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Abstract: In the last few years, various approaches for the multidimensional (MD) modeling have been presented. How-
ever, none of them has been widely accepted as a standard. In this paper, we summarize the advantages of using
object orientation for MD modeling. Furthermore, we use the UML, a standard visual modeling language, for
modeling every aspect of MD systems. We show how our approach resolves elegantly some important prob-
lems of the MD modeling, such as multistar models, shared hierarchy levels, and heterogeneous dimensions.
We believe that our approach, based on the popular UML, can be successfully used for MD modeling and can
represent most of frequent MD modeling problems at the conceptuallevel.

1 INTRODUCTION

Data warehouses (DW), Multidimensional
databases (MDB), and On-Line Analytical Processing
(OLAP) applications relay on the multidimensional
(MD) paradigm. The basic underlying constructs of
MD modeling arefacts, measures(fact attributes),
dimensions, and attributes (dimension attributes).
The star schema (Kimball, 1996) has been widely
accepted as the underlying logical construct of MD
systems (i.e., DW). However, there does not exist a
precise model for the conceptual modeling, although
various approaches for the conceptual design of MD
systems have been proposed in the last few years,
such as (Golfarelli and Rizzi, 1998; Sapia et al.,
1998; Tryfona et al., 1999).

On the other hand, the Unified Modeling Language
(UML) (Object Management Group (OMG), 2001)
has been widely accepted as the standard object-
oriented (OO) modeling language for describing and
designing various aspects of software systems. We
have previously proposed a MD modeling approach
based on the UML (Trujillo et al., 2001), which has
been recently formalized as a UML extension (Luján-
Mora et al., 2002a). We take advantage of the flexibil-
ity of the UML to elegantly represent main MD prop-
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erties at a conceptual level. Our approach imposes a
three-layered schema that guides the designer in mod-
eling the MD schema and the final user in navigating
in the schema (Luján-Mora et al., 2002b).

The main contribution of this paper is to show how
to use together in a unified proposal our previously
presented partial solutions. Therefore, we show how
our approach resolves some important problems of
the MD modeling, such as multistar models, shared
dimensions, multiple and alternative hierarchy levels,
and heterogeneous dimensions. Furthermore, we also
compare the solutions that our approach provide with
other authors’ solutions.

The remainder of this paper is organized as fol-
lows. Section 2 discusses some related work. Sec-
tion 3 summarizes the basis of our OO conceptual
MD modeling approach based on the UML. Section 4
highlights the main situations where the use of UML
shows great advantages for MD modeling with re-
spect to other approaches. Finally, Section 5 presents
the main conclusions and introduces topics for future
work.

2 RELATED WORK

In the last few years, several MD data models have
been published. Some of them fall into the logical
level (such as the well-known star schema by Kimball
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(Kimball, 1996)). Others, such as The Dimensional-
Fact (DF) model (Golfarelli and Rizzi, 1998), The
Multidimensional/ER (M/ER) model (Sapia et al.,
1998) and The starER model (Tryfona et al., 1999),
may be considered as formal models as they provide
a formalism to consider main MD properties. A re-
view of the most relevant logical and formal models
can be found in (Blaschka et al., 1998; Abelló et al.,
2001).

However, none of the current conceptual modeling
approaches considers all MD properties at both the
structural and dynamic levels. Therefore, we claim
that a standard conceptual model is needed to con-
sider all MD modeling properties at both the struc-
tural and dynamic levels. We argue that an OO ap-
proach with the UML is the right way of linking struc-
tural and dynamic level properties in an elegant way
at the conceptual level.

3 MULTIDIMENSIONAL
MODELING APPROACH
BASED ON UML

In this section we summarize1 our OO MD mod-
eling approach based on the UML. Our approach is
based on the one hand, in the use ofpackage diagrams
in order to simplify huge and inter-related MD mod-
els, and on the other hand, in a set of stereotypes2

(FACT, DIMENSION, DESCRIPTOR, etc.) in order to
represent the main structural properties of MD mod-
els.

3.1 Extending UML

UML is a general purpose modelling language that is
broadly applicable to different types of systems, do-
mains, methods and processes. However, there may
be situations in which the user might want to extend
the language in some controlled ways to tailor it to
specific problem domains. In anticipation of this situ-
ation, the UML provides a set of extensibility mecha-
nisms that allow us to customize and extend the UML
by adding new building elements (stereotypes), cre-
ating new properties (tagged values), and specifying
new semantics (constraints).

