A Data Warehouse Engineering Process

Sergio Lujan-Mora and Juan Trujillo

D. of Software and Computing Systems, University of Alicante
Carretera de San Vicente s/n, Alicante, Spain
{slujan, jtrujillo}@dlsi.ua.es

Abstract. Developing a data warehouse (DW) is a complex, time con-
suming and prone to fail task. Different DW models and methods have
been presented during the last few years. However, none of them ad-
dresses the whole development process in an integrated manner. In this
paper, we present a DW development method, based on the Unified Mod-
eling Language (UML) and the Unified Process (UP), which addresses
the design and development of both the DW back-stage and front-end.
We extend the UML in order to accurately represent the different parts
of a DW. Our proposal provides a seamless method for developing DWs.

Keywords: data warehouse, UML, Unified Process, software engineering

1 Introduction

In the early nineties, Inmon [1] coined the term “data warehouse” (DW): “A data
warehouse is a subject-oriented, integrated, time-variant, nonvolatile collection
of data in support of management’s decisions”. Building a DW is a challenging
and complex task because a DW concerns many organizational units and can
often involve many people. Although various methods and approaches have been
presented for designing different parts of DWs, no general and standard method
exists to date for dealing with the whole design of a DW.

In the light of this situation, the goal of our work is to develop a DW engineer-
ing process to make the developing process of DWs more efficient. Our proposal
is an object oriented (OO) method, based on the Unified Modeling Language
(UML) [2] and the Unified Process (UP) [3], which allows the user to tackle all
DW design stages, from the operational data sources to the final implementa-
tion and including the definition of the ETL (Extraction, Transformation, and
Loading) processes and the final users’ requirements.

The rest of the paper is structured as follows. In Section 2, we briefly present
some of the most important related work and point out the main shortcomings.
In Section 3, we summarize our DW engineering process: first, we present the
diagrams we propose to model a DW (the results achieved so far), and then we
describe the different workflows that make up our process. Finally, we present
the main contributions and the future work in Section 4.

2 Related Work

During the last few years, different approaches for the DW design have been
presented. On the one hand, different data models [4,5,6,7,8], both conceptual
and logical, have been proposed. These approaches are based on their own visual
modeling languages or make use of a well-known graphical notation, such as the
Entity-Relationship (ER) model or the UML. However, none of these approaches
has been widely accepted as a standard DW model, because they present some
important lacks. Due to space constraints, we refer the reader to [9] for a detailed
comparison and discussion about most of these models.

On the other hand, different DW methods [10,11,12,13] have also been pro-
posed. However, all of them present some of these problems: they do not address
the whole DW process, they do not include a visual modeling language, they
do not propose a clear set of steps or phases, or they are based on a specific
implementation (e.g., the star schema in relational databases).

A key approach is Kimball’s Data Warehouse Bus Architecture [14], which
addresses planning, designing, developing, deploying, and growing DWs. How-
ever, this approach also lacks a modeling language that comprises the different
tasks.

In conclusion, no general and standard method exists to date for dealing with
the whole design of a DW.

3 Data Warehouse Development

The goal of our work is to develop a DW engineering process to make the devel-
oping process of DWs more efficient. In order to achieve this goal, we consider
the following premises:

— Our method should be based on a standard visual modeling language.

— Our method should provide a clear and seamless method for developing a
DW.

— Our method should tackle all DW design stages in an integrated manner,
from the operational data sources to the final implementation and including
the definition of the ETL processes and the final users’ requirements.

— Our method should provide different levels of detail.

Therefore, we have selected the UML as the visual modeling language, our
method is based on the well-accepted UP, we have extended the UML in order
to accurately represent the different parts of a DW, and we extensively use the
UML packages with the aim of providing different levels of detail.

The rest of the section is divided into two clear parts: in Section 3.1 we
present the results achieved so far, and in Section 3.2 we outline our current and
future lines of work.

3.1 Data Warehouse Diagrams

The architecture of a DW is usually depicted as various layers of data in which
data from one layer is derived from data of the previous layer [15]. Following this
consideration, we consider that the development of a DW can be structured into
an integrated framework with five stages and three levels that define different
diagrams for the DW model, as shown in Fig. 1 and summarized in Table 1.

— Stages: we distinguish five stages in the definition of a DW:

e Source, that defines the data sources of the DW, such as OLTP systems, external
data sources (syndicated data, census data), etc.

e Integration, that defines the mapping between the data sources and the DW.

e Data Warehouse, that defines the structure of the DW.

e Customization, that defines the mapping between the DW and the clients’ struc-
tures.

e Client, that defines special structures that are used by the clients to access the
DW, such as data marts (DM) or OLAP applications.

