Physical Modeling of Data Warehouses using UML

Sergio Lujan-Mora

Juan Trujillo

Department of Software and Computing Systems Department of Software and Computing Systems

University of Alicante
Spain

slujan@disi.ua.es

ABSTRACT

During the few last years, several approaches have been pro-
posed to model different aspects of a Data Warehouse (DW),
such as the conceptual model of the DW, the design of the
ETL (Extraction, Transformation, Loading) processes, the
derivation of the DW models from the enterprise data mod-
els, etc. At the end, a DW has to be deployed to a database
environment and that takes many decisions of a physical
nature. However, few efforts have been dedicated to the
modeling of the physical design (i.e. the physical structures
that will host data together with their corresponding imple-
mentations) of a DW from the early stages of a DW project.
From our previously presented DW engineering process, in
this paper we present our proposal for the modeling of the
physical design of DWs by using the component diagrams
and deployment diagrams of the Unified Modeling Language
(UML). Our approach allows the designer to anticipate im-
portant physical design decisions that may reduce the overall
development time of a DW such as replicating dimension ta-
bles, vertical and horizontal partitioning of a fact table, the
use of particular servers for certain ETL processes and so
on. Moreover, our approach allows the designer to cover all
main design phases of DWs, from the conceptual modeling
phase until the final implementation, as we show with an
example in this paper.

Categories and Subject Descriptors

H.2.7 [Database Management|: Database Administra-
tion—Data warehouse and repository; D.2.0 [Software En-
gineering|: General—Standards

General Terms

Design, Documentation

Keywords

data warehouse, configuration, deployment, component, UML,

physical design

Permission to make digital or hard copies of all or part of this work for

University of Alicante
Spain

jtrujillo@dlsi.ua.es

1. INTRODUCTION

The design of a Data Warehouse (DW) has been tackled
mainly from the conceptual and logical point of view through
multidimensional (MD) data models [3, 1], but to the best of
our knowledge, there is not any standard method or model
that allows us to model all aspects of a DW. Moreover, as
most of the research efforts in designing and modeling DWs
have been focused on the development of MD data models,
the interest on the physical design of DWs has been very
poor. Nevertheless, the physical design of a DW is of a vital
importance and highly influences the overall performance of
the DW [15] and the ulterior maintenance.

In some organizations, the same employee may take on
both the role of DW designer and DW administrator, but
other organizations may have separate people working on
each task. Regardless of the situation, modeling the stor-
age of the data and how it will be deployed across different
components (servers, drives, etc.) helps implementing and
maintaining a DW. Due to the idiosyncrasy of DWs, we can
adopt several decisions regarding the physical design from
the early stages of a DW project (in which final users, an-
alysts, designers, and administrators participate). We be-
lieve that taking early these decisions will normally reduce
the total development time of the DW. It should be taken
into consideration that we are not saying to accomplish the
conceptual modeling of a DW taking into account physical
issues, instead we argue to model physical aspects and ulte-
rior implementations together with the conceptual modeling
of the DW from the early stages of a DW project.

In previous works [9, 10], we have proposed a DW devel-
opment method, based on the Unified Modeling Language
(UML) [16] and the Unified Process (UP) [5], to properly
design all aspects of a DW. Until now, we have dealt with
the modeling of different aspects of a DW by using the UML
[16]: MD modeling [20, 11, 12|, modeling of the ETL pro-
cesses [19], modeling data mappings between data sources
and targets [13], etc. Following these works, we present in
this paper a proposal to accomplish the physical design of
DWs from early stages of a DW project. To accomplish this,
we propose the use of the component diagrams and deploy-
ment diagrams of UML. Both component and deployment
diagrams must be defined at the same time by DW design-
ers and DW administrators who will be in charge of the

personal or classroom use is granted without fee provided that copies arejterior implementation and maintenance. This is mainly

not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.
DOLAP’04,November 12—-13, 2004, Washington, DC, USA.
Copyright 2004 ACM 1-58113-977-2/04/0011 ...$5.00.

due to the fact that, while the former know how to design
and build a DW, the latter have a better knowledge in the
corresponding implementation and the real hardware and
software needs for the correct functioning of the DW.

