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Abstract. Data warehouses (DW), based on the multidimensional modeling,
provide companies with huge historical information for the decision making
process. As these DW’s are crucial for companies in making decisions, their
quality is absolutely critical. One of the main issues that influences their quality
lays on the models (conceptual, logical and physical) we use to design them. In
the last years, there have been several approaches to design DW’s from the con-
ceptual, logical and physical perspectives. However, from our point of view,
there is a lack of more objective indicators (metrics) to guide the designer in ac-
complishing an outstanding model that allows us to guarantee the quality of
these DW’s. In this paper, we present a set of metrics to measure the quality of
conceptual models for DW’s. We have validated them through an empirical ex-
periment performed by expert designers in DW’s. Our experiment showed us
that several of the proposed metrics seems to be practical indicators of the qual-
ity of conceptual models for DW’s.
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1 Introduction

Data warehouses, which have become the most important trend in business informa-
tion technology, provide relevant and precise historical information enabling the im-
provement of strategic decisions [14]. A lack of quality can have disastrous conse-
quences from both a technical and organizational points of view: loss of clients,
important financial losses or discontent amongst employees [8]. Therefore, it is abso-
lutely crucial for an organization to guarantee the quality of the information contained
in these DW’s from the early stages of a DW project.

The information quality of a data warehouse is determined by (i) the quality of the
system itself and (ii) the quality of the data presentation (see figure 1). In fact, it is
important not only that the data of the data warehouse correctly reflects the real
world, but also that the data are correctly interpreted. Regarding data warehouse qual-
ity, three aspects must be considered: the quality of the DBMS (Database Manage-
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ment System) that supports it, the quality of the data models' used in their design
(conceptual, logical and physical) and the quality of the data themselves contained in
the data warehouse. In this paper, we will focus on the quality of the data models, and
more concretely, on the quality of conceptual models.

Regarding logical and physical models, some approaches and methodologies have
been lately proposed - see [1] and [25] for a detailed classification of conceptual,
logical and physical models). Even more, several recommendations exist in order to
create a “good” dimensional data model - the well-known and universal star schema
by [15] or [12]. However, from our point of view, we claim that design guidelines or
subjective quality criteria are not enough to guarantee the quality of a “dimensional”
model for DW’s.
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Fig. 1. Quality of the information and the data warehouse

Following this consideration, in the last years, we have been working in assuring
the quality of logical models for DW’s and have proposed and validated both formally
[6] and empirically [20][21] several metrics that enable the evaluation of the
complexity of star models (dimensional models) at the logical level.

Although conceptual modelling has not been a first priority in real world data
warehouse projects, several approaches have been lately presented to represent the
data warehouse information from a conceptual perspective. Some approaches propose
a new notation [5][11], others use extended E/R models [19][23][7] and finally others
use the UML class model [1][24][17]. Due to space constraints, we refer the reader to
[1] for a detailed comparison and discussion about most of these models.

However, even using these approaches, to guarantee the quality of data warehouse
conceptual models is a difficult task, with the exception of the model proposed by
Jarke et al. [14], which is described in more depth in Vassiladis’ Ph.D. thesis [25].
Nevertheless, even this model does not propose metrics that allow us to replace the
intuitive notions of “quality” regarding the conceptual model of the data warehouse

! The term “model” refers to a modelling technique, language or model itself (eg. The E/R model) and
“schema” refers to the result of applying this technique to a specific Universe of Discourse.
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with formal and quantitative measures that reduce subjectivity and bias in evaluation,
and guide the designer in his work. Recently, two proposals about data warehouse
conceptual model metrics have appeared: [21] have proposed different metrics for
model maintainability and Si-Said and Prat [22] have proposed some metrics for
measuring multidimensional schemas analysability and simplicity. However, none of
the metrics proposed so far has been empirically validated, and therefore, have not
proven their practical utility. It is well known that empirical validation is crucial for
the success of any software measurement project as it helps us to confirm and under-
stand the implications of the measurement of the products [9][16]. Thus, in this work
we show a first empirical validation of the metrics proposed by [21].

