Surveillance camera 140 2.3 1.3
RFID device 170 2.6 1.0
Motion sensor 155 2.4 1.2

Page 17 of 33Ortiz-Garces et al. Discover Internet of Things (2025) 5:108

This predictive capacity is crucial in scenarios where devices may operate under inter-
mittent connectivity, low-power modes, or environmental interferences that do not
result in immediate disconnections but indicate a high risk. Furthermore, by integrating
the model at the edge, detection is performed in real-time without requiring centralized
polling, ensuring low-latency alerts.

Figure 6 illustrates each device type’s detection and recovery times throughout the
experiment. Each subgraph represents a different device, showing the device’s state over
time, where 0 indicates disconnection and the height of the line indicates the detection
time as the device recovers.

The results demonstrate the system’s ability to detect and manage device disconnec-
tions and recoveries effectively. The detection and recovery cycles for each device type
are as follows:

 	• Temperature sensor: The system detects disconnections promptly, with recovery
times consistently reaching approximately 150 ms. The graph shows three
disconnection events around 5, 25, and 45 s, with corresponding recovery periods.

 	• Humidity sensor: The system effectively handles humidity sensor disconnections,
with recovery times around 160 ms. Like the temperature sensor, the humidity
sensor experiences three trip events around 10, 30, and 50 s.

 	• Surveillance camera: Surveillance cameras’ detection and recovery times are around
140 ms. Disconnections occur at 15, 35, and 55 s, and the system detects and
recovers the device promptly.

 	• RFID device: The RFID device performs consistently in detection and recovery, with
recovery times around 170 ms. Disconnections are observed at 20, 40, and 60 s.

Fig. 6  Detection Times during disconnection and recovery of IoT devices

Page 18 of 33Ortiz-Garces et al. Discover Internet of Things (2025) 5:108

 	• Motion sensor: The motion sensor also demonstrates reliable detection and recovery
times, reaching approximately 155 ms. The system effectively handles disconnections
at 25, 45, and 65 s.

Furthermore, the results indicate that the system maintains high responsiveness across
different types of devices. Detection times are within an acceptable range, ensuring that
disconnections are quickly identified and the system transitions to recovery promptly.
Slight variations in recovery times between different device types are attributed to their
intrinsic characteristics and data transmission methods.

4.1.2  Sensor failure

Fault induction experiments were conducted on temperature and humidity sensors to
evaluate the system’s accuracy in detecting sensor faults. The failures were induced by
altering sensor readings to generate anomalous data patterns, including constant high or
low readings and intermittent failures.

These results correspond to the ensemble fault detection model, which combines RNN
and AE. The RNN component captures sequential dependencies in sensor time-series
data, while the Autoencoder models the expected behavior of sensor outputs and flags
deviations. This hybrid model is deployed on edge nodes and trained using labeled fault
injection data collected in the experimental setup.

Table 5 summarizes the evaluation results using standard classification metrics: pre-
cision, recall, and F1-score. Although FPR and FNR were not explicitly tabulated here,
they were computed during the evaluation phase and are consistent with the recall and
precision values reported.

The average system accuracy in detecting high reading faults in the temperature sen-
sor is 92.5%, with a recall of 91.2% and an F1-score of 91.8%. For low-read faults, the
average precision is 93.1%, with a recall of 92.0% and an F1-score of 92.5%. These values
indicate that the system can accurately identify most temperature sensor faults, thereby
minimizing both false positives and negatives.

In the case of the humidity sensor, the system shows an average accuracy of 93.8%
in detecting high reading faults, with a recall of 92.4% and an F1-score of 93.1%. For
low-read faults, the average precision is 94.2%, with a recall of 93.0% and an F1-score of
93.6%. These results are slightly better than those obtained for the temperature sensor,
suggesting that the system has a greater capacity to handle anomalous data in humidity
measurements, likely due to more consistent temporal patterns in those signals.

Figure 7 presents the evaluation metrics and provides a more detailed view of how
these metrics evolved over the experiment’s time. The metrics for both sensors are con-
sistently high, indicating stability in system performance during the experiment:

Table 5  Performance metrics of the RNN-AE-based fault detection model for simulated sensor
failures
Sensor Failure type Precision (%) Recall (%) F1-score (%)
Temperature sensor High read failure 92.5 91.2 91.8
Temperature sensor Low read fault 93.1 92.0 92.5
Humidity sensor High read failure 93.8 92.4 93.1
Humidity sensor Low read fault 94.2 93.0 93.6
Temperature sensor Intermittent 91.0 90.5 90.7
Humidity sensor Intermittent 92.5 91.8 92.1

Page 19 of 33Ortiz-Garces et al. Discover Internet of Things (2025) 5:108

 	• High reading fault—Temperature sensor: An increasing trend is observed in the
precision, recall, and F1-score metrics as the experiment time progresses, reaching
values of up to 94%.

 	• Low reading fault—Temperature sensor: The metrics also show an upward trend,
with slight variability, but reaching values close to 95%.

 	• High reading fault—Humidity sensor: The metrics increase constantly throughout
the experiment, reaching 94.2%.

 	• Low reading fault—Humidity sensor: The metrics also show constant improvement,
reaching values close to 95.2%.

The system demonstrates high precision and robustness in detecting failures in tempera-
ture and humidity sensors. The consistency of the evaluation metrics over the experi-
ment time underlines the system’s ability to maintain reliable performance in identifying
anomalous data, which is crucial for the operational efficiency and resilience of IoT
networks.

4.1.3  Cyber attacks

To evaluate the system’s resilience against cyberattacks, experiments were conducted
simulating DoS attacks and data manipulation in the IoT network. The results regard-
ing attack detection rates, response times, and impacts on system performance are
presented. Table 6 shows the system resilience evaluation metrics against different

Table 6  Analysis of case studies in malware detection
Attack type Detection rate (%) Response time (ms) Impact on performance (%)
Denial of service 95.2 150 12
Data manipulation 94.5 180 10
Phishing attack 93.7 170 9
Injection attack 96.0 160 11

Fig. 7  Precision, recall, and F1-score metrics for failures in temperature and humidity sensors

Page 20 of 33Ortiz-Garces et al. Discover Internet of Things (2025) 5:108

cyber-attack types, including DoS attacks, data manipulation, phishing, and injec-
tion. These metrics include attack detection rate, response time, and impact on system
performance.