The modeling of the physical design of a DW from the
early stages of a DW project with our proposal provides us
many advantages:

e We deal with important aspects of the implementation
before we start with the implementation process, and
therefore, we can reduce the total development time
of the DW. This is mainly due to the fact that, after
the conceptual modeling has been accomplished, we
can have enough information to take some decisions re-
garding the implementation of the DW structures such
as replicating dimension tables or making the vertical
and horizontal partitioning of a fact table.

e We have a rapid feedback if we have a problem with the
DW implementation as we can easily track a problem
to find out its main reasons.

e It facilitates the communication between all people in-
volved in the design of a DW since all of them use
the same notation (based on UML) for modeling dif-
ferent aspects of a DW. Moreover, making sure that
the crucial concepts mean the same to all groups and
are not used in different ways is critical. In this way,
our approach helps achieve a coherent and consistent
documentation during the DW developing life cycle.

e It helps us choose both hardware and software on which
we intend to implement the DW. This also allows us
to compare and evaluate different configurations based
on user requirements.

o It allows us to verify that all different parts of the
DW (fact and dimension tables, ETL processes, OLAP
tools, etc.) perfectly fit together.

The rest of the paper is organized as follows. In Section
2, we briefly comment other works that have dealt with the
physical design and/or deployment of a DW. In Section 3,
we briefly introduce our overall method to design all as-
pects of a DW. In Section 4, we present main issues that
can be specified by using both component and deployment
diagrams of UML. In Section 5, we describe our proposal
for using both component and deployment diagrams for the
physical design of DWs. Finally, in Section 6, we present
our conclusions and main future works.

2. RELATED WORK

So far, both the research community and companies have
devoted few effort to the physical design of DWs from the
early stages of a DW project, and incorporate it within a
global method that allows us to design all main aspects of
DWs.

In [8], authors study the lifecycle of a DW and propose
a method for the design, development and deployment of a
DW. In this book, we can find a chapter devoted to the plan-
ning of the deployment of a DW and authors recommend us
documenting all different deployment strategies. However,
authors do not provide a standard technique for the formal
modeling of the deployment of a DW.

In [17], authors deal with the design of a DW from the con-
ceptual modeling up to its implementation. They propose
the use of non-standard diagrams to represent the physical
architecture of a DW: on one hand, to represent data inte-
gration processes and, on the other hand, to represent the

49

relationship between the enterprise data warehouse and the
different data marts that are populated from it. Neverthe-
less, these diagrams represent the architecture of the DW
from a high level, without providing different levels of detail
of the ulterior implementation of the DW.

In [4], several aspects of a DW implementation are dis-
cussed. Although in this book, other aspects of a DW im-
plementation such as the paralelism, the partitioning of data
in a RAID (Redundant Array of Inexpensive Disk) system or
the use of a distributed database are tackled, authors do not
provide a formal or standard technique to model all these
aspects.

Finally, in [18], we find that one of the current open prob-
lems regarding DWs is the lack of a formal documentation
that covers all design phases and provides multiple levels of
abstraction (low level for designers and people devoted to
the corresponding implementation, and high level for final
users). The author argues that this documentation is abso-
lutely basic for the maintenance and the ulterior extension
of the DW. In this work, three different detail levels for DWs
are proposed: data warehouse level, data mart level and fact
level. At the first level, the use of the deployment diagrams
of UML are proposed to document a DW architecture from
a high level of detail. However, these diagrams are not in-
tegrated at all with the rest of techniques, models and/or
methods used in the design of other aspects of the DW.

On the other hand, the use of UML for the design of
databases has been studied in [14]. This book is structured
around the database design process, therefore, it contains a
chapter devoted to the database deployment. In this book
it is stated that, from the database designers point of view,
in a real database development project, “the biggest benefit
in using the UML is the ability to model the tablespaces and
quickly understand what tablespaces exist and how tables are
partitioned across those tablespaces”.

Therefore, we argue that there is a still a need for provid-
ing a standard technique that allows us to model the physical
design of a DW from early stages of a DW project. Another
important issue for us is that this proposal is totally inte-
grated in an overall approach that allows us to cover other
aspects of the DW design such the conceptual or logical de-
sign of the DW or the modeling of ETL processes.

3. DATA WAREHOUSE DESIGN FRAME-
WORK

The architecture of a DW is usually depicted as various
layers of data in which data from one layer is derived from
data of the previous layer [6]. In a previous work [10], we
have presented a DW development method, based on UML
[16] and the UP [5], which addresses the design and devel-
opment of both the DW back-stage and front-end. In our
approach, we consider that the development of a DW can
be structured into an integrated framework with five stages
and three levels that define different diagrams for the DW
model, as shown in Figure 1 and summarized next:

e Stages: we distinguish five stages in the definition of
a DW:

— Source, that defines the data sources of the DW,
such as OLTP systems, external data sources (syn-
dicated data, census data), etc.

