
In Information Modeling Methods and Methodologies, Advanced Topics in Databases Series, Ed. (J Krostige, T. Halpin, K.
Siau), Idea Group Publishing, 2004, pp. 216-240.

 1

A Taxonomic Class Modeling Methodology
 for Object-Oriented Analysis

Il-Yeol Song, Kurt Yano, Drexel University, USA

Juan Trujillo and Sergio Luján-Mora, University of Alicante, Spain

ABSTRACT

Discovering a set of domain classes during object-oriented analysis is
intellectually challenging and time-consuming for novice analyzers. This chapter
presents a taxonomic class modeling (TCM) methodology that can be used for
object-oriented analysis in business applications. Our methodology helps us
discover the three types of classes: (1) classes represented by nouns in the
requirement specification, (2) classes whose concepts were represented by verb
phrases, and (3) hidden classes that were not explicitly stated in the requirement
specification. Our approach synthesizes several different class modeling
techniques under one framework. Our framework integrates the noun analysis
method, class categories, English sentence structures, check lists, and other
heuristic rules for modeling. We illustrate our approach using a detailed case
study and summarize the results of several other case studies. Our teaching
experience shows that our method is effective in identifying classes for many
business applications.

KEYWORDS: object-oriented analysis, class modeling, Unified Modeling Language, UML,
taxonomic class modeling, conceptual model

INTRODUCTION

An object-oriented system decomposes its structure into classes. In object-oriented systems, the

notion of the class is carried over from analysis to design, implementation, and testing. Thus,

finding a set of domain classes is the most important skill in developing an object-oriented

system. However, finding classes is a discovery process (Booch, 1993). Discovering a set of

domain classes in a problem domain is intellectually challenging and time-consuming for novice

analyzers. We need systematic methods and guidelines to discover classes.

In Information Modeling Methods and Methodologies, Advanced Topics in Databases Series, Ed. (J Krostige, T. Halpin, K.
Siau), Idea Group Publishing, 2004, pp. 216-240.

 2

A class is an abstraction of meaningful real-world objects. A class is a description of objects that

share the same attributes, exhibit the same behaviors, and are constrained by the same rules

(Starr, 2001). Classes are organized into a class diagram. A class diagram in the Unified

Modeling Language (UML) shows classes used in the system and the various static relationships

that exist among them. Classes in the class diagram serve as the vocabulary of the object-

oriented system, model simple collaborations, and become a basis for the logical database design

(Booch, Rumbaugh, & Jacobson 1999).

A class diagram can be developed at different levels of abstraction. Classes can be domain (or

analysis) classes, design classes, or implementation classes. Domain classes represent important

business activities at the analysis level such as Customer or Account. Domain classes are

enduring classes regardless of the functionality required today (Stevens and Pooley, 1999). Design

classes are those that are added during the design stage to develop an architecture (such as

control and boundary classes) or to accommodate design patterns (such as Strategy objects that

encapsulate algorithms). Implementation classes are added during the implementation stage and

are used to facilitate programming. Examples of implementation classes are String, Tree, Date,

or Money. In this chapter, we focus on identifying domain classes that capture fundamental

business activities at the analysis level.

In order to discover classes for a problem domain, we have to examine various sources and

documentation, and apply various techniques to those specifications. We frequently begin to

In Information Modeling Methods and Methodologies, Advanced Topics in Databases Series, Ed. (J Krostige, T. Halpin, K.
Siau), Idea Group Publishing, 2004, pp. 216-240.

 3

identify classes from the problem statement or use case descriptions. Rosenberg (Rosenberg,

1999) states that the best sources of classes are

• The high-level problem statement

• Lower-level requirements

• Expert knowledge of the problem space

Blaha and Premerlani (1998) recommend that we always begin analysis with a written problem

statement. Thus, in this chapter, we assume the modeler has a specification in the form of a

problem statement or a use case description in a written form. The statement, written in English,

usually defines goals, scope, important functional requirements, and some non-functional

requirements of the domain. The problem statement, however, does not give us a complete list of

classes necessary for an object-oriented analysis. Nevertheless, beginning with the problem

statement is the easiest method for modeling classes for a draft of a class model, which will be

refined through iterations as the analyzer learns further about the domain. Identifying classes

from a written source, however, has at least three major limitations as follows (Richter, 1999;

Maciaszek, 2001):

• Natural language is ambiguous. Thus, rigorous and precise analysis is very difficult, and

we need techniques and guidelines for modeling.

• The same semantics could be represented in different ways. Thus, a way of handling this

style variation is necessary.

• Concepts that were not explicitly expressed in a written source are often very difficult to

model. Thus, we need expert domain knowledge to identify the hidden classes.

In Information Modeling Methods and Methodologies, Advanced Topics in Databases Series, Ed. (J Krostige, T. Halpin, K.
Siau), Idea Group Publishing, 2004, pp. 216-240.

 4

The methodology we present in this chapter will address all three limitations stated above.

Specifically, our methodology help us discover three types of classes: (1) classes represented by

nouns in the requirement specifications, (2) classes whose concepts were represented by verb

phrases, and (3) hidden classes that were not explicitly stated in the problem statement.

There are several approaches for identifying classes. Our survey shows that noun analysis is the

most popular approach (Abbot, 1983; Chen, 1983; Rumbaugh, Blaha, & Premerlani, 1991;

Richardson, Schultz, & Berard, 1993; Honiden, Kotaka, & Kishimoto, 1993; Booch, 1994;

Holland & Lieberherr, 1996; Stevens & Pooley, 1999; Richter,1999; Rosenberg, 1999;

Maciaszek, 2001). Other methods used are the use of class categories as tips (Ross, 1988; Booch,

1994; Rumbaugh, Jacobson, & Booch, 1999; Starr, 2001; Larman, 2001), the use of use case

descriptions (Jacobson, 1992; Richter, 1999; Delcambre & Eckland, 2000), and CRC (Class-

Responsibilities-Collaborators) cards (Beck & Cunningham , 1989; Wilkinson, 1995; Wirfs-

Brock, Wilkerson, & Wiener, 1990). Literature and our teaching experiences show that no single

approach works best all the times. Ideally, several approaches can be used together for a domain.

These approaches have been used either separately or together without any specific guidelines

under a single framework. In this chapter, we present a taxonomic class modeling (TCM)

methodology that can be used for object-oriented analysis in business applications. We call our

method a taxonomic class modeling methodology since we use several taxonomies as a

framework. Our framework integrates the noun analysis method, class categories, English

sentence structure, check lists, and other modeling heuristics. We illustrate our approach using a

In Information Modeling Methods and Methodologies, Advanced Topics in Databases Series, Ed. (J Krostige, T. Halpin, K.
Siau), Idea Group Publishing, 2004, pp. 216-240.