The results indicate that the system maintains a high detection rate for all attack types,
ranging from 93.7% to 96.0%. Response times range from 150 ms to 180 ms, while the
impact on system performance ranges from 9% to 12%. These results suggest that the
system can effectively detect and respond to attacks, albeit with a moderate effect on
overall performance.

 	• Denial of service (DoS): The system achieves a commendable 95.2% detection
rate, with a swift response time of 150 ms and a manageable performance impact
of 12%. These results underscore the system’s high effectiveness in identifying and
responding to DoS attacks, a testament to its comprehensive security capabilities.

 	• Data tampering: The detection rate is 94.5%, with a response time of 180 ms and
a performance impact of 10%. Although the response time is longer than for DoS
attacks, the impact on performance is less severe.

 	• Phishing attack: The detection rate is 93.7%, with a response time of 170 ms and a
performance impact of 9%. This demonstrates the system’s ability to handle phishing
attacks with minimal performance impact.

 	• Injection attack: The detection rate is 96.0%, with a response time of 160 ms and
a performance hit of 11%. This high detection rate reflects the system’s ability to
identify and effectively mitigate these types of attacks.

Figure 8 shows the evolution of the attack detection rate and response time during the
experiments for DoS and data tampering attacks. The graph is divided into two sub-
graphs for better visualization. The first subgraph presents the attack detection rate over
the experiment time, while the second subgraph shows the system response time.

Fig. 8  Detection rate and response time for denial of service (DoS) attacks and data manipulation

Page 21 of 33Ortiz-Garces et al. Discover Internet of Things (2025) 5:108

 	• Attack detection rate: The attack detection rate improves progressively over the
experiment’s time, reaching values greater than 95% for both types of attacks. For
denial of service (DoS) attacks, the detection rate starts at 90% and increases
consistently up to 95.5%. On the other hand, data tampering detection begins at 89%
and increases to 94.9%.

 	• Response time: The system’s response time consistently decreases throughout the
experiment, a promising sign of its improving efficiency in detecting and responding
to attacks. For DoS attacks, the initial response time of 160 ms is reduced to a more
efficient 140 ms. In the case of data manipulation, the response time decreases from
190 ms to a quicker 165 ms.

These results show that the system improves performance over time, detecting and
responding to attacks more quickly and accurately. The reduced response times and
increased detection rates reflect the system’s ability to adapt and improve it cyberattack
resilience.

4.1.4  Data transmission anomalies

To evaluate the system’s robustness against anomalies in data transmission, experiments
introduced anomalies into the network, such as packet loss and delays. The packet loss
rate, latency, and retransmission rate results are presented. The experiment results show
how the system handles data transmission anomalies, reflecting its robustness regard-
ing packet loss rate, latency, and retransmission rate. Table 7 presents the metrics for
evaluating the system’s robustness against different types of anomalies in data transmis-
sion, including packet loss, network delays, congestion, and interference. These metrics
include packet loss rate, latency, and retransmission rate.

The results indicate that the system maintains relatively low packet loss rates, varying
between 2.5 and 4.2%. The latency ranges from 50 to 100 ms, while the retransmission
rate ranges from 3.5 to 5.0%. These results suggest that the system can handle data trans-
mission anomalies with a moderate impact on performance. However, it is important to
note that the latency values observed in these experiments are significantly influenced
by the localized processing at the edge, which minimizes the data travel distance and
mitigates the need for extensive retransmissions often required in cloud-based systems.
In a centralized cloud architecture, even when servers are regionally located, the impact
of network anomalies such as packet loss can be more severe due to the cumulative
delays introduced by routing, data queuing, and the additional processing steps needed
to recover lost packets. This is particularly relevant when dealing with high-frequency
data streams, where the aggregation of even minor delays can lead to significant latency
spikes, thus compromising the system’s ability to perform real-time fault detection.
The localized nature of the edge AI system effectively counters these issues by ensur-
ing that most data processing occurs near the source, thus reducing the dependency on

Table 7  Robustness evaluation metrics against network anomalies
Type of anomaly Packet loss rate (%) Latency (ms) Retransmission rate (%)
Packet loss 2.5 50 3.5
Network delay 3.0 70 4.0
Network congestion 3.8 90 4.5
Interference 4.2 100 5.0

Page 22 of 33Ortiz-Garces et al. Discover Internet of Things (2025) 5:108

potentially congested wide-area networks (WANs) and avoiding the latency penalties
typically associated with central cloud processing.

Moreover, the relatively low retransmission rates observed in the edge-based setup
indicate the system’s ability to maintain data integrity and performance despite network
anomalies. In contrast, cloud-based architectures may experience higher retransmission
rates, particularly under network congestion or interference conditions, as the physi-
cal distance and the number of intermediate hops increase the likelihood of data packet
loss or corruption. These factors, compounded by the inherent processing delays in
the cloud, can lead to a degradation in the system’s overall performance, particularly in
applications that require high reliability and low latency. The edge AI system’s advantage
lies in its ability to process and retransmit data with minimal delay, maintaining robust
performance even under suboptimal network conditions.

These metrics further underscore the importance of localized processing in mitigating
the adverse effects of network anomalies. For instance, while cloud-based systems typi-
cally require multiple packet retransmissions to maintain data integrity under network
congestion or interference, the edge AI system’s proximity to the data sources allows it to
recover more quickly from such anomalies. This rapid recovery is critical in maintaining
the system’s real-time processing capabilities, as it ensures that even in network issues,
the system can continue to function effectively without significant degradation in per-
formance. The ability to sustain low latency and retransmission rates despite network
anomalies positions the edge AI system as a more reliable solution for fault detection in
IoT networks, especially when compared to cloud-based alternatives that are more sus-
ceptible to the compounding effects of network-induced delays.

Figure 9 shows the packet loss rate, latency, and retransmission rate evolution dur-
ing the experiments. For better visualization, the graph is divided into three subgraphs.
The data visualized in these subgraphs further supports the argument that localized

Fig. 9  Robustness evaluation metrics against network anomalies

Page 23 of 33Ortiz-Garces et al. Discover Internet of Things (2025) 5:108

processing at the edge is more effective in maintaining system performance under
adverse network conditions. The gradual packet loss rate and latency increase observed
in these experiments remain manageable. This would not be the case if the data were
processed centrally in the cloud, where the cumulative effects of network anomalies
could lead to more pronounced degradation.

4.1.5  Energy efficiency assessment

Energy consumption measurements were conducted under different operating condi-
tions to evaluate the system’s energy efficiency. The results were compared to traditional
cloud-based approaches to determine the energy savings achieved by the edge AI sys-
tem. Table 8 presents the energy consumption data for the edge AI system and cloud-
based approaches under regular operation, high workload, low power mode, and failover
conditions.