— Levels: each stage can be analyzed at three levels or perspectives:

e Conceptual: it defines the DW from a conceptual point of view.

e Logical: it addresses logical aspects of the DW design, such as the definition of
the ETL processes.

e Physical: it defines physical aspects of the DW, such as the storage of the logical
structures in different disks, or the configuration of the database servers that
support the DW.

— Diagrams: each stage or level require different modeling formalisms. Therefore, our
approach is composed of 15 diagrams, but the DW designer does not need to define
all the diagrams in each DW project: for example, if there is a straightforward map-
ping between the Source Conceptual Schema (SCS) and the Data Warehouse Conceptual
Schema (DWCS), the designer may not need to define the corresponding Data Map-
ping (DM). In our approach, we use the UML [2] as the modeling language, because
it provides enough expressiveness power to address all the diagrams. As the UML is a
general modeling language, we can use the UML extension mechanisms (stereotypes,
tag definitions, and constraints) to adapt the UML to specific domains. In Fig. 1, we
provide the following information for each diagram:

e Name (in bold face): the name we have coined for this diagram.

e UML diagram: the UML diagram we use to model this DW diagram. Currently,
we use class, deployment, and component diagrams.

e Profile (in italic face): the dashed boxes show the diagrams where we propose
a new profile; in the other boxes, we use a standard UML diagram or a profile
from other authors.

Table 1. Data warehouse design framework

The different diagrams of the same DW are not independent but overlapping;:
they depend on each other in many ways. For example, changes in one diagram
may imply changes in another, and a large portion of one diagram may be created
on the basis of another diagram. For example, the DM is created by importing
elements from the SCS and the DWCS.

In previous works, we have presented some of the diagrams and the corre-
sponding profiles shown in white dashed boxes in Fig. 1: Multidimensional Profile
[16,17] for the Client Conceptual Schema (CCS) and the ETL Profile [18] for the
ETL Process and the Exporting Process. In light gray dashed boxes, we show our

Source (S) I i Data Wareh (bw) Customization Client (C)

(OLTP, external data, ...) (OLAP, data mining, ...)
Conceptual scs T om pwcs i oM | ccs
Class diagram i Class diagram Class diagram { Classdiagram | Class diagram
Standard UML i Data Mapping Profile } Standard UML i Data Mapping Profile | Standard UML
""""""""""""""" - I Multidimensional Profile
Logical ss { ETL Process | pwLs { Exporting Process | cLs
gl Class diagram i Class diagram Class diagram i Classdiagram | Class diagram
Different data modeling i ETL Profile ! Different data modeling ETL Profile Different data modeling

profiles profiles profiles

e -"-— -

LEGEND: CS: Conceptual Schema, LS: Logical Schema, PS: Physical Schema, Comp. & deploy: Component and deployment

Fig. 1. Data warehouse design framework

last contribution (submitted to review process), the Data Mapping Profile for
the Data Mapping (DM) between the Source Conceptual Schema (SCS) and the
Data Warehouse Conceptual Schema (DWCS), and between the DWCS and the
CCS. Finally, in dark gray dashed boxes, we show the profile we are currently
working on, the Database Deployment Profile, for modeling a DW at a physical
level.

On the other hand, the Common Warehouse Metamodel (CWM) [19] is an
open industry standard of the Object Management Group (OMG) for integrat-
ing data warehousing and business analysis tools, based on the use of shared
metadata. This standard is based on three key industry standard: Meta Ob-
ject Facility (MOF), UML, and XML Metadata Interchange (XMI). We use the
CWM when we need to interchange any DW information among different appli-
cations.

3.2 Data Warehouse Engineering Process

Our method, called Data Warehouse Engineering Process (DWEP), is based on
the Unified Software Development Process, also known as Unified Process or
simply UP [3]. The UP is an industry standard Software Engineering Process
(SEP) from the authors of the UML. Whereas the UML defines a visual modeling
language, the UP specifies how to develop software using the UML.

The UP is a generic SEP that has to be instantiated for an organization,
project or domain. DWEP is our instantiation of the UP for the development
of DWs. Some characteristics of our DWEP inherited from UP are: use case
(requirement) driven, architecture centric, iterative and incremental.