Source (S) Integration Data Warehouse (DW) Customization Client (C)
(OLTP, external data, ...) (OLAP, data mining, ...}
Conceptua' SCs DM bpwcs DM CCs
Class diagram Class diagram Class diagram Class diagram Class diagram
Standard UML Data Mapping Profile | Standard UML Data Mapping Profile Standard UML
""""""""""""""" ' Multidimensional Profile Multidimensional Profile
Logical SLS ETL Process DWLS Exporting Process CLS
g Class diagram Class diagram Class diagram Class diagram Class diagram
Different data modeling ETL Profile Different data modeling ETL Profile Different data modeling
profiles profiles profiles
Physi cal SPS Transportation Diagram DWPS Transportation Diagram CPS

Comp. & deploy. diagrams
Database Deployment Profile

Deployment diagram
Database Deployment Profile

Comp. & deploy. diagrams
Database Deployment Profile

Deployment diagram
Database Deployment Profile

Comp. & deploy. diagrams
Database Deployment Profile

LEGEND: CS: Conceptual Schema, LS: Logical Schema, PS: Physical Schema, Comp. & deploy: Component and deployment

Figure 1: Data warehouse design framework

— Integration, that defines the mapping between the
data sources and the DW.

— Data Warehouse, that defines the structure of the
DW.

— Customization, that defines the mapping between
the DW and the clients’ structures.

— Client, that defines special structures that are used

by the clients to access the DW, such as data
marts (DM) or OLAP applications.

e Levels: each stage can be analyzed at three different
levels or perspectives:

— Conceptual: it defines the DW from a conceptual
point of view.

— Logical: it addresses logical aspects of the DW de-
sign, such as the definition of the ETL processes.

— Physical: it defines physical aspects of the DW,
such as the storage of the logical structures in dif-
ferent disks, or the configuration of the database
servers that support the DW.

e Diagrams: each stage or level requires different mod-
eling formalisms. Therefore, our approach is composed
of 15 diagrams, but the DW designer does not need to
define all the diagrams in each DW project: for ex-
ample, if there is a straightforward mapping between
the Source Conceptual Schema (SCS) and the Data
Warehouse Conceptual Schema (DWCS), the designer
may not need to define the corresponding Data Map-
ping (DM). In our approach, we use UML [16] as the
modeling language, because it provides enough expres-
siveness power to address all the diagrams. As UML
is a general modeling language, we can use UML ex-
tension mechanisms (stereotypes, tag definitions, and
constraints) to adapt UML to specific domains. A
stereotype is a UML modeling element that extends
the UML metamodel in a controlled way, i.e., a stereo-
type is a specialized version of a standard UML el-
ement; a tag definition allows additional information
about a standard UML element to be specified; and a
constraint is a rule that limits the behavior of a UML

50

element. In Figure 1, we provide the following infor-
mation for each diagram:

— Name (in bold face): the name we have coined
for this diagram.

— UML diagram: the UML diagram we use to model
this DW diagram. Currently, we use class, de-
ployment, and component diagrams.

— Profile (in italic face): the dashed boxes show the
diagrams where we propose a new profile'; in the
other boxes, we use a standard UML diagram or
a profile from other authors.

The different diagrams of the same DW are not indepen-
dent but overlapping: they depend on each other in many
ways. For example, changes in one diagram may imply
changes in another, and a large portion of one diagram may
be created on the basis of another diagram. For example, the
Data Mapping (DM) is created by importing elements from
the Source Conceptual Schema (SCS) and the Data Ware-
house Conceptual Schema (DWCS). Moreover, our approach
is flexible in the sense that the DW designer do not need
to define all the diagrams one by one, but he can use what
he needs when he needs it and continue moving forward as
necessary.

In previous works, we have presented some of the diagrams
and the corresponding profiles shown in white dashed boxes
in Figure 1: Multidimensional Profile [11, 12| for the DWCS
and the Client Conceptual Schema (CCS), the ETL Profile
[19] for the ETL Process and the Exporting Process, and the
Data Mapping Profile [13] for the DM between the SCS and
the DWCS, and between the DWCS and the CCS. Finally, in
light gray dashed boxes, we show the profile we present in
this paper, the Database Deployment Profile, for modeling
a DW at a physical level.

In Figure 2, we show a symbolic diagram that will help
understanding our approach and the relationships between
the different diagrams (DWCS, DWLS, and DWPS):

e On the left hand side of this figure we have represented
the DWCS, which is structured into three levels: Level

LA profile is an extension to the UML that uses stereotypes,
tagged values, and constraints to extend the UML for spe-
cialized purposes.