The results indicate that the edge AI system consumes less energy under all operat-
ing conditions than cloud-based approaches. In typical operation, the power consump-
tion of the edge AI system is 50 Wh, while the cloud-based approach consumes 70 Wh.
Under high workload, the power consumption of the edge AI system is 75 Wh, com-
pared to 110 Wh for the cloud-based approach. In low-power mode, the edge AI sys-
tem consumes 30 Wh versus 50 Wh for the cloud-based approach. During failover, the
power consumption of the edge AI system is 60 Wh, compared to 90 Wh for the cloud-
based approach.

Figure 10 compares energy consumption between the edge AI system and cloud-based
approaches under different operating conditions. The bar graph provides a clear visual
representation of the differences in energy consumption between the two approaches.
The edge AI system consumes 50 Wh in regular operation, while the cloud-based

Table 8  Energy consumption under different operating conditions
Operating condition Energy consumption—edge AI (Wh) Energy consumption—cloud-based (Wh)
Normal operation 50 70
High workload 75 110
Low power mode 30 50
Failure recovery 60 90

Fig. 10  Energy Consumption under different operating conditions

Page 24 of 33Ortiz-Garces et al. Discover Internet of Things (2025) 5:108

approach consumes 70 Wh. This represents an energy saving of 28.6% for the edge AI
system. Under high workload, the edge AI system consumes 75 Wh, while the cloud-
based approach consumes 110 Wh. This represents an energy saving of 31.8% for the
edge AI system. The edge AI system consumes 30 Wh in a low-power mode, while the
cloud-based approach consumes 50 Wh. This represents a 40% energy saving for the
edge AI system. When recovering from failures, the edge AI system consumes 60 Wh,
while the cloud-based approach consumes 90 Wh. This represents an energy saving of
33.3% for the edge AI system.

However, it is essential to consider the potential cumulative energy impact of dis-
tributing processing across multiple edge nodes. Each node must be powered and
maintained, and as the number of edge nodes increases, so does the total energy con-
sumption. In contrast, centralized cloud-based processing aggregates the workload in
fewer but typically more powerful data centers that can benefit from economies of scale
regarding energy efficiency. While the edge AI system demonstrates clear advantages in
energy consumption per node and operational condition, the overall energy footprint of
a highly distributed system could increase as more nodes are deployed to handle more
extensive networks. This highlights a trade-off between the localized efficiency gains of
edge computing and the potential energy costs associated with widespread distribution.

Therefore, the decision to adopt a distributed edge AI approach should be balanced
with considerations of network scale, the total number of edge nodes required, and
the specific energy efficiency strategies implemented at each node. Mitigating strate-
gies, such as dynamic power management, load balancing across nodes, and the use of
energy-efficient hardware, are crucial to ensuring that the benefits of reduced latency
and enhanced fault detection do not come at an excessive energy cost.

The use of model compression techniques, such as network pruning and post-train-
ing quantization, partially supports the energy efficiency of the edge AI system. These
optimizations enabled the deployment of deep learning models on resource-constrained
devices, such as the Raspberry Pi, without compromising their real-time inference capa-
bilities. While some minor degradation in model precision or slight improvements in
latency may result from such compression, these trade-offs were carefully controlled to
ensure that the overall system maintained high detection accuracy and responsiveness.
The reduced model size also contributed to lower memory usage and power consump-
tion, aligning with the improvements observed across different operational scenarios.

4.2  Comparison with traditional cloud-based approaches

A series of experiments were conducted to evaluate the effectiveness of the edge AI sys-
tem compared to traditional cloud-based solutions. These experiments were designed to
measure the main performance metrics under similar conditions for both approaches.
Metrics evaluated include failure detection rate, response time, packet loss rate, latency,
retransmission rate, and power consumption. The results of these experiments are
summarized in Table 9. This table clearly and concisely compares the main perfor-
mance metrics between the edge AI system and cloud-based solutions, highlighting the
improvements achieved by the proposed method.

To ensure a fair comparison, the same model lightweight LSTM-based recurrent neu-
ral network trained for fault detection was deployed in both cloud-based and edge AI
environments. In the cloud configuration, the model was executed on centralized servers

Page 25 of 33Ortiz-Garces et al. Discover Internet of Things (2025) 5:108

located approximately 500 km from the experimental deployment. In contrast, edge AI
utilizes compressed and quantized versions of the same model, which are deployed on
Raspberry Pi 4 devices. These models maintained equivalent structure but were opti-
mized for on-device inference using TensorFlow Lite and post-training quantization.

The superior performance of edge AI stems from several factors: (1) minimal network
transmission delays due to local inference, (2) real-time feedback loops allowing adap-
tive thresholds for anomaly detection, and (3) the ability to maintain temporal buffers
at the edge for short-term context processing. These architectural advantages reduced
both false positives and detection latency. Although the cloud system had greater raw
computational capacity, its reliance on remote data transfer introduced latency, hinder-
ing timely fault identification.

The results show that the edge AI system consistently outperforms cloud-based solu-
tions across all metrics. The reduction in latency observed in the edge AI system, 30 ms
less than the cloud-based approach, is primarily attributed to the proximity of the edge
nodes to the IoT devices. By processing data closer to the source, the edge AI system
significantly reduces the time required to traverse the network, a common bottleneck
in cloud-based systems where data must travel longer distances to centralized data cen-
ters. For example, the physical distance of 500 km between the experimental site and
the cloud data center introduces a transmission delay of approximately 2.5 ms each way,
totaling around 5 ms for round-trip data communication. In contrast, edge nodes within
10 km of the IoT devices contribute less than 0.1 ms to the overall latency, enabling real-
time processing and quicker fault detection. This reduction in latency directly impacts
the fault detection logic, improving both the speed and accuracy of detection.

Furthermore, the 50 ms advantage in response time further illustrates the significance
of localized processing. In a cloud-based architecture, even with a distributed setup, the
inherent delay in transmitting data to remote servers and awaiting a response introduces
latency that can be detrimental in time-sensitive applications. The edge AI system miti-
gates these delays by handling processing tasks locally, ensuring faults and anomalies are
detected faster than in cloud-based systems.