According to the UP, the project lifecycle is divided into four phases (Incep-
tion, Elaboration, Construction, and Transition) and five core workflows (Re-
quirements, Analysis, Design, Implementation, and Test). We have added two
more workflows to the UP workflows: Maintenance and Post-development review.
During the developing of a project, the emphasis shifts over the iterations, from
requirements and analysis towards design, implementation, testing, and finally,

maintenance and post-development review, but different workflows can coexist
in the same iteration.

For each one of the workflows, we use different UML diagrams (techniques)
to model and document the development process, but a model can be modified
in different phases because models evolve over time. In the following sections,
we comment the main details of the workflows and highlight the diagrams we
use in each workflow.

3.3 Requirements

During this workflow, what the final users expect to do with the DW is captured:
the final users should specify the most interesting measures and aggregations, the
analysis dimensions, the queries used to generate periodical reports, the update
frequency of the data, etc. As proposed in [20], we model the requirements with
use cases. The rationale of use cases is that focusing “on what the users need
to do with the system is much more powerful that other traditional elicitation
approaches of asking users what they want the system to do” [20]. Once the
requirements have been defined, the DW project is established and the different
roles are designated.

The UML provides the use case diagram for visual modeling of uses cases.
Nevertheless, there is no UML standard for a use case specification. However,
we follow the common template defined in [21], which specifies for every use case
a name, a unique identifier, the actor involved in the use case, the system state
before the use can begin, the actual steps of the use case, and the system state
when the use case is over.

3.4 Analysis

The goal of this workflow is to refine and structure the requirements output
in the previous workflow. Moreover, the pre-existing operational systems that
will feed the DW are also documented: the different candidate data sources are
identified, the data content is revised, etc.

We use the Source Conceptual (Logical, Physical) Schema (SCS, SLC, and
SPS) (Fig. 1) to model the data sources at different levels of detail. To get
quality data in the DW, the different data sources must be well identified.

For example, in Fig. 2 we show the Source Logical Schema of a transactional
system that manages the sales of a company. This system will feed with data
the DW that will be defined in the following step of the design process.

3.5 Design

At the end of this workflow, the structure of the DW is defined. The main output
of this workflow is the conceptual model of the DW. Moreover, the source to
target data map is also developed at a conceptual level.

In this workflow, the main diagrams are the Data Warehouse Conceptual
Schema (DWCS), the Client Conceptual Schema (CCS), and the Data Mapping

Nl e i T il

1
Salesmen Cities ~ Counties States

1 1
0..n 0..n \.\
m .
1 0.n on 1 T
Groups Discount policies Invoices Customers Agents
0..n 1 0..n
0.n 0.n 1
1 0..n 1 0..n ﬁ)
Families ./ Products Lines Categories
’/ 0.n |0.n
/ 1

m'

Packages Storage conditions

Fig. 2. Source Logical Schema

(DM). The DM shows the relationships between the SCS and the DWCS and
between the DWCS and the CCS.

For the CCS, we have previously presented [16] an extension of the Unified
Modeling Language (UML) by means of a UML profile. This profile is defined by
a set of stereotypes and tagged values to elegantly represent main multidimen-
sional properties at the conceptual level. We make use of the Object Constraint
Language (OCL) to specify the constraints attached to the defined stereotypes,
thereby avoiding an arbitrary use of these stereotypes. The main advantage of
our proposal is that it is based on a well-known standard modeling language,
thereby designers can avoid learning a new specific notation or language for
multidimensional systems.

For example, in Fig. 3 we show level 1 of a Client Conceptual Schema, com-
posed of three schemas (Production schema, Sales schema, and Salesmen schema).
In Fig. 4 we show level 2 of the Sales schema from level 1, composed of one fact
(Sales fact) and four dimensions (Stores dimension, Times dimension, Products
dimension, and Customers dimension). Finally, in Fig. 5, the definition of the
Customers dimension with the different hierarchy levels is showed.

3.6 Implementation

During this workflow, the DW is built: the physical DW structures are built,
the DW is populated with data, the DW is tuned for an optimized running, etc.
Different implementation diagrams can be created to help this workflow.

The main diagrams in this workflow are the Data Warehouse Logical (Physical)
Schema, the Client Logical (Physical) Schema, the ETL Process, the Exportation

Process, and the Transportation Diagram. In the ETL Process, the cleansing and
quality control activities are modeled.

For example, in Fig. 6 we show part of a Client Physical Schema. In this
example, both the components and the nodes are stereotyped: the components
are adorned with the DATABASE and TABLESPACE stereotypes, and the nodes
with the SERVER and DISK stereotypes.