The proposed metrics have been defined for guaranteeing the quality of data ware-
house conceptual models, focusing on the complexity of the models, which is one of
the most important factors regarding the quality in data warehouses. In defining the
metrics, we have used the extension of the UML (Unified Modeling Language) pre-
sented in [24][17]. This is an object-oriented conceptual approach for data ware-
houses that easily represents main data warehouse properties at the conceptual level.

The remain of the paper is structured as follows: Section 2 summarizes the concep-
tual model for DW’s, based on the UML, which we will use as the framework to de-
fine our metrics. Section 3 defines the metrics for data warehouse conceptual models
we will use in our study. Section 4 describes the empirical validation we have per-
formed with the proposed metrics. Finally, Section 5 draws conclusions and intro-
duces future investigation arising from this work.

2 Object — Oriented Conceptual Modelling with UML
for Data Warehouses

In this section, we outline our approach” to data warehouse conceptual modelling,
based on the UML. This approach has been specified by means of a UML profile’ that
contains the necessary stereotypes in order to carry out conceptual modelling success-
fully [17]. The main features of multidimensional modelling considered are the rela-
tionships “many-to-many”” between the facts and one specific dimension, degenerated
dimensions, multiple classification and alternative path hierarchies, and the non strict
and complete hierarchies. In this approach, the structural properties of multidimen-
sional modelling are represented by means of a UML class diagram in which the in-
formation is clearly organized into facts and dimensions.

Facts and dimensions are represented by means of fact classes and dimension
classes respectively. Fact classes are defined as composite classes in shared aggrega-
tion relationships of n dimension classes. The minimum cardinality in the role of the
dimension classes is 1 to indicate that all the facts must always be related to all the
dimensions. The relations “many-to-many” between a fact and a specific dimension
are specified by means of the cardinality 1..* in the role of the corresponding dimen-

7 We refer the reader to (Trujillo et al., 2001; Lujan-Mora et al. 2002) for a complete description of our
approach.

3 A profile is a set of improvements that extend an existing UML type of diagram for a different use.
These improvements are specified by means of the extendibility mechanisms provided by UML (stereo-
types, properties and restrictions) in order to be able to adapt it to anew method or model.
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sion class. In our example in figure 2, we can see how the Sales fact class has a many-
to-many relationship with the product dimension.

A fact is composed of measures or fact attributes. By default, all measures in the
fact class are considered to be additive. For non-additive measures, additive rules are
defined as constrains and are included in the fact class. Furthermore, derived meas-
ures can also be explicitly represented (indicated by /) and their derivation rules are
placed between braces near the fact class.

Our approach also allows the definition of identifying attributes in the fact class
(stereotype OID). In this way “degenerated dimensions” can be considered [15],
thereby representing other fact features in addition to the measures for analysis. For
example, we could store the ticket number (ticket_number) as degenerated dimen-
sions, as reflected in figure 2.

With respect to dimensions, each level of a classification hierarchy is specified by
a base class. An association of base classes specifies the relationship between two
levels of a classification hierarchy. The only prerequisite is that these classes must
define a Directed Acyclic Graph (DAG) rooted in the dimension class (DAG restric-
tion is defined in the stereotype Dimension). The DAG structure can represent both
multiple and alternative path hierarchies. Every base class must also contain an identi-
fying attribute (OID) and a descriptor attribute’ (D). These attributes are necessary for
an automatic generation process into commercial OLAP tools, as these tools store this
information on their metadata.

Due to the flexibility of UML, we can also consider non-strict hierarchies (an ob-
ject at a hierarchy’s lower level belongs to more than one higher-level object) and
complete hierarchies (all members belong to one higher-class object and that object
consists of those members only). These characteristics are specified by means of the
cardinality of the roles of the associations and defining the constraint {completeness}
in the target associated class role respectively. See Store dimension in figure 2 for an
example of all kinds of classification hierarchies. Lastly, the categorization of dimen-
sions is considered by means of the generalization / specialization relationships of
UML.