 5

case study and summarize the results from seven other case studies. Our students have found

that our TCM methodology is practical and could be easily and effectively applied to their

project domains.

The rest of this chapter is organized as follows: The next section presents an overview of our

TCM methodology. The following section presents the details of the TCM methodology. The

last two sections presents a case study based on our methodology and the conclusion of our

chapter.

AN OVERVIEW OF TAXONOMIC CLASS MODELING

METHODOLOGY AND CLASS CATEGORIES

An Overview of TCM Methodology

The primary purpose of TCM method was to create an integrated methodology that integrates

many existing modeling techniques. TCM incorporates the noun analysis, class categories,

English sentence structure rules, checklists, and other heuristic rules for modeling.

Figure 1 shows a class diagram that shows the taxonomy of our TCM methodology. As shown in

Figure 1, domain classes in TCM consist of three types of classes: Noun classes, Transformed

classes, and Discovered classes. Noun classes are those that are identified from the noun phrases

of a requirement specification. Transformed classes are those that are identified from verb

phrases of a requirement specification and transformed into classes by heuristics. Discovered

classes are those that have not been explicitly stated in the requirement specification but

In Information Modeling Methods and Methodologies, Advanced Topics in Databases Series, Ed. (J Krostige, T. Halpin, K.
Siau), Idea Group Publishing, 2004, pp. 216-240.

 6

discovered by applying domain knowledge to class categories. Techniques used in identifying

each class type are shown in Figure 1.

Noun Classes (Identified from
noun phrases)

Discovered Classes (Discovered from domain
knowledge by applying class categories)Checklist

Class
Categories

Noun Analysis
Technique

Class Elimination Rules

Heuristics

Domain
Knowledge

Domain
Classes Transformed Classes (Identified from verb phrases

and converted into classes)

Verb Elimination
Rules

Figure 1. The taxonomy of domain classes and class modeling techniques integrated in TCM

Class Categories

A widely-used method for class modeling is to use categories of classes (Ross, 1988; Shlaer,

Mellor, 1988; Coad, Yourdon, 1991; Coleman, Arnold, Bodoff, Dollin, etc, 1994; Rumbaugh,

Jacobson, & Booch, 1999; Starr, 2001; Larman, 2001). Modelers apply domain expertise to those

categories to create classes. Many authors have conferred to compile those lists. See Table 1 for

a comparison of class categories used by different authors. In the rightmost column of Table 1,

we show the class categories we have adopted in our TCM methodology.

In Information Modeling Methods and Methodologies, Advanced Topics in Databases Series, Ed. (J Krostige, T. Halpin, K.
Siau), Idea Group Publishing, 2004, pp. 216-240.

 7

We note the following in the use of class categories:

(1) They are not mutually exclusive.

(2) They are dependent on domains.

(3) Class categories are used as a tip for identifying classes, not as an absolute list.

(4) These class categories are primarily for business domains

Table 1. Class Categories used by other authors and our TCM method

 (Ross,
1988)

(Richeter,
1999);
(Shlaer,
Mellor ,
1988)

(Starr,
2001)

(Bahrami,
1999)

(Coad &
Yourdon
1991)

Larman
, 2001)

TCM

Roles of People X X X X X X X
Places (Locations) X X X X X
Physical Things X X X X X X
Organizations X X X X X
Events (Incident) /
Transactions

X X X X X X X

Transaction Line Item X X
Concepts (Discovered
Class; Intangible
things)

X X X X X

Specifications X X X X
Interactions X X X
Rules / Policies X X X
Invented Class X
Simulated Class X
Structure X
Other (External)
Systems

 X X

Device X
Containers of other
things

 X X

Things in a container X X
Financial instruments
and services

 X X

Look up (References) X

After careful review and many case studies, we have selected the14 class categories marked in

the rightmost column in Table 1. We believe our chosen 14 class categories subsume most of the

categories used by other authors. For example, Invented Class is subsumed by Intangible Things

In Information Modeling Methods and Methodologies, Advanced Topics in Databases Series, Ed. (J Krostige, T. Halpin, K.
Siau), Idea Group Publishing, 2004, pp. 216-240.

 8

(Concepts), Simulated Class is subsumed by Physical Things, and Structure is subsumed by

Container of Other Things. We have not included External Systems because we view the details

of an external system as beyond the scope of the current system under analysis and we prefer to

use a boundary object to interface between our domain classes and an external system. We

explain our class categories with examples in a later section in detail.

THE TAXONOMIC CLASS MODELING (TCM) METHODOLOGY

We first explain the workflow of our TCM methodology. We then present the rules used in the

methodology.

The Workflows of TCM Methodology

Meyer (1997) presents the Class Elicitation Rule stating that “Class elicitation is a dual process:

class suggestion and class rejection.” Thus, we use the noun analysis approach to find

candidates for classes and use the class elimination rules to reject spurious classes. Booch

(1993) states that “Identification of classes and objects involves two activities: discovery and

invention.” Thus, we use class categories to discover hidden classes from the domain assuming

a problem statement does not always explicitly state all the functional requirements. We also use

class categories to invent classes even when the concepts are expressed in a verb phrase.

The actual step-by step activities of our methodology are outlined in Figure 2 in the form of an

activity diagram in the UML. In Figure 2, the three swimlanes have their own goals and perform

the following activities:

In Information Modeling Methods and Methodologies, Advanced Topics in Databases Series, Ed. (J Krostige, T. Halpin, K.
Siau), Idea Group Publishing, 2004, pp. 216-240.

 9

• The middle swimlane: The goal of these swimlane activities is to identify classes from

the concepts that were explicitly stated as noun phrases in the problem statement. We

call the classes found using this method noun classes.

• The rightmost swimlane: The goal of this swimlane is to identify classes that were

stated as a verb phrase in the problem statement. Thus, this swimlane deals with style

variation of the written problem statement. We call these association-converted-classes

transformed classes.

• The leftmost swimlane: The goal of this swimlane is to discover hidden classes that

were not explicitly stated in the problem domain but are necessary for the domain

modeling. Note that this swimlane does not directly use any part of the problem

statement. We discover those hidden classes by applying domain knowledge to class

categories. We call these classes discovered classes.

The details of the activities in Figure 2 are discussed below. Actual rules used in each step are

discussed in the next section.

Activities of Middle Swimlane of Figure 2

- Begin with the problem statement

- Step N1: Pick up noun phrases

 We will classify them into problem-description nouns (PDN) and problem-solving

nouns (PSN). PSNs are those nouns that become classes, attributes, or values.