GG

Production schema Sales schema Salesmen schema

Fig. 3. Client Conceptual Schema (level 1)

(e (e

= =

Stores dimension ~ ~__ _—~ " Times dimension
E/E?D Sales fact E/EED

Products dimension Customers dimension

Fig. 4. Client Conceptual Schema (level 2)

0.n " yparent

Y z 1 1 P T States
_ +child
0..n
Customers dim Customers™
child 1 i
+child ~ +child on
+child +parent
ZIPs Cities

Fig. 5. Client Conceptual Schema (level 3)

3.7 Test

The goal of this workflow is to verify that the implementation works as desired.
No new diagrams are created, but previous diagrams (mainly design and imple-
mentation diagrams) may be modified according the corrective actions that are
taken.

<<Server>>
DWServer
{OS=Linux,SW=Oracle 9i,
CPU=PIV 3GHz,Mem=4GB}

<<Database>>
[DailySales

8 processors

Page size =2 GB
Buffer size =2 GB

 ——
<<Disk>> <<Disk>> <<Disk>>
Disk1 Disk2 Disk3
{Size=20GB,Stripe=64KB} {Size=20GB, Stripe=64KB} {Size=20GB,Stripe=64KB}
<<deploy>> Tl ,,«"‘—‘ <<deploy>> [T <<Tablespace>>
P Dimensions
— <<Tablespace>> —

Facts

]
T

Fig. 6. Client Physical Schema

3.8 Maintenance

Unlike most systems, the DW is never done. The goal of this workflow is to
define the refresh and loading processes needed for keeping the DW up to date.
This workflow starts when the DW is built and delivered to the final users, but
it does not have an end date (it lasts during the life of the DW).

During this workflow, the final users can state new requirements, such as
new queries, which triggers the beginning of a new iteration (UP is an iterative
process) with the Requirements workflow.

3.9 Post-development review

This is not a workflow of the development effort, but a review process for im-
proving future projects. We look back at the development of the DW, revise the
documentation created, and try to identify both opportunities for improvement
and major successes that should be taken into account. If we keep track of the
time and effort spent on each phase, this information can be useful in estimating
time and staff requirements for future projects.

3.10 Top-down or Bottom-up?

Nowadays, there are two basic strategies in the building of a DW: the top-down
and bottom-up approaches. The top-down approach recommends the construc-
tion of a DW first and then the construcion of DMs from the parent DW. The
bottom-up approach uses a series of incremental DMs that are finally integrated
to build the goal of the DW. However, in almost all projects, the DMs are built
rather independently without the construction of an integrated DW, which is
indeed viewed no more as a monolithic repository but rather as a collection of
DMs.

Our method also allows both approaches. In the top-down approach, the DW
is built first and the data sources are the transactional systems; then, each DM
is built independently by using our method, and the DW becomes the only data
source for all of them. In the bottom-up approach, the DMs are built first from
the transactional systems; then, the DW is built and the data sources are the
DMs.

4 Conclusions

In this paper, we have presented the Data Warehouse Engineering Process (DWEP),
a data warehouse (DW) development process based on the Unified Modeling Lan-
guage (UML) and the Unified Process (UP). UP is a generic and stable process
that we have instantiated to cover the development of data warehouses. Our
main contribution is the definition of several diagrams (techniques) and UML
profiles [16,17,18] in order to model DWs more properly. Whereas the different
diagrams provide different views or perspectives of a DW, the engineering pro-
cess specifies how to develop a DW and ties up all the diagrams together. The
main advantages of our approach are:

— The use of a development process, the UP, which is the outcome of more
than 20 years of experience.

— The use of the UML, a widely accepted visual modeling language, for de-
signing the different DW diagrams and the corresponding transformations.

— The use of the UML as the modeling language provides much better tool
support than using an own modeling language.

— The proposal of a DW development process that addresses both the back-end
and the front-end of DWs in an integrated manner.

Currently, we are working on the Database Deployment Profile, for modeling
a DW (and databases in general) at a physical level, we are concluding the
definition of the different workflows that the process comprises, and we also plan
to include new UML diagrams (sequence, collaboration, statechart, and activity
diagrams) to model dynamic properties of DWs. Moreover, we plan to carry out
an empirical evaluation of our proposal, in order to validate the correctness and
usefulness of our approach.

References

1. Inmon, W.: Building the Data Warehouse. QED Press/John Wiley (1992) (Last
edition: 3rd edition, John Wiley & Sons, 2002).