Data Warehouse Conceptual Schema

Table

Star
Level 1 % schema
ﬁi «— Dimension package
Fact package
/
Level 2
Dimension

class

Level 3

Hierarchy level
class

Data Warehouse Logical Schema

Data Warehouse Physical Schema

Database

Component
diagram

Table
v
== Degloyment
/ —4/= diagram
Server 4
Database

Figure 2: From the conceptual to the physical level

1 or Model definition, Level 2 or Star schema defini-
tion, and Level 3 or Dimension/fact definition. The
different elements drawn in this diagram are stereo-
typed packages and classes® that represent MD con-
cepts.

e From the DWCS, we develop® the logical model (DWLS,
represented in the middle of Figure 2) according to dif-
ferent options, such as ROLAP* (Relational OLAP) or
MOLAP?® (Multidimensional OLAP). In this example,
we have chosen a ROLAP representation and each el-
ement corresponds to a table in the relational model.

e Finally, from the DWLS we derive the DWPS, which
is represented on the right hand side of Figure 2. The
DWPS shows the physical aspects of the implementa-
tion of the DW. This diagram is divided up into two
parts: the component diagram, which shows the con-
figuration of the logical structures used to store the
DW, and the deployment diagram, which specifies dif-
ferent aspects relative to the hardware and software
configuration.

Moreover, in Figure 2, we show how our approach allows
the designer to trace the design of an element from the con-
ceptual to the physical level. For example, in this figure, we
have drawn a cloud around different elements that represent
the same entity in different diagrams.

2An icon, a new graphical representation, can be associated
to a stereotype in UML.

3The transformation process from the DWCS to the DWLS
is outside the scope of this paper.

“ROLAP is a storage model that uses tables in a relational
database to store multidimensional data.

SMOLAP is a storage mode that uses a proprietary multi-
dimensional structure to store multidimensional data.

51

4. UMLCOMPONENTAND DEPLOYMENT
DIAGRAMS

According to the UML Specification [16], “ Implementation
diagrams show aspects of physical implementation, including
the structure of components and the run-time deployment
system. They come in two forms: 1) component diagrams
show the structure of components, including the classifiers
that specify them and the artifacts that implement them; and
2) deployment diagrams show the structure of the nodes on
which the components are deployed”.

4.1 Component diagram

The UML Specifion says that “A component represents
a modular, deployable, and replaceable part of a system that
encapsulates implementation and exposes a set of interfaces”.
Components represent physical issues such as Enterprise
JavaBeans, ActiveX components or configuration files. A
component is typically specified by one or more classifiers
(classes, interfaces, etc.) that reside on the component. A
subset of these classifiers explicitly define the component’s
external interfaces. Moreover, a component can also contain
other components. However, a component does not have its
own features (attributes, operations, etc.).

On the other hand, a component diagram is a graph of
components connected by dependency relationships, which
shows how classifiers are assigned to components and how
the components depend on each other. In a component di-
agram (see Figure 3), a component is represented using a
rectangular box, with two rectangles protruding from the
left side.

In Figure 3, we show the two different representations of
a component and the classifiers it contains:

e On the left hand side of the figure, the class (Sales) that

<<Tablespace>>
Facts

1]
L[]

<<reside>>

— <<Tablespace>>
_____________ >

Facts
1

<<Table>>
Sales

<<Table>> !
Sales !

[0

Figure 3: Different component representations in a
component diagram

resides on the component (Facts) is shown as nested
inside the component (this indicates residence and not
ownership).

e On the right hand side of the figure, the class is con-
nected to the component by a <reside>> dependency.

In this example, both the component and the class are

stereotyped: the component is adorned with the < Tablespace>>

stereotype and the class with the < Table>> stereotype; these
stereotypes are defined in [14].

4.2 Deployment diagram

According to the UML Specification, “Deployment dia-
grams show the configuration of run-time processing elements
and the software components, processes, and objects that ex-
ecute on them”. A deployment diagram is a graph of nodes
connected by communication associations. A deployment
model is a collection of one or more deployment diagrams
with their associated documentation.

In a deployment diagram, a node represents a piece of
hardware (a computer, a device, etc.) or a software artifact
(web server, database, etc.) in the system, and it is repre-
sented by a three-dimensional cube. A node may contain
components, which indicates that the components run or
execute on the node.

An association of nodes, which is drawn as a solid line be-
tween two nodes, indicates a line of communication between
the nodes; the association may have a stereotype to indi-
cate the nature of the communication path (e.g. the kind of
channel, communication protocol or network).