The measurements revealed that the edge AI system consumes significantly less
energy across all operational conditions, with energy savings ranging from 28.6% to 40%
compared to the cloud-based solution. This reduction is primarily attributed to local-
ized processing, minimizing the need for long-distance data transmission. For example,
during high workload scenarios, where data processing demands peak, the energy con-
sumption of the cloud-based servers increases due to both processing requirements and
additional cooling needs. In contrast, the distributed nature of edge AI allowed for more
efficient load balancing across the SBCs, reducing the overall energy footprint. However,

Table 9  Comparison of key metrics with other deep learning approaches
Metrics Edge AI Cloud-based Edge AI advantage
Failure detection rate (%) 92.0 88.5 + 3.5%
Response time (ms) 150 200 − 50 ms
Packet loss rate (%) 2.5 3.5 − 1.0%
Latency (ms) 50 80 − 30 ms
Retransmission rate (%) 3.5 5.0 − 1.5%
Energy consumption (Wh) 50 70 − 20 Wh

Page 26 of 33Ortiz-Garces et al. Discover Internet of Things (2025) 5:108

it is essential to recognize that the total energy consumption could increase as more
edge nodes are added.

In contrast, centralized cloud-based processing aggregates workloads in fewer but
more robust data centers, which benefit from economies of scale in energy efficiency
and advanced power management technologies. While the per-node energy consump-
tion of edge AI is lower, large-scale deployments could increase overall energy consump-
tion, necessitating careful consideration of network scale.

The fault detection rate is 3.5% higher for edge AI, indicating greater accuracy in iden-
tifying issues. This improvement in accuracy is mainly due to the reduced latency and
localized processing, which allows edge AI to detect faults more effectively as it can pro-
cess data with minimal delay, maintaining the integrity of real-time analysis. Energy con-
sumption is 20 Wh lower, representing significant savings in operating costs.

As highlighted in the energy efficiency assessment, while edge AI systems demonstrate
superior per-node energy consumption, the cumulative energy impact of a highly dis-
tributed system can be significant. Centralized cloud-based systems may achieve better
overall energy efficiency at scale due to their concentrated processing power and more
advanced cooling and power management technologies. However, increased latency in
cloud-based systems can negatively affect fault detection precision.

It is essential to note that the reported 150 ms response time for EdgeAI encompasses
the entire detection cycle, including data acquisition and system-level response. How-
ever, the specific processing time of the deep learning model (inference latency) was not
measured separately in this study. Future implementations will include dedicated profil-
ing tools to isolate and monitor the model’s execution time, enabling finer-grained per-
formance analysis.

Edge AI offers clear advantages in applications where reducing latency and improv-
ing fault detection accuracy are critical. However, a hybrid approach that combines edge
processing with centralized cloud resources may be more appropriate for large-scale
networks where the number of required edge nodes could lead to substantial cumulative
energy consumption.

Figure 11 shows that the edge AI system has a higher fault detection rate (92.0% vs.
88.5%), faster response time (150 ms vs. 200 ms), lower packet loss rate (2.5% vs. 3.5%),
lower latency (50 ms vs. 80 ms), lower retransmission rate (3.5% vs. 5.0%), and lower
power consumption (50 Wh vs. 70 Wh) compared to cloud-based solutions. These

Fig. 11  Comparison of key performance metrics between edge AI and cloud-based solutions

Page 27 of 33Ortiz-Garces et al. Discover Internet of Things (2025) 5:108

metrics illustrate the significant advantages of edge computing, particularly in scenarios
where latency and energy efficiency are critical factors.

The results demonstrate that the edge AI system offers several advantages over cloud-
based solutions. In terms of energy efficiency, edge AI consumes less energy, reducing
operational costs and decreasing environmental impact. The higher fault detection rate
and faster response time enhance the system’s ability to identify and respond to prob-
lems, which is crucial for maintaining network stability and reliability. The lower packet
loss rate and latency ensure efficient data transmission with fewer delays.

However, it is essential to recognize some limitations of the edge AI system. Although
edge AI offers superior performance in many areas, it may have limitations in process-
ing power compared to cloud-based solutions. While the edge nodes effectively reduce
latency by processing data locally, their computational capabilities may be constrained
compared to the vast resources available in cloud data centers. Additionally, cloud solu-
tions can quickly scale their processing capacity to handle large volumes of data, which
might require additional hardware and infrastructure at the edge. Moreover, deploy-
ing edge AI infrastructure may involve higher initial costs, particularly for specialized
hardware and the necessary support infrastructure, such as robust local networking
and power systems. These trade-offs must be carefully considered, especially when high
fault detection accuracy and low latency are critical. On the other hand, cloud-based
solutions offer several advantages, including scalable processing capacity and lower
initial implementation costs. However, these advantages come with trade-offs, such as
increased latency and response time due to network delays, and higher power consump-
tion, particularly when processing large volumes of data remotely.

Figure 12 presents a visual comparison of the Edge AI and Cloud-based sys-
tems across three key performance metrics?fault detection rate, latency, and energy
consumption?under varying operational conditions: normal operation, high workload,
low power mode, and failure recovery.

The Graph (A) shows that the fault detection rate of the Edge AI system consistently
exceeds that of the cloud-based alternative, with differences ranging from 3% to 5%
depending on the condition. This highlights the enhanced responsiveness and contextual

Fig. 12  Comparative Visualization of Operational Metrics Between Edge AI and Cloud-Based Systems. Graph (A)
shows the variation in failure detection rates under fluctuating network conditions. Graph (B) presents the distri-
bution of response times observed during high-load events. Graph (C) illustrates the energy consumption trends
during failover operations

Page 28 of 33Ortiz-Garces et al. Discover Internet of Things (2025) 5:108

awareness provided by edge-level processing, which enables the earlier detection of fault
signatures before they propagate.

Graph (B) displays latency measurements, where the Edge AI approach shows sub-
stantially lower values across all conditions, with a consistent gap of 25?35 ms compared
to the cloud-based system. This difference is primarily attributed to the elimination of
long-distance data transmission, which reduces round-trip times and supports real-time
decision-making.

The Graph (C) compares energy consumption and further reinforces the advantage of
edge computing in terms of energy efficiency. The Edge AI configuration achieves sav-
ings of between 20 and 40 Wh, depending on the operational scenario, particularly in
low-power and failure recovery modes. These savings stem from reduced reliance on
high-capacity servers and data center cooling requirements, in addition to local infer-
ence capabilities on energy-optimized hardware.