- Step N2: Test Class Elimination Rules

 If a noun phrase satisfies one of the Class Elimination Rules, then it is not a class.

Eliminate it from the candidate of a class.

In Information Modeling Methods and Methodologies, Advanced Topics in Databases Series, Ed. (J Krostige, T. Halpin, K.
Siau), Idea Group Publishing, 2004, pp. 216-240.

 10

- Step N3: Apply Class Category Rules

 If a noun phrase represents a category from the Class Categories, then the noun

represents a class. The selected class is called a NOUN CLASS. If the noun does not

belong to an existing category, the modeler should carefully analyze and decide

whether or not to keep it as a class.

- Step N4: Apply English Sentence Structure Rule and other heuristics. Classify non-

class nouns into attributes or values.

 If a noun represents a class, an attribute, or a value of an attribute, then the noun is a

PSN. Otherwise, it is a PDN.

Activities of Rightmost Swimlane of Figure 2

- Step V1: Pick up verb phrases (noun-verb-noun) and prepositional phrases (noun-

preposition-noun) as a candidate for an association.

 We will classify them into problem-description verbs (PDV) and problem-solving

verbs (PSV). A PSV is a verb whose concept could be represented as an

association in the class diagram. A PDV is a verb that was used in describing the

context of the problem and not modeled as an association in the class diagram.

- Step V2: Apply Noun-Class Verb Rule

 If one of two nouns surrounding the verb or the preposition is not a class, then the

verb is a PDV. Eliminate the verb phrase.

- Step V3: Apply Verb Elimination Rules

 If the verb is in the list of the Verb Elimination Rules, then the verb is a PDV.

Eliminate the verb phrase.

In Information Modeling Methods and Methodologies, Advanced Topics in Databases Series, Ed. (J Krostige, T. Halpin, K.
Siau), Idea Group Publishing, 2004, pp. 216-240.

 11

Figure 2. Activities of the taxonomic class modeling methodology in an activity diagram. {Domain
classes} = {DISCOVERED CLASS} ∪ {NOUN CLASS} ∪ {TRANSFORMED CLASS}

(PDN= Problem-Description Noun; PSN= Problem-Solving Noun;
PDV= Problem-Description Verb; PSV= Problem-Solving Verb)

Domain
Knowledge

C1: Apply Class Categories to
Domain Knowledge

Discovered Classes from Class
Categories (DISCOVERED-CLASS)

Requirement
Specification

N1: Pickup
Noun Phrases

N2: Apply Class
Elimination Rules

Eliminated?

N3: Test Class
Categories

No

Noun = PDN No

N4: Apply English Sentence Structure
Rules and other Heuristics

Yes

Value itself?Noun = VALUE Yes

Contains a
Value?

No

No

Noun =
ATTRIBUTE

Yes

Noun = DOMAIN CLASS
(NOUN-CLASS)

Yes

N5: Union Domain
Classes

N6: Apply
Checklist

N7: Apply Generalization
Rules

Belongs to? or
add a new
Category

V1: Pickup Verb Phrases (N-V-N) and
Preposition Phrases (N-preposition-N)

V2: Apply Noun-Class
Verb Rule

Between Two
NOUN-CLASSES

Verb = PDV no

V3: Apply Verb
Elimination Rule

yes

Eliminated ?Verb = PDV yes

V4: Apply
Need-to-know Rule

no

Need to remeber the
association??

Comprehension
Association

no

V5: Apply Idenification
Rule

yes

Needs a unique
identifier?

Need-to-know
Association

TRANSFORMED-CLASS

M:N with its own
properties?

V6: Apply M-N
Rule

no

V7:Apply
Reification Rule

yes

More than one link between
the same objects?

Association
Class

Reified Class

no

yes

yes

no

VERB PHRASENOUN PHRASECLASS CATEGORIES

In Information Modeling Methods and Methodologies, Advanced Topics in Databases Series, Ed. (J Krostige, T. Halpin, K.
Siau), Idea Group Publishing, 2004, pp. 216-240.

 12

- Step V4: Apply Need-to-Know Rule

 If the verb phrase represents an association that does not have to be remembered

between two classes, the verb phrase represents a comprehension association. The

verb is a PDV. Eliminate it.

- Step V5: Apply Identification Rule

 If the concept represented by the verb phrase needs to have a unique identifier, then

the verb phrase needs to be transformed into a class. We call such a class a

TRANSFORMED CLASS.

 Otherwise, we adopt the verb phrase as an association between the two classes.

- Step V6: Apply M:N Rule

 If an association has many-to-many multiplicity between two classes and the association

has its own properties or constraints, model it as an association class. We also call such a

class a TRANSFORMED CLASS.

- Step V7: Apply Reification Rule

 If the association class could have more than one link between the same object instance,

then model the association as a class known as a reified class. We also call such a class a

TRANSFORMED CLASS.

Activities of Leftmost Swimlane of Figure 2

- Step C1: Apply domain knowledge to Class Categories

In Information Modeling Methods and Methodologies, Advanced Topics in Databases Series, Ed. (J Krostige, T. Halpin, K.
Siau), Idea Group Publishing, 2004, pp. 216-240.

 13

 For each class category, check whether all the classes representing the class

category have been already captured. Otherwise create a new class based on the

class category. We call the newly added class a DISCOVERED CLASS.

A set of domain classes identified from our methodology is a union of the classes identified from

the three swimlanes (Step N5). That is:

{Domain classes} = {DISCOVERED CLASS} ∪ {NOUN CLASS} ∪ {TRANSFORMED CLASS}

The domain classes are compared against the checklist for a final sanity checking in Step

N6. Generalizations are introduced in Step N7.

Rules Used in the Taxonomic Class Modeling Methodology

In this section, we present various rules used in our methodology.

Applying the Class Elimination Rule (Step N2)

The Class Elimination Rules are used in Step N2 for each noun phrase selected from the problem

statement. Rumbaugh et al. (1991) popularized seven Class Elimination Rules (CER). These

rules and variations were subsequently used by many other authors (Derr, 1995; Richter, 1999;

Blaha & Premerlani, 1998; Stevens & Pooley, 1999). In our methodology, we have adopted

CER1-CER5, and CER7 from Rumbaugh et al. (1991), CER6 from Stevens and Pooley (Stevens

& Pooley, 1999), and CER9 from Blaha and Premerlani (1998). We have added CER8 and

heuristic rules R1-R3 based on our own experience (Song and Froehlich, 1995).

• CER1: Redundant classes. Two nouns represent the same abstraction. We keep the more

descriptive noun. For example, we use customer, instead of user in ATM domain.