3 Metrics for Data Warehouse Conceptual Models

A metric definition should always be based on clear measurement goals. Metrics
should be defined following organisation’s needs that are related to external quality
attributes. We must firstly specify the goals of the metrics we plan to create to follow
our organization’s needs, and we then state the derived hypotheses. In our particular
context, the main goal is “Defining a set of metrics to assess and control the quality of
conceptual data warehouse schemas”.

As [4] said, the structural properties (such as structural complexity) of a schema
have an impact on its cognitive complexity (see figure 3). By cognitive complexity
we mean the mental burden of the persons who have to deal with the artefact (e.g.
developers, testers, maintainers and final users). High cognitive complexity leads an
artefact to reduce their understandability and this conduce undesirable external quality
attributes, such as decreased maintainability - a characteristic of quality; ISO 9126
[13].

4 A descriptor attribute will be used as the default label in the data analysis in OLAP tools.
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Fig. 3. Relationship between structural properties, cognitive complexity, understandability and
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Fig. 2. Example of an Object Oriented data warehouse conceptual model using UML
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external quality attributes, based on [4]

Therefore, we can state our hypothesis as: “Our metrics (defined for capturing the
structural complexity of a data warehouse conceptual schema) can be used for con-
trolling and assessing the quality of a data warehouse (through its maintainability)”.

Taking into account the metrics defined for data warehouses at a logical level [20]
and the metrics defined for UML class diagrams [10], we can propose an initial set of
metrics for the model described in the previous section. When drawing up the pro-
posal of metrics for data warehouse models, we must take into account 3 different

levels: class, star and diagram.
In table 1 metrics for the class level are shown.

" External Quality Attributes
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Table 1. Class scope metrics

Metric Description
NA(C) Number of FA (fact attributes), D (descriptor attributes) or DA (dimensional attributes) of the class C
NR(C) Number of relationships (of any type) of the class C

The following table (see table 2) details the metrics proposed for the star level, one of
the main elements of a data warehouse, composed of a fact class together with all the
dimensional classes and associated base classes.

Table 2. Star scope metrics

Metric Description
NDC(S) Number of dimensional classes of the star S
(equal to the number of aggregation relations)
NBC(S) Number of base classes of the star S
NC(S) Total number of classes of the star S
NC(S)=NDC(S) + NBC(S) + 1
RBC(S) Ratio of base classes. Number of base classes per dimensional class of the star S
NAFC(S) Number of FA attributes of the fact class of the star S
NADC(S) Number of D and DA attributes of the dimensional classes of the star S
NABC(S) Number of D and DA attributes of the base classes of the star §
NAGS) Total number of FA, D and DA attributes of the star S.
NA(S) = NAFC(S) + NADC (S) + NABC(S)
NH(S)  Number of hierarchy relationships of the star S
DHP(S) Maximum depth of the hierarchy relationships of the star S.
RSA Ratio of attributes of the star S. Number of attributes FA divided by the number of D and DA
) attributes.

Finally, in table 3, we present metrics at the diagram level of a complete data ware-
house which may contain one or more stars.

Tables 4, 5 and 6 summarize the values for the defined metrics, regarding the ex-
ample presented in the previous Section (figure 2). As the example has only one star,
in table 6 only those values of the metrics that are different at the star and model lev-
els are shown.