We have previously proposed a UML extension for
MD modeling (Luj́an-Mora et al., 2002a; Luján-Mora
et al., 2002b). In this paper, we unify our proposals
and present all the stereotypes together. In a UML
diagram, there are four possible representations of a

1A complete description of our approach can be found
in (Luján-Mora et al., 2002a; Luján-Mora et al., 2002b).

2The stereotypes are highlighted in the text using a
SMALL CAPS font.

stereotyped element, e.g., the four representations of
a class with the FACT stereotype are shown in Fig-
ure 1: icon (the stereotype icon is displayed), decora-
tion (the stereotype decoration is displayed inside the
element), label (the stereotype name is displayed and
appears inside guillemots), and none (the stereotype
is not indicated).

Figure 1: Different representations for a stereotyped
class

3.2 Package Diagrams

A MD model can be very complex when the scale
of the MD system is large and includes a large num-
ber of interconnections among its different elements
(mainly facts and dimensions). In our MD modeling
approach, we use packages to group classes together
into higher level units creating different levels of ab-
straction, and therefore, simplifying the final model.
In this way, we avoid the use of flat diagrams, which
are usually confusing for both final users and design-
ers in most of the cases. We have divided the design
process into three levels (Figure 2 shows a summary
of our proposal):

Level 1 : Model definition. We use one package
stereotype called STARPACKAGE that represents a
star schema of a conceptual MD model. A depen-
dency between two packages at this level indicates
that the star schemas share at least one dimension.

Level 2 : Star schema definition. We use two pack-
age stereotypes called FACTPACKAGE and DI-
MENSIONPACKAGE that represent a fact or a di-
mension of a star schema respectively. A de-
pendency between two dimension packages at this
level indicates that the packages share at least one
level of a dimension hierarchy.

Level 3 : Dimension/fact definition. A package from
the second level is exploded into a set of classes
that represent the hierarchy levels in a dimension
package, or the whole star schema in the case of
the fact package. We use three class stereotypes at
this level: FACT, DIMENSION, and BASE.

3.3 Facts and Dimensions

In our MD modeling approach, the main structural
properties of MD models are specified by means of
a UML class diagram in which the information is
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Figure 2: The three levels of a MD model.

clearly separated into facts and dimensions. Facts and
dimensions are represented by FACT and DIMENSION
classes, respectively. Then, FACT classes are speci-
fied as composite classes in shared aggregation rela-
tionships ofn DIMENSION classes.

FACT classes consist of two kinds of attributes:
FACTATTRIBUTEs, which represent measures (the
transactions or values being analyzed), and DEGEN-
ERATEDIMENSIONs (Kimball, 1996; Giovinazzo,
2000), that allow the DW designer to represent
other FACT features in addition to the measures for
analysis; DEGENERATEDIMENSIONs also facilitate
joins with On-Line Transaction Processing (OLTP)
databases.

With respect to dimensions, every classification hi-
erarchy level is specified by a class called BASE class
(see level 3 in Figure 2). A ROLLS-UPTO association
of BASE classes specifies the relationships between
two levels of a classification hierarchy; the roll-up
and drill-down direction of the association is repre-
sented by means of “r” and “d” roles on the ends of the
association. Our approach can represent both multi-
ple and alternative classification hierarchies. The only
prerequisite is that the hierarchy levels must define a
Directed Acyclic Graph (DAG) rooted in the DIMEN-
SION class. Every classification hierarchy level must
have a DESCRIPTORattribute; this attribute is nec-
essary for an automatic generation process into com-
mercial OLAP tools, as these tools store this informa-
tion in their metadata. The multiplicity1 and1..* de-
fined in the target associated class role addresses the
concepts of strictness and non-strictness, respectively.
Strictness means that an object at a hierarchy’s lower
level belongs to only one higher-level object. More-
over, defining an association as COMPLETENESSad-
dresses the completeness of a classification hierarchy.
By completeness we mean that all members belong
to one higher-class object and that object consists of
those members only. Our approach assumes all clas-
sification hierarchies are non-complete by default.

Finally, the categorization of dimensions, used to
model additional features for a class’s subtypes, is
represented by means of generalization-specialization
relationships. However, only the dimension class can
belong to both a classification and specialization hier-
archy at the same time.