There are two forms of deployment diagram:

e The descriptor form: it contains types of nodes and
components. This form is used as a first-cut deploy-
ment diagram during the design of a system, when
there is not a complete decision about the final hard-
ware architecture.

e The instance form: it contains specific and identifiable
nodes and components. This form is used to show
the actual deployment of a system at a particular site,
therefore it is normally used in the last steps of the
implementation activity, when the details of the de-
ployment site are known.

A deployment diagram is normally used to [2]:

e Explore the issues involved with installing your system
into production.

e Explore the dependencies that your system has with
other systems that are currently in, or planned for,
your production environment.

52

<<Computer>>
DWServer
{OS=Linux,SW=O0Oracle 9i,
CPU=PIV 3GHz,Mem=1GB}

<<Computer>>
DWServer
{OS=Linux,SW=0racle 9i,
CPU=PIV 3GHz,Mem=1GB}

1
'
I — <<Database>> H
DailySales <<deploy>> i
I v
 —— <<Database>>
DailySales

Figure 4: Different node representations in a de-

ployment diagram

e Depict a major deployment configuration of a business
application.

e Design the hardware and software configuration of an
embedded system.

e Depict the hardware/network infrastructure of an or-
ganization.

UML deployment diagrams normally make an extensive
use of visual stereotypes, because it makes easy to read the
diagrams at a glance. Unfortunately, there are no standard
palettes of visual stereotypes for UML deployment diagrams.

As it is suggested in [2], each node in a deployment dia-
gram may have tens if not hundreds of software components
deployed to it: the goal is not to depict all of them, but it
is merely to depict those components that are vital to the
understanding of the system.

In Figure 4, we show the two different representations of
a node and the components it contains:

e On the left hand side of the figure, the component
(DailySales) that is deployed on the node (DWServer)
is shown as nested inside the node.

e On the right hand side of the figure, the component is
connected to the node by a <deploy>> dependency.

In this example, both the node and the component are
stereotyped: the node with the <Computer>> stereotype
and the component with the <Database>> stereotype. More-
over, the node DWServer contains a set of tagged values (OS,
SW, CPU, and Mem) that allow the designer to describe the
particular characteristics of the node.

A deployment diagram can be specified at different levels
of detail. For example, in Figure 5, we show two versions
of the same deployment diagram. At the top of Figure 5,
the software deployed in the nodes is specified by means
of tagged values. Moreover, the association between the
nodes is only adorned with the <HTTP>> stereotype (Hy-
perText Transfer Protocol), although different protocols can
be used in the communication. At the bottom of Figure 5,
the software deployed in the nodes is depicted as compo-
nents and different stereotyped dependencies (< TCP/IP>
and <HTTP>>) indicate how one component uses the ser-
vices of another component. However, there are more dis-
play possibilities: for example, the designer can omit the
tagged values in the diagram and capture them only in the
supported documentation.

<<Client>> <<Server>>
WinClient HTTP WinServer
{OS=Windows XP, << >> {OS=Windows 2000,
SWx=lInternet Explorer} SW=IIS}
<<Qliept>> <<Ethernet>> <<$erver>>
WinClient WinServer
11 Windows XP <<TCP/IP>> Windows 2000
—
[Internet Explorer <<HTTP>> é: s
—T —1

Figure 5: Different levels of detail in a deployment
diagram

5. DATAWAREHOUSE PHYSICAL DESIGN

In Section 3, we have briefly described our design method
for DWs. Within this method, we use the component and
deployment diagrams to model the physical level of DWs.
To achieve this goal, we propose the following five diagrams,
which correspond with the five stages presented in Section 3:

e Source Physical Schema (SPS): it defines the physical
configuration of the data sources that populate the
DW.

e Integration Transportation Diagram (ITD): it defines the
physical structure of the ETL processes that extract,
transform and load data into the DW. This diagram
relates the SPS and the next diagram.

e Data Warehouse Physical Schema (DWPS): it defines
the physical structure of the DW itself.

e Customization Transportation Diagram (CTD): it defines
the physical structure of the exportation processes from
the DW to the specific structures employed by clients.
This diagram relates the DWPS and the next diagram.

e Client Physical Schema (CPS): it defines the physical
configuration of the structures employed by clients in
accessing the DW.

The SPS, DWPS, and CPS are based on the UML com-
ponent and deployment diagrams, whereas ITD and CTD
are only based on the deployment diagrams. These dia-
grams reflect the modeling aspects of the storage of data
[14], such as the database size, information about where the
database will reside (hardware and software), partitioning of
the data, properties specific to the DBMS (Database Man-
agement System) chosen, etc.