2. Object Management Group (OMG): Unified Modeling Language Specification 1.5.
Internet: http://www.omg.org/cgi-bin/doc?formal/03-03-01 (2003)

3. Jacobson, I., Booch, G., Rumbaugh, J.: The Unified Software Development Pro-
cess. Object Technology Series. Addison-Wesley (1999)

4. Golfarelli, M., Rizzi, S.: A Methodological Framework for Data Warehouse De-
sign. In: Proc. of the ACM 1st Intl. Workshop on Data Warehousing and OLAP
(DOLAP’98), Bethesda, USA (1998) 3-9

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Cabibbo, L., Torlone, R.: A Logical Approach to Multidimensional Databases.
In: Proc. of the 6th Intl. Conf. on Extending Database Technology (EDBT’98).
Volume 1377 of LNCS., Valencia, Spain (1998) 183-197

Tryfona, N., Busborg, F., Christiansen, J.: starER: A Conceptual Model for Data
Warehouse Design. In: Proc. of the ACM 2nd Intl. Workshop on Data Warehousing
and OLAP (DOLAP’99), Kansas City, USA (1999)

Husemann, B., Lechtenborger, J., Vossen, G.: Conceptual Data Warehouse Design.
In: Proc. of the 2nd Intl. Workshop on Design and Management of Data Warehouses
(DMDW’00), Stockholm, Sweden (2000) 3-9

Trujillo, J., Palomar, M., Gémez, J., Song, I.: Designing Data Warehouses with
OO Conceptual Models. ITEEE Computer, special issue on Data Warehouses 34
(2001) 66-75

Abello, A., Samos, J., Saltor, F.: A Framework for the Classification and De-
scription of Multidimensional Data Models. In: Proc. of the 12th Intl. Conf. on
Database and Expert Systems Applications (DEXA’01), Munich, Germany (2001)
668-677

Kimball, R.: The Data Warehouse Toolkit. John Wiley & Sons (1996) (Last
edition: 2nd edition, John Wiley & Sons, 2002).

Giovinazzo, W.: Object-Oriented Data Warehouse Design. Building a star schema.
Prentice-Hall, New Jersey, USA (2000)

Cavero, J., Piattini, M., Marcos, E.: MIDEA: A Multidimensional Data Warehouse
Methodology. In: Proc. of the 3rd Intl. Conf. on Enterprise Information Systems
(ICEIS’01), Setubal, Portugal (2001) 138-144

Moody, D., Kortink, M.: From Enterprise Models to Dimensional Models: A
Methodology for Data Warehouse and Data Mart Design. In: Proc. of the 3rd
Intl. Workshop on Design and Management of Data Warehouses (DMDW’01), In-
terlaken, Switzerland (2001) 1-10

Kimball, R., Reeves, L., Ross, M., Thornthwaite, W.: The data warehouse lifecycle
toolkit. John Wiley & Sons (1998)

Jarke, M., Lenzerini, M., Vassiliou, Y., Vassiliadis, P.: Fundamentals of Data
Warehouses. 2 edn. Springer-Verlag (2003)

Lujan-Mora, S., Trujillo, J., Song, I.: Extending UML for Multidimensional Mod-
eling. In: Proc. of the 5th Intl. Conf. on the Unified Modeling Language (UML’02).
Volume 2460 of LNCS., Dresden, Germany (2002) 290-304

Lujan-Mora, S., Trujillo, J., Song, I.: Multidimensional Modeling with UML Pack-
age Diagrams. In: Proc. of the 21st Intl. Conf. on Conceptual Modeling (ER’02).
Volume 2503 of LNCS., Tampere, Finland (2002) 199-213

Trujillo, J., Lujan-Mora, S.: A UML Based Approach for Modeling ETL Processes
in Data Warehouses. In: Proc. of the 22nd Intl. Conf. on Conceptual Modeling
(ER’03). Volume 2813 of LNCS., Chicago, USA (2003) 307-320

Object Management Group (OMG): Common Warehouse Metamodel (CWM)
Specification 1.0. Internet: http://www.omg.org/cgi-bin/doc?ad/2001-02-01
(2001)

Bruckner, R., List, B., Schiefer, J.: Developing Requirements for Data Warehouse
Systems with Use Cases. In: Proc. of the 7th Americas Conf. on Information
Systems (AMCIS’01), Boston, USA (2001) 329-335

Arlow, J., Neustadt, I.: UML and the Unified Process. Object Technology Series.
Addison-Wesley (2002)