4 ADVANTAGES OF UML FOR
MULTIDIMENSIONAL
MODELING

In this section we highlight the main situations
where the use of UML means a considerable advan-
tage for MD modeling regarding other approaches. To
exemplify our approach, we will use a simplified ver-
sion of the warehouse example taken from (Kimball,
1996). In this example, there are three separate inven-
tory definitions within the same model, representing
different approaches of the inventory problem. The
first approach is theinventory snapshot, which mea-
sures the inventory levels in a regular period of time
(every day, every week, etc.). The second is thedeliv-
ery status inventory, which tracks the disposition of
all the items in a delivery until they leave the ware-
house. Finally, the third is thetransaction inventory;
in this case every change of status of delivered prod-
ucts is recorded throughout the deliver flow of the
product.

4.1 Multistar Models

The multistar concept, also calledfact constellation,
refers to the situation where a single MD model has
multiple facts, and therefore, creating multiple star
schemas. Basically, this structure is required when the
facts do not share all the dimensions (Kimball, 1996).

As commented in Section 3.2, our approach is
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based on a three-layered model. At level 1, multi-
ple packages that represent different star schemas can
be specified. For example, in Figure 3, the first level
of the warehouse example is depicted. According to
our MD approach, we have defined three packages
that represent a star schema each one:Inventory De-
livery Status Star, Inventory Snapshot Star, and
Inventory Transaction Star. A UML dependency
(represented as a dotted line with an arrow) connect-
ing two packages indicates that one package uses el-
ements (e.g. dimensions, hierarchy levels) defined in
the other. The direction of the dependency indicates
that the common elements shared by the two packages
were first defined in the package pointed to by the ar-
row. To simplify the design, and therefore, reducing
the number of dependencies, we highly recommend to
choose a star schema to define the dimensions. Then,
other schemas can use them with no need to define
them again. If the common elements had been first
defined in another package, the direction of the arrow
would have been different.

Figure 3: Multistar multidimensional model.

4.2 Support for Different Building
Perspectives

There exist two “extreme” perspectives of building a
DW (Kimball, 1998):

• To build the whole DW all at once from a central,
planned perspective (the monolithic approach).

• To build separate subject areas (data marts) when-
ever is needed (the stovepipe approach).

Our MD modeling approach allows the user to ap-
ply any of these perspectives or a mixing of them.
Thanks to the use of the UML packages, the DW de-
signer can define the DW gradually or all at once.
Moreover, thanks to the UML importing mechanism,
the user can reutilize a concept defined in a package
in other packages.

For example, regarding the MD model depicted in
Figure 3, on the one hand the DW designer could
have modeled and implemented each one of the star
schemas one by one or, on the other hand, the DW
designer could have modeled the three star schemas
firstly and then could have implemented all of them
together.

4.3 Shared Dimensions

In multistar models, two or more star schemas can
share some dimensions. The use of the same dimen-
sion in different STARPACKAGEs3 provides several
advantages:

• Creating a set of shared dimensions takes 80%
of the up-front data architecture effort (Kimball,
1998), because a single dimension can be used
against multiple fact tables

• The final user is allowed to perform drill-across op-
erations: requesting data from two or more facts in
a single report.

• Sharing dimensions provides consistent definitions
and data contents: it avoids the redefinition of the
same concept twice and inconsistent user inter-
faces.

For example, following the example presented in
Figure 3,Inventory Snapshot Star shares some di-
mensions withInventory Delivery Status Star and
Inventory Transaction Star, but the last two ones do
not share any dimension between them. Then, if we
explore each package diagram at a second level, we
can observe which dimensions are shared. For exam-
ple, Figure 4 shows the content of the STARPACKAGE
Inventory Snapshot Star. The FACTPACKAGE In-
ventory Snapshot Fact is represented in the mid-
dle of the figure, while the DIMENSIONPACKAGEs
(Product Dimension, Time Dimension, andWare-
house Dimension) are placed around the fact pack-
age.

Figure 4: Level 2 of Inventory Snapshot Star.

On the other hand, Figure 5 shows the content of
the STARPACKAGE Inventory Delivery Status Star;
three of the dimension packages have been previously
defined in theInventory Snapshot Star, so they are

3“When multiple fact tables are tied to a dimension ta-
ble, the fact tables should all link to that dimension table.
When we use precisely the same dimension table with each
of the fact tables, we say that the dimension is ’conformed’
to each fact table” (Kimball, 1996).
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imported in this package. Because of this importa-
tion, the name of the packages where they have been
firstly defined appears below the package name; the
name of the package also acts as aname space, there-
fore avoiding name conflicts when importing pack-
ages from different sources: it is possible to import
DIMENSIONPACKAGEs with the same name but de-
fined in different STARPACKAGEs. Moreover, a de-
pendency has been drawn fromVendor Dimension
to Warehouse Dimension because both dimensions
share some hierarchy levels, as we will show in the
next section.