Table 3. Diagram scope metrics

Metric Description
NFC Number of Fact classes
NDC Number of dimensional classes
NBC Number of base classes
NC Total number of classes
NC =NEC+ NDC + NBC
RBC Ratio of base classes. Number of base classes per dimensional class
NSDC Number of dimensional classes shared by more than one star
NAFC Number of FA atiributes of the fact classes
NADC Number of D and DA attributes of the dimensional Tables.
NASDC  Number of D and DA attributes of the shared dimensional classes.
NA Number of FA, D and DA attributes
NH Number of hierarchies
DHP Maximum depth of the hierarchical relationships
RDC Ratio of dimensional classes. Number of dimensional classes per fact class.
RSA Ratio of attributes. Number of FA attributes divided by the number of D and DA attributes.
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Table 4. Class level metrics Table 5. Star level metrics Table 6. Model level met-

values values rics values
CLASS NA NR  Metric Value Metric Value
Sales 3 3 NDC(S) 3 NFC 1
Time 4 2 NBC(S) 8 NSDC 0
Product 4 2 NC(S) 12 NASDC 0
Store 3 2 RBC 8/3 RDC 3
Month 1 3 NAFC(S) 3
Quarter 1 2 NADC(S) 11
Semester 1 2 NABC(S) 10
Year 1 2 NA(S) 24
Category 1 2 NH(S) 3
Department 1 1 DHP(S) 3
City 2 2 RSA(S) 21
Country 2 1

4 Empirical Validation

In this section, we will present our empirical validation for the metrics defined in the
previous section. In doing this, we must firstly define the experimental settings (in-
cluding the main goal of our experiment, the subjects that participated in the experi-
ment, the main hypothesis under which we will run our experiment, the independent
and dependent variables to be used in our model, the experimental design, the ex-
periment running, material used and the subjects that performed the experiment).
After that we discuss about the collected data validation. Finally, we analyse and
interpret the results to find out if they follow the formulated hypothesis or not.

4.1 Experimental Settings

Experiment Goal Definition
The goal definition of the experiment using the GQM approximation [2] can be sum-
marized as:

To analyze the metrics for data warehouse conceptual models

for the purpose of evaluating if they can be used as useful mechanisms
with respect of the data warehouse maintainability

from the designer’s point of view

in the context of practitioners

Subjects

Seventeen practitioners participated in the experiment (see table 7). The subjects work
at a Spanish software consultancy that specially works on information systems devel-
opment. The subjects were thirteen men and three women (one of the subjects did not
give us this information), with an average age of 27.59 years. Respect to the experi-
ence of the subjects, they have an average experience of 3.65 years on computers,
2.41 years on databases, but they have little knowledge working with UML (only 0.53
years on average).
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Table 7. Subjects of the experiment

Subject# Sex Age Computers Databases UML
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Hypotheses Formulation
The hypotheses of our experiment are:

Null hypothesis, H;: There is no a statistically significant correlation between
metrics and the maintainability of the schemas.
Alternative hypothesis, H,;: There is a statistically significant correlation between
metrics and the maintainability of the schemas.

Alternative hypothesis H, is stated to determine if there is any kind of interaction
between the metrics and the maintainability of a data warehouse schema, based on the
fact that the metrics are defined in an attempt to acquire all the characteristics of a
conceptual data warehouse model.

Variables in the Study

Independent Variables. The independent variables are the variables for which the
effects should be evaluated. In our experiment these variables correspond to the met-
rics being researched. Table 8 presents the values for each metric in each schema.

Dependent Variables. The maintainability of the tests was measured as the time each
subject used to perform the tasks of each experimental test. The experimental tasks
consisted in two different tasks, the former involves understanding the models by
counting the number of classes that must be visited to access to a concrete informa-
tion. The latter one involves the modification of the models to fit new design require-
ments. On correcting the tests we found that all the subjects answered correctly and
we were therefore able to work with the results of the ten subjects.