The five proposed diagrams use an extension of UML that
we have called Database Deployment Profile, which is formed
by a series of stereotypes, tagged values and constraints.
Due to the lack of space, we do not include the formal defi-
nition of this extension in this paper.

Throughout the rest of this paper, we are going to use
an example to introduce the different diagrams we propose.
In this example, final users need a DW that contains the
daily sales of a company that do business with automobiles
(cars and trucks). There exist two data sources: the sales

53

o

Auto-sales schema

Data Warehouse Conceptual Schema

<y

Dealership dimension

Figure 6:
(Level 1)

Customer dimension .

‘ ~7

- " Auto dimension

- “Auto-sales fact -

Salesperson dimension

A

3

Time dimension

Figure 7:
(Level 2)

Data Warehouse Conceptual Schema

server, which contains the data about transactions and sales,
and the CRM (Customer Relationship Management) server,
which contains the data about the customers who buy prod-
ucts.

Following our approach [12], we structure the conceptual
model into three levels:

Level 1 : Model definition. A package represents a star
schema of a conceptual MD model. A dependency
between two packages at this level indicates that the
star schemas share at least one dimension, allowing us
to consider conformed dimensions.

Level 2 : Star schema definition. A package represents a
fact or a dimension of a star schema. A dependency
between two dimension packages at this level indicates
that the packages share at least one level of a dimen-
sion hierarchy.

Level 3 : Dimension/fact definition. A package is exploded
into a set of classes that represent the hierarchy lev-
els defined in a dimension package, or the whole star
schema in the case of the fact package.

In Figure 6, we show the first level of the DWCS, which
represents the conceptual model of the DW. In our example,
the first level is formed by a single package called Auto-sales
schema.

In Figure 7, we show the second level of the DWCS. The
fact package Auto-sales fact is represented in the middle of
the figure, while the dimension packages are placed around
the fact package. As seen in Figure 7, a dependency is drawn
from the fact package AUTO-SALES FACT to each one of the
dimension packages, because the fact package comprises the

< ¥
> 7 M > 7
5 5

1 Dealership 1
Auto (from Dealership dimension) Time
(from Auto dimension) 1 (from Time dimension)
0. 0.7
{Quantity Is Not SUM Along Salesperson}
By g 0. 0. 1 £
Salesperson Auto-sales Customer

(from Salesperson dimension) + Commission (from Customer dimension)

+ Quatity

+ Price

/+ Total
+ ContractN
SP commission

<<DWLS>>
ROLAP

ﬁ . Dealership
Salesperson . !
+FullName - 0.* ‘ 0.”

+ Name
+ Surname ﬁ
+ Borndate Auto-sales
+ PosName

+ IdAuto : Integer

+ IdCustomer : Integer

+ IdDealership : Integer
+ IdSalesperson : Integer

+ PosDescription
+ GroupName
+ GroupDescription

+ Commission
SP personal data
(from Salesperson dimension)
/+ FullName
4+, +Name
+ Surname
+Borndate | +d

<<Rolls-upTo>>' 1.*
1.\ <<Rolls-upTo>>

Customer personal data
(from Customer dimension)
/+ FullName
+Name | 1.+
+Surname "\ 4d
+ BornDate
<<Rolls-upTo>>
<<Rolls-upTo>>

+ 1

g

Customer

+ IdTime : Integer
+ Commission : Gurrency

|+ SP_Commission : Currency
0. |+ Quantity : Integer

+ Price : Currency
/+ Total : Currency

Figure 9: Logical model (ROLAP) of the data ware-

. 4
/1 1 " *S<ROHS upTo»”
[B]7 [B]
- Grouy City Region
Position P (from Customer dimension) (from Customer dimension)
(from Salesperson dimension) (from Salesperson dimension) f
+ Name +d/ +Name
+Name +Name + Population M, 1.
+ Description + Description 1. -
<<Rolls-upTos> \ 4 1/ <<Rolls-upTo>>
! +
State
(om Customer dimension)
+ Name

Figure 8: Data Warehouse Conceptual Schema

(Level 3)

whole definition of the star schema, and therefore, uses the
definitions of dimensions related to the fact.

In Figure 8, we show the level 3 of the DWCS. In order to
avoid a cluttered diagram, we only show the attributes of the
fact class (Auto-sales) and two dimension classes (Salesperson
and Customer).

In Figure 9, we show the Data Warehouse Logical Schema
(DWLS), which represents the logical model of the DW. In
this example, a ROLAP system has been selected for the
implementation of the DW, which means the use of the rela-
tional model in the logical design of the DW. In Figure 9, six
classes adorned with the stereotype < Table>> are showed:
Auto, Customer, Dealership, Salesperson, and Time are rep-
resented by means of the icon of the stereotype, whereas
the table Auto-sales appears with the icon of the stereotype
inside the typical representation of a class in UML.