In Information Modeling Methods and Methodologies, Advanced Topics in Databases Series, Ed. (J Krostige, T. Halpin, K.
Siau), Idea Group Publishing, 2004, pp. 216-240.

 14

• CER2: Irrelevant classes. The nouns have nothing to do with the problem to be solved.

The noun is beyond the scope of the problem being modeled. For example, in a video

rental domain, the occupations of the customers are irrelevant when we focus on rental

transactions.

• CER3: Vague classes. The nouns have ill-defined or too broad scope. For example,

business activities are vague in most domains.

• CER4: Operations. The nouns represent operations. For example, ROI (Return-on-

Investment) is an operation (Blaha & Premerlani, 1998), and bonus calculation is a noun

form of an operation called calculate bonus.

• CER5: Implementation constructs. The nouns represent an implementation-related

class such as set, string, or algorithm. These implementation classes can be added at the

design or implementation stages, but not at the conceptual level.

• CER6: Meta-language. The noun is used to describe and explain requirements and the

system at a very high level. Examples are systems, information, or reporting requirements.

• CER7: Attributes. The nouns represent a text or a number. For example, name, age, and

phone number represent attributes that carry a value. There are often delicate cases where

it seems uncertain whether a noun should be modeled as an attribute or a class. In those

cases, we use the following rules in determining whether a noun represents an attribute or

a class as follows:

/* R1: The Rule of One-Property */
IF a noun has only one property to remember
 THEN it is an attribute of another class
 ELSE it is a class

In Information Modeling Methods and Methodologies, Advanced Topics in Databases Series, Ed. (J Krostige, T. Halpin, K.
Siau), Idea Group Publishing, 2004, pp. 216-240.

 15

Example: If we need to remember only city name, city will be an attribute of another

class. If we need to remember city name, the type of city, the state it belongs to, then city

should be modeled as a class.

/* R2: The Rule of Dependence */
IF the identification of an object (noun) relies on another concept object (noun)
 THEN it is an attribute

Example: Name is not important in its own right. It is only meaningful when we connect

the name to some object. So, name will be an attribute of some class. On the other hand,

Customer is a good domain class since it is important in its own right.

/* R3: The Rule of Independence */
IF the noun represents an object which is important in its own right
 THEN it is a class

• CER8:Values. The nouns represent a value itself. For example, in “an account will be

put on hold state if the balance is unpaid for more than 100 days,” the noun phrase “hold

state” represents a value of another attribute, possibly, account-status.

• CER9: Derived classes. The concepts can be derived from other domain classes. The

decision to include a derived class in the analysis model should be deferred until the

design stage. However, we add a derived class in the data dictionary. Derived classes do

not add new information, but they could be useful in real-world and in design

We note that these class elimination rules may not be mutually exclusive. They are used to

admonish the modeler to include only meaningful classes at the analysis level.

In Information Modeling Methods and Methodologies, Advanced Topics in Databases Series, Ed. (J Krostige, T. Halpin, K.
Siau), Idea Group Publishing, 2004, pp. 216-240.

 16

/* R4: The Class Elimination Rule */
IF the noun candidate belongs to one of the nine CER rules
 THEN it is not a class.

Any noun phrases that pass these nine rules are candidates for classes.

Applying the Class Category Rule (Step N3)

In the previous section, the Class Elimination Rules were used to reject bad classes. In this

section, we apply class categories to select good domain classes. Various class categories were

summarized in Table 1. Our class categories were inspired by Larman (2001), but were modified

based on our own teaching experience in business applications. They are as follows:

• CC1: Roles of People. They represent humans who carry out some important function.

Examples are Student, Employee, and Customer.

• CC2: Places. They represent locations where important business activities are held.

Examples are Office, Warehouse, and Store.

• CC3: Physical Things. They represent tangible objects that are important in business

activities. Examples are Machine, Product, Device, and Book.

• CC4: Organizations. They represent important business units. Examples are Company,

Team, and Department.

• CC5: Events (Transactions). They represent important activities that need to record

some data with the time the event occurred. Examples are Order, Promotion, and

Payment.

• CC6: Transaction Line Items. They represent an element of a transaction. Examples

are Order-Line-Item, Purchase-Line-Item, and Rental-Line-Item.

In Information Modeling Methods and Methodologies, Advanced Topics in Databases Series, Ed. (J Krostige, T. Halpin, K.
Siau), Idea Group Publishing, 2004, pp. 216-240.

 17

• CC7: Concepts (Discovered Class; Intangible Things). They represent intangible ideas

used to keep track of business activities. Examples are Project, Account, and Complaint.

• CC8: Specification. They represent a description of other items that need to be

distinguished from one another. Examples are Video-Title or Flight-Plan. For example,

a movie called Harry Potter is a title, but a store may have many tape instances, where

each tape has a different barcode. (Note here Video-Title is not just one attribute that

stores the title of a tape. Instead, it is a specification class that keeps track of title, actors,

release year, running time, etc. In a video store, one title may have many video tapes.)

• CC9: Interaction. They represent an association between two classes, where the

association has meaningful attributes. An example of this class is Reservation between

Passenger and Flight classes.

• CC10: Rules/Policies. They represent important business rules. Examples are Rental-

Policy and ShippingMethod. The Rule here does not mean if-then-else logic. Instead, A

rule/policy class represents a business rule that can be broken down into several attributes

in a tabular form. For example, a rental policy may state rental charges and rental

durations. ShippingMethod class may define carrier name, fee, and delivery period.

• CC11: Containers of other things. They represent classes that will contain other

classes. Examples are Store, Shelf, Catalog, Pick List, and Bin.

• CC12: Things in a container. They represent classes that will be contained in another

class. Examples are Order Line Item, Pick List Line Item, Passenger, and Video-Title in

a catalog.

• CC13: Financial Instruments and Services. They represent class that are used to

support financial activities. Examples are Stock, Bond, and Mortgage.

In Information Modeling Methods and Methodologies, Advanced Topics in Databases Series, Ed. (J Krostige, T. Halpin, K.
Siau), Idea Group Publishing, 2004, pp. 216-240.

 18

• CC14: Lookup/References. They represent a single class that is used for referring to a

list of predefined items. Examples are Airport codes and Accounting codes.

In our class categories, we have not included the following types of classes:

design-level classes such as boundary classes (e.g., GUI Window Class, or the CommandButton

class) or control classes (e.g., use case controller); implementation-level classes such as attribute

classes (e.g., address, money); and classes from engineering & science domains.

We note that our class categories are neither mutually exclusive nor closed for all domains. (For

example, we have not tested our class categories on domains such as CAD/CAM or GIS.) We

use these categories as a thinking tip to identify classes.