4.3  Scalability tests

To evaluate the edge AI system’s ability to handle increasing loads, scalability tests
were conducted in which the number of IoT devices and data volume were gradually
increased. The experiments measured how key performance metrics vary under differ-
ent system load levels. Metrics such as failure detection rate, response time, packet loss
rate, latency, retransmission rate, and energy consumption were evaluated. IoT devices
were added at intervals of 100, starting with 100 devices and increasing to 500.

The results obtained are presented in Table 10. This table shows how the performance
metrics vary as the number of IoT devices in the network increases. The fault detection
rate decreases slightly from 91.0% to 88.5% as the number of devices increases from 100
to 500. This indicates that although the detection capacity of the system decreases with
a higher load, the detection rate is still high and effective. The response time increases
from 140 ms to 160 ms, suggesting that the system needs more time to process the addi-
tional information as the load increases.

The results demonstrate that although the performance metrics slightly worsen with
increasing system load, the edge AI system can still handle increasing IoT devices effi-
ciently. The fault detection rate remains above 88%, indicating that the system remains
highly effective even with increased load. The response time, although rising to 160 ms
with 500 devices, is still acceptable for most applications. Packet loss rate and latency
show moderate increases but remain at manageable levels. The retransmission rate also
increases, but the increases are modest and do not significantly compromise the system’s
efficiency. Energy consumption increases proportionally with the load, suggesting that
the system is efficient in energy consumption.

In real-world deployments, additional challenges such as unstable power supply, fluc-
tuating network bandwidth, and unpredictable environmental conditions could affect

Table 10  Performance metrics with increasing load of the edge AI system in IoT networks
A B C D E F
100 91.0 140 2.0 45 48
200 90.5 145 2.2 47 50
300 89.8 150 2.5 50 52
400 89.0 155 2.8 52 54
500 88.5 160 3.0 55 56
Columns: A: IoT Devices; B: Detection Rate (%); C: Response Time (ms); D: Packet Loss (%); E: Latency (ms); F: Energy (Wh)

Page 29 of 33Ortiz-Garces et al. Discover Internet of Things (2025) 5:108

the performance of the edge AI system. Unlike the controlled laboratory environment,
industrial or field scenarios often involve intermittent connectivity, power surges, or
hardware variability that may impact the reliability of data collection and model infer-
ence. For instance, a sudden voltage drop may degrade processing capabilities or force
system reboots, while network jitter and congestion could delay anomaly reporting or
cause temporary data loss. Despite these potential issues, the system’s modular architec-
ture and local decision-making capabilities provide a degree of resilience. The ability of
edge nodes to function autonomously, even during brief network interruptions, is criti-
cal for maintaining fault detection in volatile environments. Furthermore, implement-
ing mechanisms such as power-aware scheduling, redundant communication paths, and
local data buffering can enhance robustness.

5  Discussion
The results of this study underscore the efficiency and effectiveness of utilizing AI at the
edge for early fault detection in IoT networks. Significant improvements in key metrics
were observed compared to prior studies. For instance, Ahmad et al. [8] demonstrated
using DNNs to identify anomalous patterns in cloud environments but did not address
centralized architectures’ latency and energy challenges. Similarly, Santo et al. [9]
explored fault detection at the edge but did not evaluate scalability. This study extends
those approaches, showcasing that edge AI can handle increased device and data loads
while maintaining high precision and energy efficiency.

A critical advantage of edge-based detection is reduced latency, which enables faster
fault responses. While cloud environments suffer from latency due to the distance
between IoT devices and centralized servers, edge computing processes data locally,
ensuring real-time detection with minimal delay. This reduction in latency enhances
fault detection accuracy by enabling AI models to analyze up-to-date data.

AI models, such as RNNs and Autoencoders, are particularly effective at detecting
complex patterns and subtle anomalies in dynamic IoT environments. Unlike cloud-
based systems that may need to simplify detection logic to mitigate latency issues, edge
systems leverage their proximity to devices to operate at full capacity, providing accurate
real-time anomaly detection.

The robust methodology employed in this study involved deploying a realistic hetero-
geneous IoT network, utilizing temperature and humidity sensors, surveillance cameras,
RFID devices, and motion sensors. Edge nodes like Raspberry Pi and Nvidia Jetson were
strategically positioned close to devices, significantly reducing latency and power con-
sumption. Results demonstrate that the edge AI system achieved an average detection
rate of 92.0%, surpassing the 88.5% of cloud-based systems, with response times below
150 ms compared to 200 ms for cloud solutions. Furthermore, the edge system’s energy
consumption averaged 50 Wh under normal conditions, compared to 70 Wh for cloud
setups, emphasizing its superior energy efficiency.

A notable innovation is the system’s scalability. Performance remained the number of
busts as IoT devices increased from 100 to 500, with fault detection rates exceeding 88%
and response times rising only moderately to 160 ms. This scalability highlights the sys-
tem’s suitability for large-scale applications, such as smart cities and industrial networks.

Another significant advantage of AI is its adaptability. Continuous learning processes
allow AI models to update as network conditions evolve, ensuring the system effectively

Page 30 of 33Ortiz-Garces et al. Discover Internet of Things (2025) 5:108

detects anomalies. Traditional methods, such as threshold-based alerts, lack this flexibil-
ity and are prone to missing emerging issues that deviate from predefined criteria.

From a security perspective, while edge processing introduces additional attack vec-
tors, it mitigates risks associated with centralized architectures by reducing data trans-
mission to a cloud server. This minimizes vulnerabilities like data interception and
tampering. Localized processing confines the potential impact of attacks on specific net-
work segments. Security measures, including encryption, authentication, and intrusion
detection systems tailored for edge environments, are essential to mitigate these risks.

In industrial environments, early failure detection through edge AI enables preventive
maintenance, minimizing equipment downtime and associated costs. In urban infra-
structure, such as smart grids or traffic management systems, the low latency and high
fault detection precision support responsive, adaptive operations that enhance citizen
services. The localized processing also aligns with privacy-preserving requirements in
sectors like healthcare and environmental monitoring, where transmitting sensitive data
to the cloud is often undesirable.

Moreover, the comparative analysis reaffirms that traditional cloud-based fault detec-
tion systems struggle to meet stringent real-time constraints. By contrast, our edge AI
solution operates efficiently even under high device loads. Compared to the bench-
mark approaches in [8, 9], our system not only demonstrates better detection rates
but also consistently performs across variable workloads. This makes it a viable candi-
date for deployment in high-density, latency-sensitive contexts such as IIoT and smart
logistics [35].