In order to avoid a cluttered diagram, we only display the
attributes of Auto-sales and Salesperson. In the Auto-sales
table, the attributes IdAuto, IdCustomer, IdDealership, Id-
Salesperson, and IdTime are the foreign keys that connect the
fact table with the dimension tables, whereas the attributes
Commission, SP_ Commission, Quantity, Price, and Total (de-
rived attribute that is precalculated for performance rea-
sons) represent the measures of the fact table. In the Sales-
person table, we can notice that this table contains all the
attributes of the different dimension levels (see Figure 8) fol-
lowing the star schema approach [7]; some attributes have
changed their names in order to avoid repeated names. More-
over, some design decisions have been taken: the degenerate
dimension represented by the ContractN attribute in Auto-
sales fact class (see Figure 8) has been omitted, and the

house
<<Server>> <<Server>>
SalesServer CRMServer
{0S=Windows, SW=MS SQL Server, {0S=Windows, SW=Oracle 9i,
CPU=PIV 2GHz,Mem=1GB} CPU=PIV 2GHz,Mem=512MB}
[<<Database>> [<<Database>>
Sales Customers
<<In|eMnalBus>> <<InternalBus>>
<<Disk>> <<Disk>> <<Disk>>

Disk1 Disk2 Disk1
{Size=30GB, Stripe=32KB} {Size=30GB, Stripe=32KB} {Size=20GB, Stripe=64KB}

<<Tablespace>> <<Tablespace>> <<Tablespace>>
—— TS_Sales98 o — TS_Sales = TS_Customers

)

Year(Sale.Date) <= 1998 I ‘ Year(Sale.Date) > 1998

Figure 10: Source Physical Schema: deployment di-
agram

degenerate fact represented by the SP commission class is
represented by the SP_Commission attribute in the Auto-
sales table.®

5.1 Source Physical Schema

The SPS describes the origins of data of the DW from a
physical point of view. In Figure 10, we show the SPS of our
example, which is formed by two servers called SalesServer
and CRMServer; for each one of them, the hardware and
software configuration is displayed by means of tagged val-
ues. The first server hosts a database called Sales, whereas
the second server hosts a database called Customers.

In our Database Deployment Profile, when the storage
system is a RDBMS (Relational Database Management Sys-
tem), we make use of the UML for Profile Database [14] that
defines a series of stereotypes like < Database>, <Schema>>,
or < Tablespace>>. Moreover, we have defined our own set
of stereotypes: in Figure 10, we can see the stereotypes
< Server>> that defines a computer that performs server

5Due to the lack of space, it is out of the scope of this paper
to provide further detail on how we transform our conceptual
diagram into a star schema.

<<Database>>
AutoSales

LT Say

——| <<Tablespace>> —— <<Tablespace>>
Facts Dimensions
]]
I gt L i N -
<<reside>> :' <<reside>>_ .-~ <<residex> <<reside:>> <<reside»z veside>>
£ yod Y BRI
<<Table>> <<Table>> <<Table>> <<Table>> <<Table>> <<Table>>
Auto-sales Auto Customer D P Time
(from ROLAP) (from ROLAP) | | (from ROLAP) | (from ROLAP) || (from ROLAP) || (from ROLAP)

Figure 11: Data Warehouse Physical Schema: com-
ponent diagram

functions, < Disk>> to represent a physical disk drive and
< InternalBus>> to define the type of communication be-
tween two elements. In our approach, we represent the con-
figuration parameters of the tablespaces (e.g., size of the
tablespace) by means of tagged values; however, these pa-
rameters vary greatly depending on the DBMS, so we only
provide a set of common parameters. As UML is extensible,
the designer can add additional tagged values as needed to
accomplish all the modeling needs of a particular DBMS.

Moreover, whenever we need to specify additional infor-
mation in a diagram, we make use of the UML notes to incor-
porate it. For example, in Figure 10 we have used two notes
to indicate how the data is distributed into the two exist-
ing tablespaces: the tablespace TS Sales98 holds the data
about the sales before or in 1998, whereas the tablespace
TS _Sales holds the sales after 1998.