Figure 5: Level 2 of Inventory Delivery Status Star.

4.4 Shared Hierarchy Levels

In some cases, two or more dimensions share some
hierarchy levels. As in the case of shared dimen-
sions, the use of the same levels in different dimen-
sions avoids redefinitions and inconsistencies in the
data.

For example, Figure 6 shows the content of the
packageWarehouse Dimension (from Figure 4)
and Figure 7 shows the content ofVendor Di-
mension (from Figure 5) at level 3. In a DI-
MENSIONPACKAGE, a class is defined for the DI-
MENSION class (Warehouse and Vendor respec-
tively) and one class for every classification hierarchy
level (WarehouseFeatures, ZIP, City, SubRegion,
SubZone, etc.). For the sake of simplicity, only the
attributes of the first BASE class have been depicted
in both diagrams; we can distinguish two kinds of
attributes: DESCRIPTOR, represented by means of a
D icon, and DIMENSIONATTRIBUTE, represented by
means of aDA icon.

In this example,Warehouse and Vendor share
some hierarchy levels:ZIP, City, County, andState.
These levels have been firstly defined in theWare-
house Dimension; therefore, the name of the pack-
age where they have been previously defined ap-
pears below the class name (from Warehouse Di-
mension) in theVendor Dimension (see Figure 7).
Moreover, both dimensions contain some hierarchy
levels that do not contain the other:SubRegion and

Region in the Warehouse Dimension, and Sub-
Zone andZone in theVendor Dimension.

In this example we also notice a salient feature of
our approach: two dimensions, that share hierarchy
levels, do not need to share the whole hierarchy. The
package mechanism allows us to import only the re-
quired levels, thereby providing a higher level of flex-
ibility. Moreover, we have decided to share a hier-
archy for both dimensions to obtain a clearer design,
although the designer may have decided not to do it if
such sharing is not totally feasible.

Figure 6: Level 3 of Warehouse Dimension.

4.5 Multiple and Alternative
Classification Hierarchies

Defining dimension classification hierarchies is
highly crucial because these classification hierarchies
provide the basis for the subsequent data analysis.
Thanks to the flexibility of UML association relation-
ships, we can representmultipleandalternative clas-
sification hierarchies. On the one hand, a classifica-
tion hierarchy is multiple when a dimension has two
or more classification hierarchies, therefore data can
be rolled-up or drilled-down along two different hier-
archies at least; on the other hand, two or more clas-
sification hierarchies are alternative when they con-
verge into the same hierarchy level.

In Figure 7,Vendor Dimension presents a multi-
ple classification hierarchy: (i)PersonalData, ZIP,
City, County, and State, and (ii) PersonalData,
SubZone, and Zone. On the other hand,Ware-
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Figure 7: Level 3 of Vendor Dimension.

house Dimension (see Figure 6) presents an alterna-
tive classification hierarchy, because we have defined
two classification hierarchies that converge intoState
BASE class.

4.6 Heterogeneous Dimensions

A heterogeneous dimension is a dimension that de-
scribes a large number of heterogeneous items with
different attributes (Kimball, 1996). Our MD mod-
eling approach allows the DW designer to elegantly
represent heterogeneous dimensions by means of
generalization-specialization hierarchies. In our ap-
proach, the different items can be grouped together
in different categorization levels depending on their
properties. In this way, our approach allows us to have
elements at the same aggregation level that have dif-
ferent attributes.

For example, Figure 8 shows theProduct Dimen-
sion at level 3. TheProduct FACT has been modeled
depending on the different subtypes –Liquid or Solid,
Alcohol or Refreshment, etc.–, and each one of
the subtypes contains particular properties –volume,
weight, expiration, etc.–. For the sake of simplicity,
we have omitted sone of the attributes of the BASE
classes.

Figure 8: Level 3 of Product Dimension.

4.7 Shared Aggregation

In our MD modeling approach, FACT classes are
specified as composite classes in shared aggregation
relationships ofn DIMENSION classes. The flexibil-
ity of shared aggregation in the UML allows us to
representmany-to-manyrelationships between FACT
classes and particular DIMENSION classes by indicat-
ing the1..ncardinality on the DIMENSION class role.