6  Conclusion
This study establishes the viability of edge AI systems as a transformative approach to
fault detection in IoT networks, addressing the limitations of centralized cloud-based
architectures. The research highlights the critical role of localized data processing in
improving IoT systems’ performance, efficiency, and scalability, which are fundamental
for the continued expansion of connected technologies in diverse domains.

The findings emphasize the potential of edge AI to redefine IoT network management
by significantly reducing latency and energy consumption while maintaining high fault
detection accuracy. These characteristics make edge AI particularly relevant for appli-
cations where system responsiveness and operational sustainability are critical, such as
healthcare, smart cities, and industrial automation. The ability to process data locally
ensures faster and more accurate fault detection, enhancing system reliability and opera-
tional continuity.

Moreover, the study demonstrates the adaptability of AI models in dynamic IoT envi-
ronments, offering a proactive approach to identifying and addressing network anom-
alies. This adaptability, coupled with the scalability of the edge AI system, provides a
robust framework for future IoT deployments that require efficient management of
increasing data volumes and device densities.

Despite these promising results, this work acknowledges the controlled nature of the
experimental environment as a limitation. Real-world deployments often involve more
significant variability in network conditions, device types, and operational scenarios,
which were only partially addressed in this study. These factors underscore the need for

Page 31 of 33Ortiz-Garces et al. Discover Internet of Things (2025) 5:108

further research in production environments to validate the practical applicability of
edge AI systems.

Future work should explore the integration of emerging AI models, such as trans-
formers, to determine their effectiveness in enhancing fault detection capabilities.
Additionally, expanding the dataset to include more diverse operating scenarios and
environmental conditions will provide deeper insights into the robustness and adapt-
ability of edge AI systems. Lastly, addressing the security implications of distributed
processing remains a priority, requiring the development of comprehensive strategies to
ensure the resilience of edge-based architectures against evolving cyber threats.

In terms of immediate applicability, the proposed system can be deployed in smart
manufacturing environments to monitor vibration patterns, thermal deviations, and
networked equipment failures in real time. In healthcare, it may be integrated into hos-
pital infrastructure or wearable medical devices to ensure uninterrupted monitoring of
critical patient data. For energy infrastructure, edge AI can detect and report faults in
power substations, smart meters, or renewable energy controllers, enabling preventive
maintenance and rapid response. These concrete use cases demonstrate the real-world
impact of the proposed solution and its potential to improve system resilience across
mission-critical domains.

Future research should also investigate the operational thresholds at which perfor-
mance degradation becomes unacceptable. This includes identifying the tipping point in
terms of device density, data throughput, or inference load that affects the reliability and
latency of fault detection. To address these limitations, strategies such as dynamic load
balancing, decentralized inference orchestration, and collaborative edge clusters should
be considered. Implementing these strategies will enable the system to scale beyond cur-
rent limits without compromising detection accuracy or energy efficiency.

Furthermore, while this study provides evidence of energy savings and scalability ben-
efits, it does not include a direct cost comparison between edge-based and cloud-based
architectures. This limitation is due to the experimental and controlled nature of the
deployment, where infrastructure and operational expenses are not reflective of real-
world implementations. Future work should therefore incorporate an economic assess-
ment covering hardware acquisition, deployment, and maintenance costs, as well as the
trade-offs in complexity, latency, and reliability between edge and cloud solutions. Such
analysis is crucial for organizations evaluating the practical feasibility and return on
investment of adopting edge AI systems.
Author contributions
Conceptualization, I.O.-G.; methodology, W.V.-C.; software, S.L.-M.; validation, W.V.-C, S.L.-M.; formal analysis, I.O.-G.;
investigation, I.O.-G. and W.V.-C.; data curation, W.V.-C. and S.L.-M.; writing-original draft preparation, S.L.-M. and I.O.-G.;
writing-review and editing, W.V.-C. and I.O.-G.; visualization, W.V.-C. and S.L.-M.; supervision, W.V.-C. and S.L.-M. All authors
have read and agreed to the published version of the manuscript.

Funding
The authors declare that no funding was received to conduct this study.

Data availability
The data used in this study do not originate from any external dataset and have not been deposited in a public
repository. All data were generated through custom simulations designed explicitly for this work, within a controlled
environment. However, the generated datasets can be made available upon reasonable request to the corresponding
author.

Materials availability
All materials pertinent to this study are a part of the institutional resources.

Page 32 of 33Ortiz-Garces et al. Discover Internet of Things (2025) 5:108

Declarations

Ethics approval and consent to participate
Not applicable. This research did not involve human participants, their data, or biological material.

Consent for publication
Not applicable. This manuscript does not contain any person’s data.

Competing interests
The authors declare no competing interests.

Received: 26 May 2025 / Accepted: 5 August 2025

References
1.	 Luo T, Xu Z, Jin X, Jia Y, Ouyang X. Iotcandyjar: towards an intelligent-interaction honeypot for IoT devices. Black Hat.

2017;2017:1–11.
2.	 Molling G, Klein AZ. Value proposition of IoT-based products and services: a framework proposal. Electron Mark.

2022;32:899–926. https://doi.org/10.1007/s12525-022-00548-w.
3.	 Wu Y-J, Brito R, Choi W-H, Lam C-S, Wong M-C, Sin S-W, et al. Iot cloud-edge reconfigurable mixed-signal smart meter

platform for arc fault detection. IEEE Internet Things J. 2023;10(2):1682–95. https://doi.org/10.1109/JIOT.2022.3210220.
4.	 Rani S, Bhambri P, Kataria A. Integration of IoT, Big Data, and cloud computing technologies: trend of the era. Boca Raton:

Chapman and Hall/CRC; 2023. p. 21. https://doi.org/10.1201/9781003298335-1.
5.	 Ojetunde B, Egashira N, Suzuki K, Kurihara T, Yano K, Suzuki Y. A multimodel-based approach for estimating cause of scan-

ning failure and delay in IoT wireless network. Network. 2022;2:519–44. https://doi.org/10.3390/network2040031.
6.	 Aboubakar M, Kellil M, Roux P. A review of IoT network management Current status and perspectives. 2022. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​