/* R5: The Class Category Rule*/
IF the candidate noun which passed the Class Elimination Rules belongs to one of the
fourteen class categories
 THEN it is a domain class and we call it a NOUN-CLASS
 ELSE use domain knowledge to decide whether to keep the class.

For those nouns that do not belong to a category, we caution modelers to carefully analyze the

domain and decide whether or not to keep the class. We refer to the classes passed from the

Class Elimination Rule and the Class Category Rule as Noun-classes.

Identifying Attributes and Values (Step N4)

In our middle swimlane, we also identify attributes and important attribute values that were

mentioned in a problem statement or a use case description. In order to identify attributes of a

class, we use two techniques. One technique is to use CER7. Another technique is to use

Rules 3, 6, 7, and 8 of Chen’s English Sentence Structure rules (Chen, 1983). We do not

In Information Modeling Methods and Methodologies, Advanced Topics in Databases Series, Ed. (J Krostige, T. Halpin, K.
Siau), Idea Group Publishing, 2004, pp. 216-240.

 19

reproduce those rules due to space constraints. We use CER8 to identify important values of

attributes. These artifacts are recorded in the data dictionary.

Verb Phrases and Noun-Preposition-Noun Phrase (Step V1)

Rumbaugh et al. (1991) use verb phrases to identify associations. Blaha and Premerlani (1998)

use both verb phrases and preposition phrases, in the form of noun-preposition-noun, to

identify associations. We call both of them simply verb-phrases for convenience.

Applying the Noun-Class Verb Rule (Step V2)

For each verb phrase, we apply the problem-solving verb rule as follows:

/* R6: The Noun-Class Verb Rule */
IF one of two nouns surrounding the verb or the preposition is not a NOUN-CLASS
 THEN the verb is a problem-description verb. Eliminate it.

The verb phrases that satisfy R6 represent associations that do not have to be kept track of.

Applying the Verb Elimination Rule (Step V3)

Rumbaugh et al. (1991) and Blaha & Premerlani (1998) present six verb elimination rules. We

have named one of them as the Noun-Class Verb rule in the previous section since it is very

important in our methodology. The other rules we have excluded are Ternary Associations rule.

Decomposition of a ternary association into multiple binary associations requires special

treatments and careful analysis. See the work by Jones and Song (1996, 2000) for the

decomposition of ternary associations, and the work by Dullea and Song (1997) for the

structural validity of ternary relationships. We adopted four Verb Elimination Rules from

(Rumbaugh, Blaha, & Premerlani, 1991; Blaha &Premerlani, 1998) as follows:

In Information Modeling Methods and Methodologies, Advanced Topics in Databases Series, Ed. (J Krostige, T. Halpin, K.
Siau), Idea Group Publishing, 2004, pp. 216-240.

 20

• VER1: Irrelevant Associations. Eliminate the verbs that represent associations beyond

the scope of the problem domain.

• VER2: Implementation Associations. Eliminate the verbs that deal with

implementation constructs.

• VER3: Actions. Eliminate the verbs that represent transient actions, as in ATM prints

receipts. They can be represented in interaction or activity diagrams, but not in class

diagrams.

• VER4: Derived Association. Eliminate the verbs that clearly represent derived

associations. As in the case of derived classes, we document derived associations in the

data dictionary since they could be important during design.

/* R7: The Verb Elimination Rule */
IF the verb candidate belongs to one of the four verb elimination rules
 THEN the verb is a problem-description verb. Eliminate it.

Applying the Need-to-Know Rule (Step V4)

We keep only need-to-know associations as follows:

/* R8: The Need-to-Know Association Rule */
IF the verb represents a persistent relationship that needs to be remembered for a certain
duration of time

THEN the verb is represented as a need-to-know association (PSV)
ELSE the verb represents a comprehension association and is removed (PDV).

Applying the Identification Rule (Step V5)

Because of style variations in writing, a concept representing a class is often represented by a

verb phrase, instead of a noun phrase. In this case, the noun analysis method does not identify a

class. For example, see Figure 3.

In Information Modeling Methods and Methodologies, Advanced Topics in Databases Series, Ed. (J Krostige, T. Halpin, K.
Siau), Idea Group Publishing, 2004, pp. 216-240.

 21

In Figure 3.(a), orders was used as a verb. But we usually use a unique order number for each

order in a real-world application. Therefore, it is more appropriate to represent the order as a

class. Thus, for each verb selected so far, we need to apply the Verb Identification Rule to see

whether we need to transform a verb into a class:

(a) A Customer orders Products.
(b) A Customer places an order that contains Products.

(a)

Customer Product

nnn n

orders

(b)

Customer
order
order #

n1
Product

1..nn1 n n 1..n

Figure 3. Two different class diagrams for the same semantics due to two different writing styles.

/* R9: The Identification Rule */
IF the concept represented by a verb (or a noun) requires a unique identifier
 THEN model it as a class

We refer to the class converted from a verb, together with association class and reified class

discussed in the next section, as a TRANSFORMED CLASS.

Applying the M:N Rule (Step V6) and Reification Rule (V7)

When a many-to-many association has its own attributes, it is modeled as an association class.

However, the association class cannot have more than one link between the same object

instances. Should more than one link be required, it should be reified as a class (Rumbaugh,

Jacobson, & Booch, 1999; Maciaszek, 1999). For example, In Figure 4(a), an employee can play

places contains

In Information Modeling Methods and Methodologies, Advanced Topics in Databases Series, Ed. (J Krostige, T. Halpin, K.
Siau), Idea Group Publishing, 2004, pp. 216-240.

 22

one and only one role for each project, while in Figure 4(b), an employee can play more than

one role (eg. Manager and Programmer) for the same project.

(a) A many-to-many association with intersection class Assignment
(b) A reified class called Assignment

Em ployee
SSN
nam e
salary

Projec t
projec t#
projec tNa m e1..*0..*0..* 1..*

Ass ignm ent
rol e
hours

Employee
SSN
name
salary

Assignment
role
hours1..*1 1..*1

Project
project#
projectName

10..*0..* 1

Figure 4. Many-to-many associations rendered as an intersection class and a reified class.

/* R10: The M:N Rule */

IF the verb representing a many-to-many association has its own attributes and can have
one and only one link between the same object instances during the lifetime of the
instances
 THEN model it as an association class
 ELSE model it as an association

/* R11: The Reification Rule */
IF the verb representing a many-to-many association has its own attributes and can have
more than one link between the same object instances during the lifetime of the instances
 THEN model it as a reified class
 ELSE model it as an association

Applying the Class Categories to Domain Knowledge (Step C1)

So far, we have discussed how to identify classes from noun phrases, verb phrases, or preposition

phrases of a written problem statement. However, because a problem statement is a short

In Information Modeling Methods and Methodologies, Advanced Topics in Databases Series, Ed. (J Krostige, T. Halpin, K.
Siau), Idea Group Publishing, 2004, pp. 216-240.