For example, in Figure 9 we can see how the FACT
class Inventory Delivery Status has a many-to-
one relationship with the DIMENSION classesTime,
Vendor, Product, andWarehouse (not completely
shown in the diagram). For the sake of simplicity,
we have omitted all the attributes of the DIMENSION
and BASE classes. As noted, there are three shared
aggregation relationships betweenInventory Deliv-
ery Status andTime: Ordered, Received, andIn-
spected. Thanks to the use of UML named rela-
tionships, we can define more than one relationship
between two classes. In this way, we can use the
same DIMENSION and avoid redundancy and incon-
sistency problems. The FACT classInventory De-
livery Status contains six FACTATTRIBUTEs (rep-
resented by means of aFA icon) and two DEGEN-
ERATEDIMENSIONs (represented by means of aDD
icon). PO number is the key to the purchase order
header record and it is useful to the final user because
it serves as the grouping key for pulling together all
the products ordered on one purchase order (Kimball,
1996).
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Figure 9: Level 3 of Inventory Delivery Status Fact.

4.8 Derivation Rules

In the UML, derived attributes are identified by plac-
ing / before the name of the attribute. In our MD mod-
eling approach, the derivation rules are explicitly de-
fined by means of Object Constraint Language (OCL)
(Object Management Group (OMG), 2001) expres-
sions. In this way, we provide a precise and formal
mechanism to define derivation rules.

For example, in Figure 9 we can see two deriva-
tion rules forquality percent andunit benefit. The
inclusion of the definition of the derived attributes at
the conceptual design phase avoids the incorrect defi-
nition in the following phases. Moreover, the deriva-
tion rules can be used in a later implementation phase.

4.9 CASE Tool Support

Instead of creating our own CASE (Computer-Aided
Software Engineering) tool, we have chosen to extend
a well-known CASE tool available in the market, such
as Rational Rose 2002. In this way, we do not have to
develop our own CASE tool from scratch.

We have chosen Rational Rose as it is one of the
most well-known visual modeling tools and is ex-
tensible by means of add-ins, which allows the user
to package customizations and automation of several

Rational Rose features through the Rose Extensibil-
ity Interface (REI) (Rational Software Corporation,
2001) into one component. An add-in is a collection
of some combination of the following: main menu
items, shortcut menu items, custom specifications,
properties (UML tagged values), data types, UML
stereotypes, online help, context-sensitive help, and
event handling.

We have developed an add-in, which allows us to
use our MD modeling approach in Rational Rose.
Therefore, we can use this tool to easily accomplish
MD conceptual models4. In Figure 10, we can see
a screenshot from Rational Rose that shows the first
level of the inventory example used in Section 4.
Some comments have been added to the screenshot
in order to remark some important elements: the new
toolbar buttons, the new package icons, the new icons
shown in the model browser, and the new menu item
calledMD Validate that checks the correctness of a
MD model.

4All the MD models shown in this paper have been mod-
eled using our Rational Rose add-in.
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Figure 10: MD modeling in Rational Rose.

5 CONCLUSIONS AND FUTURE
WORK

In this paper we have presented the main advan-
tages of our OO conceptual MD modeling approach
based on the UML. We have highlighted the main sit-
uations where the use of the UML means a consider-
able advantage. For example, we have exhibited how
the usage of package diagrams leads to an exception-
ally clean MD design of huge and complex systems,
because package diagrams allow us to structure MD
models at different levels of abstraction. Moreover,
the importation mechanism in the UML simplifies the
use of an element from one package in another pack-
age. In this way, we avoid the problems related to the
redefinition of an element several times: redundancy,
inconsistency, and ambiguity.

Our MD modeling approach can be continued fol-
lowing several different research lines. Firstly, we are
considering the implementation of the MD concep-
tual models on pure MD databases, object-relational
databases (ORDB), and OO databases (OODB). Due
to the OO nature of our MD conceptual approach,
we are studying the implementation in ORDB and
OODB. Since our MD approach is semantically rich,
we will need to define our own metadata to sup-
port all the expressiveness power of the approach.
Secondly, we also plan to include different imple-
mentation strategies, e.g., the option of normaliz-
ing (snowflake structure) or denormalizing (only one
structure) the dimension hierarchies. Finally, we are
also considering incorporating UML use cases into
our MD conceptual approach. These diagrams will
allow us to partition the functionality of OLAP appli-
cations in an early stage of the analysis phase.
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