/​1​0​.​1​0​1​6​/​j​.​j​k​s​u​c​i​.​2​0​2​1​.​0​3​.​0​0​6​​​​​.​​​
7.	 Kumar R, Venkanna U, Tiwari V. Opti-pum: an optimal policy update mechanism for link failure prevention in mobile

sdwm-IoT networks. IEEE Syst J. 2021;15(3):3427–38. https://doi.org/10.1109/JSYST.2020.3009325.
8.	 Ahmad Z, Khan AS, Nisar K, Haider I, Hassan R, Haque MR, et al. Anomaly detection using deep neural network for IoT

architecture. Appl Sci (Switzerland). 2021;11:7050. https://doi.org/10.3390/app11157050.
9.	 Santo Y, Immich R, Dalmazo BL, Riker A. Fault detection on the edge and adaptive communication for state of alert in

industrial internet of things. Sensors. 2023;23:3544. https://doi.org/10.3390/s23073544.
10.	 Lee S, Kareem AB, Hur JW. A comparative study of deep-learning autoencoders (dlaes) for vibration anomaly detection in

manufacturing equipment. Electronics (Switzerland). 2024;13:1700. https://doi.org/10.3390/electronics13091700.
11.	 Wang K, Fu Y, Zhou S, Zhou R, Wen G, Zhou F, et al. Cloud-fog-based approach for smart wildfire monitoring. Simul Model

Pract Theory. 2023;127:102791. https://doi.org/10.1016/j.simpat.2023.102791.
12.	 Ahmad MS, Shah SM. A lightweight mini-batch federated learning approach for attack detection in IoT. Internet of Things.

2024;25:101088. https://doi.org/10.1016/j.iot.2024.101088.
13.	 Thein TT, Shiraishi Y, Morii M. Personalized federated learning-based intrusion detection system: poisoning attack and

defense. Future Gener Comput Syst. 2024;153:182–92. https://doi.org/10.1016/j.future.2023.10.005.
14.	 Thwal CM, Nguyen MNH, Tun YL, Kim ST, Thai MT, Hong CS. Ondev-lct: on-device lightweight convolutional transformers

towards federated learning. Neural Netw. 2024;170:635–49. https://doi.org/10.1016/j.neunet.2023.11.044.
15.	 Abbasi M, Shahraki A, Prieto J, Arrieta AG, Corchado JM. Unleashing the potential of knowledge distillation for IoT traffic

classification. IEEE Trans mach Learn Commun Netw. 2024;2:221–39. https://doi.org/10.1109/TMLCN.2024.3360915.
16.	 Oliveira RC, Silva RD. Artificial Intelligence in agriculture: benefits, challenges, and trends; 2023. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​3​3​9​0​/​a​p​

p​1​3​1​3​7​4​0​5​​​​​.​​​
17.	 Catarinucci L, Donno D, Mainetti L, Palano L, Patrono L, Stefanizzi ML, et al. An IoT-aware architecture for smart healthcare

systems. IEEE Internet Things J. 2015;2(6):515–26. https://doi.org/10.1109/JIOT.2015.2417684.
18.	 Vidal-Silva CL, Sánchez-Ortiz A, Serrano J, Rubio JM, Vidal-Silva CL, Sánchez-Ortiz A, et al. Academic experience in rapid

development of web information systems with python and django. Formaci n universitaria. 2021;14:85–94. ​h​t​t​p​s​:​​/​/​d​o​i​​.​o​r​g​
/​1​​0​.​4​0​​6​7​/​S​0​​7​1​8​-​5​​0​0​6​2​0​2​​1​0​0​0​​5​0​0​0​8​5.

19.	 Cheng Q, Wu C, Zhou H, Zhang Y, Wang R, Ruan W. Guarding the perimeter of cloud-based enterprise networks: An intel-
ligent sdn firewall. In: 2018 IEEE 20th international conference on high performance computing and communications;
IEEE 16th international conference on smart city; IEEE 4th international conference on data science and systems (HPCC/
SmartCity/DSS);2018. p. 897–902. ​h​t​t​p​s​:​​/​/​d​o​i​​.​o​r​g​/​1​​0​.​1​1​​0​9​/​H​P​​C​C​/​S​m​​a​r​t​C​i​t​​y​/​D​S​​S​.​2​0​1​8​.​0​0​1​4​9.

20.	 Johnson C, Curtin B, Shyamkumar N, David R, Dunham E, Haney PC, Moore HL, Babbitt TA, Matthews SJ. A raspberry pi
mesh sensor network for portable perimeter security. In: 2019 IEEE 10th annual ubiquitous computing, electronics &
mobile communication conference (UEMCON);2019. p. 0001–7. ​h​t​t​p​s​:​​/​/​d​o​i​​.​o​r​g​/​1​​0​.​1​1​​0​9​/​U​E​​M​C​O​N​4​​7​5​1​7​.​2​​0​1​9​.​​8​9​9​3​0​0​0.

21.	 Mekruksavanich S, Jitpattanakul A. Deep convolutional neural network with rnns for complex activity recognition using
wrist-worn wearable sensor data. Electronics (Switzerland). 2021;10:1685. https://doi.org/10.3390/electronics10141685.

22.	 Sharif SA, Hammad A, Eshraghi P. Generation of whole building renovation scenarios using variational autoencoders.
Energy Build. 2021;230:110520. ​h​t​t​p​s​:​​/​/​d​o​i​​.​o​r​g​/​1​​0​.​1​0​​1​6​/​j​.​​e​n​b​u​i​​l​d​.​2​0​2​​0​.​1​1​​0​5​2​0.

23.	 Asonye EA, Musa SM, Akujuobi CM, Sadiku MNO, Foreman J. Realizing an IoT-based home area network model using
zigbee in the global environment. Int J Comput Digit Syst. 2020;9:1131–41. https://doi.org/10.12785/ijcds/0906011.

24.	 Abugabah A, Nizamuddin N, Abuqabbeh A. A review of challenges and barriers implementing rfid technology in the
healthcare sector. Procedia Comput Sci. 2020;170:1003–10.

25.	 Vingestin I, Kalsum TU, Mardiana Y. The design of network monitoring system using snmp protocol with telegram notifica-
tion. J Media Comput Sci. 2023;2:93–100. https://doi.org/10.37676/jmcs.v2i1.3441.