 23

description of a domain by its nature, there may be omissions of functional requirements.

Therefore, there may be hidden classes caused by these omissions. In this section, we discuss a

way of mitigating the problem. We apply class categories discussed earlier to discover hidden

classes as follows:

For each class category, use domain knowledge to discover any class belonging to the
class category. We call the classes identified via this method DISCOVERED-CLASS.

In order for a modeler to effectively apply class categories to the domain, the modeler should

have expert domain knowledge.

Union of Domain Classes (Step N5)

We have identified three types of classes – noun-classes, transformed-classes, and discovered-

classes. The union of these three types of classes forms our domain classes and will be

represented in our class diagram.

Applying Check List (Step N6)

Our last step is to apply the check list to the selected domain classes. The purpose of applying

the checklist is to avoid any potential mistake. Criteria for a good class stated by many authors

(Coad & Yourdon, 1991; Meyer, 1997; Gossain, 1998, Rosenberg, 1999; Stevens & Pooley, 1999;

Ambler, 2001; Quantrani, 2003) are summarized:

• Need-to-know
• (Usually) multiple attributes
• (Usually) more than one object in a class (A class with only one object is called a singleton

class. We keep them in our class model.)
• Always-applicable attributes
• Always-applicable operations
• Domain-based requirements
• Not merely derived results

In Information Modeling Methods and Methodologies, Advanced Topics in Databases Series, Ed. (J Krostige, T. Halpin, K.
Siau), Idea Group Publishing, 2004, pp. 216-240.

 24

• Meaningful operations (A class with neither attributes nor operations, other than getters and
setters, is likely to be an attribute of another class.)

• A single-personality definition (The definition of a class must not include any AND, BUT,
or OR)

• A single-sentence definition (The definition of a class must be stated in one sentence.)

Applying Generalization Rule (Step N7)

Generalization creates a hierarchy of a super class and its subclasses. A super class captures

common properties of its subclasses. We use the rule of ISA to identify a generalization

hierarchy.

/* R12: The ISA Rule */
IF (a) the sentence “class_A is a class_B” makes sense and
(b) class_A has at least one different property (or behavior) from class_B

THEN class_A is a subclass of class_B.

Ambler (2001a) states that the ISA rule works 99.9 percent of the time. A generalization can also

be identified from two classes that play different roles of the same class:

/* R13: The ROLE Rule */
IF (a) class_A and class_B are different roles of the same class_C and
(b) class_A and class_B have at least one different property (or behavior) from class_C

THEN class_A and class_B are subclasses of class_C

A CASE STUDY AND EXPERIMENTS

In this section, we elaborate on a case study and present the results of seven other case studies.

A Case Study

Our case study is about a video rental store. The problem statement with all the nouns

highlighted is shown in Figure 5.

In Information Modeling Methods and Methodologies, Advanced Topics in Databases Series, Ed. (J Krostige, T. Halpin, K.
Siau), Idea Group Publishing, 2004, pp. 216-240.

 25

At a high level, the process of applying the TCM methodology consists of the following three

steps:

(1) To identify Noun classes
ο Identify nouns that belong to class categories
ο Apply class elimination rules to remove unnecessary classes

(2) To identify Transformed classes

ο Identify verbs that need to have a unique identifier
ο Transform the verb into a class

(3) To identify Discovered classes

ο For each class category, apply domain knowledge to identify any missing classes

The classes identified from the TCM methodology can be summarized:

(1) Classes that belong to class categories (Noun classes):

 Store, Rental, Inventory, Video Tapes, Rental Items, Payments, Customer, Store

Manager, Cash, Check, and Credit Card

 Note that Store is a singleton class

 Rental and Order have the same meaning in this domain. We preferred Rental as it

more specific and meaningful than Order.

 We also removed Return because all the information needed to process Return is

already included in Rental except Actual Return Date, which we can include it

Rental class.

 Table 2 shows the result of our analysis by applying the Class Elimination Rules and

Class Categories. The adopted classes (Noun classes) are check-marked in the right-

most column

(2) Classes that was transformed from Verbs (Transformed classes)

In Information Modeling Methods and Methodologies, Advanced Topics in Databases Series, Ed. (J Krostige, T. Halpin, K.
Siau), Idea Group Publishing, 2004, pp. 216-240.

 26

 We reviewed all the verbs, but we did not find any verb that needs to have a unique

identifier.

(3) Classes discovered by applying domain knowledge for each class category

(Discovered classes):

 For the following class categories, we found additional domain classes that were not

explicitly stated in the problem statement

 Category 1 People: Staff, Employee
Category 2 Location: Shelf (to easily locate video tapes)
Category 10 Rules/Policies: LoanPolicy.

 These three classes were not explicitly mentioned in the problem statement. A naive

noun analysis method could never find these classes.

 Note that if we expand the scope of business domain of the video store by including

reservation and rentals of other media and equipments, we can additionally find the

following classes:

 Category 3 Physical things: Game, DVD, VCR player, DVD player
Category 5 Event: Reservation

The final adopted class diagram, which captures all the classes, attributes and important values

mentioned in the problem statement, is shown in Figure 6. (Note: We have not included Game,

DVD, VCR player, DVD player and Reservation classes in our final class diagram.) Using other

documentation and expert knowledge, more attributes will be added to this first-cut domain

model.

In Information Modeling Methods and Methodologies, Advanced Topics in Databases Series, Ed. (J Krostige, T. Halpin, K.
Siau), Idea Group Publishing, 2004, pp. 216-240.

 27

This problem is about a small, local video rental store (VRS). The problem will be
limited to rental, return, management of inventory (add/delete new tapes, change rental
prices, etc.) and producing reports summarizing various business activities. The rental
items of the store are limited to video tapes. Customer ID number (arbitrary number),
phone number or the combination of first name and last name are entered to identify
customer data and create an order. The bar code ID for each item is entered and video
information from inventory is displayed. The video inventory file is decreased by one
when an item is checked out. When all tape IDs are entered, the system computes the total
rental fee, and payments are processed. A return is processed by reading the bar code of
returned tapes. Any outstanding video rentals are displayed with the amount due on each
tape and a total amount due. The past-due amount must be reduced to zero when new
tapes are taken out. For new customers, the unique customer ID is generated and the
customer information is entered into the system. Videos are stacked by their category
such as Drama, Comedy, Action, etc. Any conflict between a customer and computer
data is resolved by the store manager. Rental fees can be paid by either cash, check or a
major credit card. Reporting requirements include viewing customer rental history,
video rental history, and titles by category, top ten rentals, and items by status, and
overdue videos by customers and outstanding balances by customers.