Regarding time, it is necessary to point out that for each schema we separately re-
cord the understanding time (including understanding the model and the answering
time to the first type of questions) and the modification time that includes the time
spent in performing the second type of tasks.
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Table 8. Values of the metrics for the schemas used in the experiment
NDC NBC NC RBC NAFC NADC NABC NA NH DHP RSA

S01 6 16 23 2,67 1 7 9 17 6 4 0,06
S02 5 19 25 38 1 11 20 32 9 4 0,03
S03 2 5 8 25 4 4 6 14 3 2 04
S04 4 17 22 425 4 6 17 27 9 3 017
S05 3 21 25 7 4 8 24 36 7 4 0,13
S06 5 13 19 26 3 0 31 4 5 4 0,1

S07 3 6 10 2 3 7 2 12 5 2 033
S8 4 5 10 1,25 3 13 5 21 2 3 017
S99 3 5 9 1,67 2 12 5 19 2 3 012
S10 2 4 7 2 1 7 2 10 3 2 0,11

Material Design and Experiment Running

Ten conceptual data warehouse models were used for performing the experiment.
Although the domain of the schemas was different, we tried to select representative
examples of real world cases in such a way that the results obtained were due to the
difficulty of the schema and not to the complexity of the domain problem. We tried to
have schemas with different metrics values (see table 8).

We selected a within-subject design experiment (i.e. all the tests had to be solved
by each of the subjects). The documentation, for each design, included a data ware-
house schema and a questions/answers form. The questions/answers form included
the tasks that had to be performed and a space for the answers. For each design, the
subjects had to analyse the schema, answer some questions about the design and per-
form some modifications on it.

Before starting the experiment, we explained to the subjects the kind of exercises
that they had to perform, the material that they would be given, what kind of answers
they had to provide and how they had to record the time spent solving the problems.
We also explained to them that before studying each schema they had to annotate the
start time (hour, minutes and seconds), then they could look at the design until they
were able to answer the given question. Once the answer to the question was written,
they had to annotate the final time (again in hour, minutes and seconds). Then they
had to repeat the process with the modifications of the schema.

Tests were performed in distinct order by different subjects for avoiding learning
and fatigue effects. The way we ordered the tests was using a randomisation function.
To obtain the results of the experiment we used the number of seconds needed for
each task on each schema by each subject.

4.2 Collected Data Validation

After marking the test, we obtained all the times for each schema and subject (tables 9
and 10). We notice that subject 11 did not answer to the understanding tasks of
schema 7 and that subjects 2 and 10 did not answer to the modification tasks on
schemas 8 and 9 respectively. The times for these subjects in these exercises were
considered as null values.

We decided to study the outliers before working with the average data. In order to
find the outliers we made a box plot (figures 4 and 5) with the collected data (table 9
and 10). Observing these box plots (figures 4 and 5) we can observe that there are
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several outliers (shown in table 11 and 13). The outliers values were eliminated from
the collected data. The eliminated values are shown in tables 9 and 10 in italic font.
The descriptive statistics of the final set of data can be found in tables 14 and 16.
Then, we performed the analysis with this data.

Validity of Results

Table 9. Collected data from the experiment (Understanding time)

Subject# S01 S02 S03 S04 S05 S06  S07  S08 S09  S10
1 60 60 30 75 128 60 35 30 9% 45
2 60 8 35 120 55 85 55 715 45 48
3 45 110 30 50 45 105 40 45 70 40
4 60 30 60 9 60 60 30 60 300 150
5 65 50 30 62 50 60 30 45 40 15
6 8 55 30 240 82 85 80 45 27 27
7 125 75 30 270 70 60 60 50 45 80
8 70 64 70 180 90 90 45 45 50 30
9 65 60 50 85 100 60 65 45 65 30
10 105 82 51 8 90 48 35 101 36 38
11 60 300 120 120 120 60 - 60 180 60
12 34 55 65 115 81 111 41 72 63 54
13 45 39 48 100 48 48 75 26 70 42
14 140 310 105 9% 115 270 105 115 185 220
15 30 12 25 34 xR 43 32 28 32 18
16 90 125 9% 80 9 /74 60 110 120 110
17 57 8 30 120 150 100 82 70 38 40

Table 10. Collected data from the experiment (Modification time)