26.	 Stolfo FWLWPA, Salvatore, Chan P. KDD Cup 1999 Data. UCI machine learning repository;1999. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​2​4​4​3​2​/​C​5​
1​C​7​N​​​​​.​​​

https://doi.org/10.1007/s12525-022-00548-w
https://doi.org/10.1109/JIOT.2022.3210220
https://doi.org/10.1201/9781003298335-1
https://doi.org/10.3390/network2040031
https://doi.org/10.1016/j.jksuci.2021.03.006
https://doi.org/10.1016/j.jksuci.2021.03.006
https://doi.org/10.1109/JSYST.2020.3009325
https://doi.org/10.3390/app11157050
https://doi.org/10.3390/s23073544
https://doi.org/10.3390/electronics13091700
https://doi.org/10.1016/j.simpat.2023.102791
https://doi.org/10.1016/j.iot.2024.101088
https://doi.org/10.1016/j.future.2023.10.005
https://doi.org/10.1016/j.neunet.2023.11.044
https://doi.org/10.1109/TMLCN.2024.3360915
https://doi.org/10.3390/app13137405
https://doi.org/10.3390/app13137405
https://doi.org/10.1109/JIOT.2015.2417684
https://doi.org/10.4067/S0718-50062021000500085
https://doi.org/10.4067/S0718-50062021000500085
https://doi.org/10.1109/HPCC/SmartCity/DSS.2018.00149
https://doi.org/10.1109/UEMCON47517.2019.8993000
https://doi.org/10.3390/electronics10141685
https://doi.org/10.1016/j.enbuild.2020.110520
https://doi.org/10.12785/ijcds/0906011
https://doi.org/10.37676/jmcs.v2i1.3441
https://doi.org/10.24432/C51C7N
https://doi.org/10.24432/C51C7N

Page 33 of 33Ortiz-Garces et al. Discover Internet of Things (2025) 5:108

27.	 Elnoshokaty A, Arai I, El-Tawab S, Salman A. Transit system prediction for real-time weather conditions: fleet management
and weather-related ridership. In: 2022 IEEE international conference on smart mobility (SM);2022. p. 14–20. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​
g​/​1​0​.​1​1​0​9​/​S​M​5​5​5​0​5​.​2​0​2​2​.​9​7​5​8​2​9​5​​​​​.​​​

28.	 Waheed U, Khan MSA, Awan SM, Khan MA, Mansoor Y. Decentralized approach to secure IoT based networks using block-
chain technology. 3C Tecnolog a_Glosas de innovaci n aplicadas a la pyme;2019. p. 182–205. ​h​t​t​p​s​:​​/​/​d​o​i​​.​o​r​g​/​1​​0​.​1​7​​9​9​3​/​3​​c​t​
e​c​n​​o​.​2​0​1​9​​.​s​p​e​​c​i​a​l​i​s​s​u​e​2​.​1​8​2​-​2​0​5.

29.	 Nasif A, Othman ZA, Sani NS. The deep learning solutions on lossless compression methods for alleviating data load on
IoT nodes in smart cities. Sensors. 2021;21:4223. https://doi.org/10.3390/s21124223.

30.	 Hyder MF, Fatima T, Arshad S. Digital forensics framework for intent-based networking over software-defined networks.
Telecommun Syst. 2024;85:11–27. https://doi.org/10.1007/s11235-023-01064-8.

31.	 Li H, Zhou S, Yuan W, Li J, Leung H. Adversarial-example attacks toward android malware detection system. IEEE Syst J.
2020;14(1):653–6. https://doi.org/10.1109/JSYST.2019.2906120.

32.	 Ayala R, Zambrano C, Iriarte A, Martínez R. Telelogin: una técnica de autenticación de dos vías y tres factores (telelogin: a
three-factor two-path authentication technique). Pistas Educativas. 2019;41:15–34.

33.	 Hamon R, Junklewitz H, Sanchez I, Malgieri G, De Hert P. Bridging the gap between ai and explainability in the gdpr:
towards trustworthiness-by-design in automated decision-making. IEEE Comput Intell Mag. 2022;17(1):72–85. ​h​t​t​p​s​:​/​/​d​o​i​.​
o​r​g​/​1​0​.​1​1​0​9​/​M​C​I​.​2​0​2​1​.​3​1​2​9​9​6​0​​​​​.​​​

34.	 Barezzani S. Data Protection Impact Assessment (DPIA);2024. ​h​t​t​p​s​:​​/​/​d​o​i​​.​o​r​g​/​1​​0​.​1​0​​0​7​/​9​7​​8​-​3​-​6​​4​2​-​2​7​7​​3​9​-​9​​_​1​8​1​3​-​1.
35.	 Irgat E, Çinar E, Ünsal A, Yazici A. An IoT-based monitoring system for induction motor faults utilizing deep learning mod-

els. J Vib Eng Technol. 2023;11:3579–89. https://doi.org/10.1007/s42417-022-00769-5.

Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/SM55505.2022.9758295
https://doi.org/10.1109/SM55505.2022.9758295
https://doi.org/10.17993/3ctecno.2019.specialissue2.182-205
https://doi.org/10.17993/3ctecno.2019.specialissue2.182-205
https://doi.org/10.3390/s21124223
https://doi.org/10.1007/s11235-023-01064-8
https://doi.org/10.1109/JSYST.2019.2906120
https://doi.org/10.1109/MCI.2021.3129960
https://doi.org/10.1109/MCI.2021.3129960
https://doi.org/10.1007/978-3-642-27739-9_1813-1
https://doi.org/10.1007/s42417-022-00769-5

	﻿Implementation of edge AI for early fault detection in IoT networks: evaluation of performance and scalability in complex applications
	﻿Abstract
	﻿1﻿ ﻿Introduction
	﻿2﻿ ﻿Literature review
	﻿3﻿ ﻿Materials and methods
	﻿3.1﻿ ﻿Environment description
	﻿3.1.1﻿ ﻿Setup and configuration of IoT devices and edge nodes
	﻿3.1.2﻿ ﻿Network architecture and experimental setup

	﻿3.2﻿ ﻿Experimental environment configuration
	﻿3.3﻿ ﻿Development of fault detection algorithms
	﻿3.4﻿ ﻿Conducting experiments
	﻿3.5﻿ ﻿Evaluation and validation
	﻿3.6﻿ ﻿Statistical analysis and validation
	﻿3.7﻿ ﻿Real-time implementation
	﻿3.8﻿ ﻿Ethical and safety considerations
	﻿4﻿ ﻿Results
	﻿4.1﻿ ﻿Experiment results
	﻿4.1.1﻿ ﻿Device disconnection
	﻿4.1.2﻿ ﻿Sensor failure
	﻿4.1.3﻿ ﻿Cyber attacks
	﻿4.1.4﻿ ﻿Data transmission anomalies
	﻿4.1.5﻿ ﻿Energy efficiency assessment

	﻿4.2﻿ ﻿Comparison with traditional cloud-based approaches
	﻿4.3﻿ ﻿Scalability tests
	﻿5﻿ ﻿Discussion
	﻿6﻿ ﻿Conclusion
	﻿References