Figure 5. The Problem Statement of Video Rental Store with Nouns highlighted.

Table 2: The Result of Applying Class Elimination Rules and Class Categories to VRS domain

Nouns Class Elimination Rules Applied
(Step N2)

Class Categories Applied
(Step N3)

Class

Video Rental Store Adopt VRS; Redundant (CER1)
VRS NO Place (CC2) √
Problem Meta languages (CER6)
Rental NO Transaction (CC5) √
Return Reverse of Rental (CER1)
Management Meta language (CER5)
Inventory NO (Singleton) Catalog (CC11) √
(Video)Tapes NO Physical Thing (CC3) √
Rental Prices Attribute (CER7)
Reports Derived (CER9)
Business Activities Meta language (CER6)
Rental Items NO Transaction Line Item

(CC6)
√

Store The same as VRS; Redundant
(CER1)

Customer ID Number Attribute (CER7)
Arbitrary Number Vague (CER3)
Phone Number Attribute (CER7)
Combination Irrelevant (CER2)
First Name Attribute (CER7)
Last Name Attribute (CER7)
Customer Data Vague (CER3)
Order The same as Rental; Redundant

(CER1)

Bar Code ID Attribute (CER7)

In Information Modeling Methods and Methodologies, Advanced Topics in Databases Series, Ed. (J Krostige, T. Halpin, K.
Siau), Idea Group Publishing, 2004, pp. 216-240.

 28

Video Information Vague (CER3)
Video Inventory File Same as Inventory; Redundant

(CER1)

Tape ID Attribute (CER7)
System Meta language (CER6)
Total Rental Fee Attribute (CER7)
Payments NO Transaction (CC5) √
Amount due Attribute (CER7)
Total Amount due Attribute (CER7)
Past-due Amount Attribute (CER7)
Zero Value (CER8)
Customer NO Roles of People (CC1) √
Customer Information Vague (CER3)
Category Attribute (CER7)
Drama Value (CER8)
Comedy Value (CER8)
Action Value (CER8)
Conflict Irrelevant (CER2)
Computer Data Vague (CER3)
Store Manager NO Roles of People (CC1) √
Rental fee Attribute (CER7)
Cash NO Physical Thing (CC3) √
Check NO Physical Thing (CC3) √
Credit Card NO Physical Thing (CC3) √
Reporting Requirements Meta language (CER6)
Customer Rental History Derived (CER9)
Video Rental History Derived (CER9)
Titles NO Specification (CC8) √
Top Ten Rentals Derived (CER9)
Item Status Attribute (CER8)
Overdue Videos Roles (CER1)
Outstanding Balances Attribute (CER7)

Other Experiments

We have also applied our TCM methodology to seven case studies presented in (Yourdon &

Argila, 1996; Coad, North, & Mayfield, 1997). The major discrepancy between our class

diagram and the presented class diagrams were the following three types of class categories

(Song and Karani, 2002):

- Derived class
- Attribute class
- Design class

Among the three categories of classes, we view that all derived classes and design classes must

be considered during design stage, while attribute classes can be considered during either design

In Information Modeling Methods and Methodologies, Advanced Topics in Databases Series, Ed. (J Krostige, T. Halpin, K.
Siau), Idea Group Publishing, 2004, pp. 216-240.

 29

or implementation stages. Thus, we were able to identify all the domain classes in those case

studies as defined by the authors of the books.

RentalLineItem
BarCodeID
RentalFee
DueDate

Cash Check CreditCard

Rental
RentalDate
TotalRentalFee

1..*1 1..*1

Payment
Date
Amount

Customer
CustomerID
PhoneNumber
FirstName
LastName
TotalAmountDue

*1 *1

0...

1

0...

1

Store
<<singleto...

Employee

Staff Manager

Inventory
<<singleto...

LoanPolicy
rentalPrice
rentalPeriod

VideoTape
BarCodeID
Status

*

1

*

1

ShelfTitle Specification
Title
Category {Drama, Comedy, Act ion}

0..*0..*
0..*

1

0..*

1

0..*

1

0..*

1

10... 10...

Figure 6. The class diagram built based on our methodology

CONCLUSION AND FUTURE WORK

In this chapter, we presented a Taxonomic Class Modeling (TCM) methodology that can be used

for object-oriented analysis in business applications. In our methodology, we systematically

synthesized several different class modeling techniques under one framework. Our framework

integrates the noun analysis method, class categories, English sentence structures, check lists,

and other heuristic rules for modeling.

In Information Modeling Methods and Methodologies, Advanced Topics in Databases Series, Ed. (J Krostige, T. Halpin, K.
Siau), Idea Group Publishing, 2004, pp. 216-240.

 30

Our methodology allows us to identify the following three types of classes: classes that are

explicitly stated by nouns in the requirement specifications; classes whose concepts were

represented by verb phrases, and hidden classes that were not explicitly stated in the problem

statement but can be discovered by applying class categories to domain knowledge.

In TCM methodology, we adopted 14 categories of domain classes for business domains. Our

categories do not include design classes or implementation classes. These class categories were

adopted from our experiences of teaching object-oriented analysis & design courses and

developing object-oriented applications over ten years.

We summarized the results of our experiments with seven case studies presented in literature

(Coad, North, & Mayfield, 1997; Yourdon & Argila, 1996) and illustrated our methodology

using a case study. Our teaching experience shows that our method is effective in identifying

domain classes for many business-oriented object-oriented applications. Our students have found

that the TCM methodology is practical and can be easily and effectively applied to their project

domains.

We have implemented a prototype using the TCM methodology using Java as a Java applet so

that it can run in any browser that has a Java virtual machine. The tools used to develop the

applet include JBuilder 7.0 Enterprise Edition, Infragistic JSuite 6.0 (Java AWT library). Our

prototype uses WordNet (WordNet, 2003) to parse sentences. Our tool identifies classes based

on the workflow outlined in Figure 2. We plan to create an interface module to import the output

schema into a class diagram in Rational Rose (Quatrini, 2003).

In Information Modeling Methods and Methodologies, Advanced Topics in Databases Series, Ed. (J Krostige, T. Halpin, K.
Siau), Idea Group Publishing, 2004, pp. 216-240.

 31

The future work includes refinements of heuristics, revision of class categories, experiments that

compares the TCM methodology with other modeling techniques, and the identification of class

categories to other non-business domains such as engineering and scientific domains.