Subject#  S01 S02 S03 S04 S05 S06 S07 S08 S09 S10
1 109 65 45 58 55 60 57 9 75 70
2 150 9 63 80 130 70 140 - 50 238
3 115 145 65 120 125 255 105 155 145 75
4 120 120 50 8 110 180 9% 50 120 300
5 240 200 45 95 100 135 65 185 130 120
6 180 1% 250 160 95 185 180 150 80 119
7 270 91 25 355 115 205 205 135 120 95
8 180 240 120 175 180 95 125 145 130 135
9 110 155 90 105 100 210 300 55 130 190
10 111 138 72 70 74 100 395 92 - 220
11 60 300 120 120 180 300 60 60 180 60
12 169 174 66 140 112 208 126 168 203 216
13 116 47 40 208 87 93 223 85 150 50
14 9 260 110 155 270 330 210 160 40 265
15 127 115 72 110 8 107 117 92 77 104
16 15 178 90 180 120 223 150 180 120 160
17 207 273 192 330 227 165 60 78 140 110

As we know, different threats to the validity of the results of an experiment exist. In
this section we will discuss threats to construct internal, external and conclusion

validity.
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Fig. 4. Box plot of the understanding time.

Table 12. Descriptive statistics of the understanding time

S01  S02 S03 S04 S05  S06  S07  S08  S09  S10
Average 65,69 8038 5288 94,00 82,71 71,67 54,38 60,12 65,13 45,13
Minimum 30 12 25 34 32 43 30 26 27 15
Maximum 125 300 120 180 150 111 105 115 180 110
Deviation 24,79 65,04 28,90 3501 32,78 2222 22,36 2736 40,55 24,31
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Fig. 5. Box plot of the modification time.

Table 14. Descriptive statistics of the modification time

501 S02  S03 S04 S05 S06 S07 S08 S09 510

Average 14524 163,59 79,06 124,07 11844 171,82 15341 117,56 118,13 148,65
Minimum 60 47 25 58 55 60 57 50 40 50
Maximum 270 300 192 208 227 330 395 185 203 300
Deviation 5537 7390 4135 4429 4397 7939 9195 46,71 4430 76,38
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Construct Validity. The construct validity is the degree to which the independent and
the dependent variables are accurately measured by the measurement instruments
used in the study. The dependent variables we use are understanding and modification
times, i.e., the time each subject spent performing these tasks, so we consider these
variables constructively valid. The construct validity of the measures used for the
independent variables is guaranteed by the Distance framework [18] used for their
theoretical validation.

Internal Validity. The internal validity is the degree to which conclusions can be
drawn about the causal effect of independent variables on the dependent variables.
The following issues should be considered:

o Differences among subjects. Within-subject experiments reduce variability
among subjects.

¢ Differences among schemas. The domain of the schemas were different and this
could influence the results obtained in some way.

e Precision in the time values. The subjects were responsible for recording the start
and finish times of each test. We believe this method is more effective than hav-
ing a supervisor who records the time of each subject. However, we are aware
that the subject could introduce some imprecision.

¢ Learning effects. Using a randomisation function, tests were ordered and given in
a distinct order for different subjects. So, each subject answered the tests in the
given order. In doing this, we tried to minimize learning effects.

¢ Fatigue effects. The average time for completing the experiment was 33 minutes
varying from a minimum of approximately 16 minutes and a maximum of about
61 minutes. With this range of times we believe that fatigue effects hardly exist at
all. Also, the different order of the tests helped to avoid these fatigue effects.

e Persistence effects. In our case, persistence effects are not present because the
subjects had never participated in a similar experiment.

¢ Subject motivation. Subjects were volunteers and they were convinced that the
exercises they were doing were useful. The subjects wanted to participate in the
experiment and to contribute to this field. Therefore, we believe that subjects
were motivated at doing the experiment.

¢ Plagiarism and influence among subjects. In order to avoid these effects a su-
pervisor was present during the experiment. Subjects were informed they should
not talk to each other or share answers with other subjects.

External Validity. The external validity is the degree to which the results of the re-

search can be generalised to the population under study and to other research settings.

The greater the external validity, the more the results of an empirical study can be

generalised to actual software engineering practice. Two threats to validity have been

identified which limit the ability to apply any such generalisation:

e Materials and tasks used. We tried to use schemas and operations representative
of real world cases in the experiments, although more experiments with larger
and more complex schemas are necessary.

¢ Subjects. Although this experiment was run by practitioners, we are aware that the
number of subjects (17) could be insufficient for generalise the results. More ex-
periments with practitioners and professionals must be carried out in order to be
able to generalise the results.
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Conclusion Validity. The conclusion validity defines the extent to which conclusions
are statistically valid. The only issue that could affect the statistical validity of this
study is the size of the sample data (17 values), which perhaps is not enough for both
parametric and non-parametric statistic tests [3]. We will try to obtain bigger sample
data through more experimentation.

4.3 Analysis and Interpretation

We used the data collected in order to test the hypotheses formulated previously. As
we were not able to assure that the data we collected followed a common statistical
distribution (mainly because we had a very small group of subjects), we decided to
apply a non-parametric correlational analysis, avoiding assumptions about the data
normality. In this way, we made a correlation statistical analysis using the Spearman’s
Rho statistic and we used a level of significance o= 0.05

Table 15 shows the results obtained for the correlation between each of the metrics
and the tune each subject used (on each schema) to perform the task of understanding.
Table 16 shows the same data for the modification tasks.

Table 15. Results of the experiment (understanding time)

Metric NDC NBC NC RBC NAFC NADC NABC NA NH DHP RSA
Correlation 0,601 0,890 0,860 0,772 0258 0,006 0,805 0,855 0,755 0,764 -0,285
Significance 0,066 0,001 0,001 0,009 0472 0987 0,005 0,002 0,012 0,010 0,425

Table 16. Results of the experiment (modification time)

Metric NDC NBC NC RBC NAFC NADC NABC NA NH DHP RSA
Correlation 0,452 0,313 0,329 0,267 -0459 -0,288 0,262 0,139 0,479 0,334 -0,588
Significance 0,190 0,379 0,353 0455 0,182 0419 0464 0,701 0,162 0,346 0,074

Analysing both tables, we can conclude that there exists a high correlation between
the understanding time used (understandability of the schemas) and the metrics NBC,
NC, RBC, NABC, NA, NH and DHP (the value of significance is lower than o =
0.05). The other metrics do not seem to be correlated with the time. On the other
hand, there is not correlation at all, between the modification time and the metrics.

In considering these results, it seems that understandability is closer related to met-
rics that capture in some sense the “complexity” of the schemas. This complexity is
captured by the number of classes of the schemas (size of the schema) and the number
of hierarchy relationships in the stars. The modification time is not related to the met-
rics, perhaps because the modification tasks could be solved focusing only on a small
part of the schema.

5 Conclusions and Future Research

Data warehouses play a key role in the decision making process of companies, and
therefore, assuring their quality is absolutely critical for this process. One way to
achieve this quality objective is to assure the quality of the models (conceptual, logi-
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cal and physical) used in designing them and one way of assuring the quality is using
metrics.

In this paper we have focused on the empirical validation of the metrics proposed
for conceptual data warehouse models as quality indicators, presenting the first ex-
periment we have accomplished. As a result of this first experiment it seems that there
exist correlation between several of the metrics and the understandability of the con-
ceptual data warehouse models.

We are currently involved on the empirical validation of the proposed metrics
process. As a result of this process the proposed metrics will be accepted, discarded or
refined. When the process will finish, we will we have a set of metrics that could be
used as quality indicators. These metrics could be used by the designers on their task.
For example using the provided metrics they could choose among different design
alternatives semantically equivalents the most maintainable one. It would also be
advisable to study the influence of the different analysis dimensions on the cognitive
complexity of an object-oriented model; as well as the repercussion of using packages
in the conceptual modelling of complex and extensive data warehousess in order to
simplify their design.
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