REFERENCES

Abbot, R. (1985). Program Design by Informal English Description, Communication of ACM,

Vol. 26(11), 882-894.

Ambler, S. (2001a). The Object Primer, 2nd edition, SIGS Books.

Ambler, S. (2001). Building Object Applications That Work, 2nd edition, SIGS Books.

Bahrami, A. (1999). Object-Oriented Systems Development, Irwin McGraw-Hill.

Beck, K. & Cunningham, W. (1989). A Laboratory for Teaching Object-Oriented Thinking,

SIGPLAN Notice, October 1989, 24(10).

Blaha, M. & Premerlani, W. (1998). Object-Oriented Modeling and Design for Database

Applications, Prentice Hall.

Booch, G., Rumbaugh, J., & Jacobson, I (1999). The Unified Modeling Language: User Guide.

Addison Wesley.

Booch, G. (1994). Object-Oriented Analysis and Design with Applications, 2nd Ed., Benjamin

Cummings.

Chen, P.P. (1983). English Sentence Structure and Entity-Relationship Diagrams, Information

Sciences, 29, 127-149.

In Information Modeling Methods and Methodologies, Advanced Topics in Databases Series, Ed. (J Krostige, T. Halpin, K.
Siau), Idea Group Publishing, 2004, pp. 216-240.

 32

Coad, P., North, D., & Mayfield, M. (1997). Object Models: Strategies, Patterns & Applications,

2nd ed., Prentice Hall.

Coad, P. & Yourdon, E. (1991). Object-Oriented Analysis, 2nd ed., Prentice Hall.

Coleman, D., Arnold, P., Bodoff, S., Dollin, C., etc., (1994). Object-Oriented Development: The

Fusion Method, Prentice-Hall.

Delcambre, L.M.L. & Eckland, E., (2000). A Behaviorally driven Approach to Object-Oriented

Analysis and Design with Object-Oriented Data Modeling, In Advances in Object-

Oriented Data Modeling (pp. 21-40). MIT Press.

Derr, K.W., (1995). Applying OMT, Prentice-Hall.

Dobing, B. & Parsons, J. (2000). Understanding the Role of Use Cases in UML: A Review and

Research Agenda, J. of Database Management, 11(4): 28-36.

Dullea, J. and Song, I.-Y. (1998), "An Analysis of Structural Validity of Ternary Relationships

in Entity-Relationship Modeling," Proc. of Seventh International Conf. on Information

and Knowledge Management (CIKM ‘98), Nov. 3-7, 1998, Washington, D.C., pp. 331-

339.

Fowler, M., (1999). UML Distilled: Applying the Standard Object Modeling Language, (2nd ed.).

Addison Wesley.

Gossain, S. (1998). Object Modeling and Design Strategies: Tips and Techniques. Cambridge

University Press.

Holland, I.M. & Lieberherr. (1999). Object-Oriented Design, ACM Computing Survey, 28(1), 273-

275.

Honiden, S., Kotaka, N., & Kishimoto, Y. (1993). Formalizing Specification Modeling in OOA.

IEEE Software, January 1993, 54-66.

In Information Modeling Methods and Methodologies, Advanced Topics in Databases Series, Ed. (J Krostige, T. Halpin, K.
Siau), Idea Group Publishing, 2004, pp. 216-240.

 33

Jacobson, I., Christerson, M., Jonsson, P., & Overgaard, G. (1992). Object-Oriented Software

Engineering: A Use Case Driven Approach. Addison-Wesley.

Jones, T. H. and Song, I.-Y. (1996). "Analysis of Binary/ternary Cardinality Combinations in

Entity-Relationship Modeling," Data & Knowledge Engineering, Vol. 19, No. 1, pp. 39-

64.

Jones, T. H. and Song, I.-Y. (2000). "Binary Equivalents of Ternary Relationships in Entity-

Relationship Modeling: a Logical Decomposition Approach." Journal of Database

Management, Vol. 11, No.2, pp. 12-19.

Larman, C., (2001). Applying UML and Patterns (2nd). Prentice Hall.

Maciaszek, L. A., (2001). Requirement Analysis and System Design: Developing Information

Systems with UML. Addison Wesley.

Meyer, B. (1997). Object-Oriented Software Construction. Prentice Hall.

Parsons, J. & and Wand, Y. (1997). Choosing Classes in Conceptual Modeling, Communications

of the ACM, 40(6), 63-69.

Quantrani, T. (2003). Visual Modeling with Rational Rose and UML 2002. Addison Wesley.

Richardson, J.E., Schultz, R.C., & Berard, E.V. (1993), A Complete Object-Oriented Design

Example, Berard Software Engineering.

Richter, C. (1999). Designing Flexible Object-Oriented Systems with UML, Macmillan Technical

Publishing.

Rosenberg, D. (1999). Use Case Driven Object Modeling with UML: A Practical Approach,

Addison Wesley.

Ross, R.G. (1988). Entity Modeling: Techniques and Applications, Database Research Group, Inc.

In Information Modeling Methods and Methodologies, Advanced Topics in Databases Series, Ed. (J Krostige, T. Halpin, K.
Siau), Idea Group Publishing, 2004, pp. 216-240.

 34

Rumbaugh, J., Blaha, M., Premerlani, W. etc. (1991). Object-Oriented Modeling and Design,

Prentice-Hall.

Rumbaugh, J., Jacobson, I., & Booch, G. (1999). The Unified Modeling Language: Reference

Manual. Addison Wesley.

Shlaer, S. & Mellor, S.J. (1988). Object-Oriented Systems Analysis: Modeling the world in Data,

Yourdon Press.

Siau, K. (2001). Unified Modeling Language: Systems Analysis, Design and Development Issues.

Idea Publishing Group.

Song, I.-Y. and Froehlich, K. (1995). Entity-Relationship Modeling: A Practical How-to Guide,

IEEE Potentials, 13(5), 29-34.

Song, I.-Y. & Karani, S,. (2002). Case Studies Using Taxonomic Class Modeling Techniques,

Technical Report, CIST, Drexel University.

Starr, L., (2001). Executable UML: How to Build Class Models, Prentice Hall.

Stevens, P. & Pooley, R. (1999). Using UML: Software Engineering with Objects and

Components, Addison Wesley.

Wilkinson, N.M., (1995). Using CRC Cards: An Informal Approach to Object-Oriented

Development, SIGS Books.

Wirfs-Brock, R., Wilkerson, B., & Wiener, L. (1990). Designing Object-Oriented Software.

Prentice Hall.

WordNet. (2003). http://www.cogsci.princeton.edu/~wn/.

Yourdon, E. & Argila C. (1996). Case Studies in Object-Oriented Analysis and Design, Prentice

Hall.