5.2 Data Warehouse Physical Schema

The DWPS shows the physical aspects of the implementa-
tion of the DW. This diagram is divided up into two parts:
the component diagram and the deployment diagram. In
the first diagram, the configuration of the logical structures
used to store the DW is shown. For example, in Figure 11,
we can observe that the DW is implemented by means of
a database called AutoSales, which is formed by two ta-
blespaces called Facts and Dimensions: the first tablespace
hosts the table Auto-sales and the second tablespace hosts
the tables Auto, Customer, Dealership, Salesperson, and Time.
Below the name of each table, the text (from ROLAP) is in-
cluded, which indicates that the tables have been previously
defined in a package called ROLAP (Figure 9). It is impor-
tant to highlight that the logical structured defined in the
DWLS are reused in this diagram and, therefore, we avoid
any possibility of ambiguity or incoherence.

In the second diagram, the deployment diagram, different
aspects relative to the hardware and software configuration
are specified. Moreover, the physical distribution of the logi-
cal structures previously defined in the component diagrams
is also represented. For example, in Figure 12, we can ob-
serve the configuration of the server that hosts the DW.

One of the advantages of our proposal is that it allows
to evaluate and to discuss different implementations during
the first stages in the design of a DW. In this way, the de-
signer can anticipate some implementation or performance
problems. For example, an alternative configuration of the
physical structure of the DW can be established, as we show

55

<<Server>>
DWServer
{OS=Linux,SW=0Oracle 9i,
CPU=PIV 3GHz,Mem=4GB}

 —— <<Database>>
AutoSales
 —

<<InternalBus>> <<InternalBus>>

<<Disk>> <<Disk>>
Disk1 Disk2
{Size=20GB,Stripe=64KB} {Size=20GB,Stripe=64KB}

8 processors

Page size =2 GB
Buffer size = 2 GB

 —— <<Tablespace>>

 —— <<Tablespace>>
Dimensions
I —

Facts

Figure 12: Data Warehouse Physical Schema: de-
ployment diagram (version 1)

<<Server>>
DWServer

{OS=Linux,SW=Oracle 9i,
CPU=PIV 3GHz,Mem=4GB}

[<<Database>>
AutoSales
 ——

8 processors

Page size = 2 GB
Buffer size =2 GB

RAID O System |

1 <<InternalBus>> <InternalBus>> <<InternalBus>>
i

<<Disk>> <<Disk>> <<Disk>>
Disk1 Disk2

Disk3
{Size=20GB,Stripe=64KB} {Size=20GB, Stripe=64KB} {Size=20GB, Stripe=64KB}

deplo =" <<deplo
<<deploy>> e <<qepioy>> Dimensions
T <<Tablespace>>
]

[<<Tablespace>>
1

Facts

Figure 13: Data Warehouse Physical Schema: de-
ployment diagram (version 2)

in Figure 13. In this second alternative, a RAID 0 systems
has been chosen to host the tablespace Facts in order to
improve the response time of the disk drive and the perfor-
mance of the system in general. From these two alternative
configurations, the DW designer and the DW administrator
can discuss the pros and cons of each option.

5.3 Integration Transportation Diagram

The ITD defines the physical structure of the ETL pro-
cesses used in the loading of data in the DW from the data
sources. On the one hand, the data sources are represented
by means of the SPS and, on the other hand, the DW is
represented by means of the DWPS. Since the SPS and the
DWPS have been defined previously, in this diagram we do
not have to define them again, but they are imported.

For example, the ITD for our running example is shown
in Figure 14. On the left hand side of this diagram, dif-
ferent data source servers are represented: SalesServer and
CRMServer, which have been previously defined in Figure 10;
on the right hand side, the DWServer, previously defined in
Figure 12, is shown. In this figure, the ETLServer is intro-
duced, an additional server that is used to execute the ETL
processes. This server communicates with the rest of the
servers by means of a series of specific protocols: OLEDB
to communicate with SalesServer because it uses Microsoft

<<Server>>
SalesServer
{OS=Windows,SW=MS SQL Server,
CPU=PIV 2GHz,Mem=1GB}

<<Database>>
- Sales
T

<<Serverr>>
ETLServer
{OS=Windows,
SW=Informatica PowerCenter}

<<Server>>

CRMServer
{OS=Windows,SW=0racle 9i,
CPU=PIV 2GHz,Mem=512MB}

<<Database>>
= Customers
T

<<OCl>>

<<Serverr>>
DWServer
{OS=Linux,SW=Oracle 9i,
CPU=PIV 3GHz,Mem=4GB}

-
 ——

<<Database>>
AutoSales

Figure 14: Integration Transportation Diagram: de-
ployment diagram

SQLServer” and OCI (Oracle Call Interface) to communi-
cate with CRMServer and DWServer because both of them
use Oracle.

5.4 Client Physical Schema

The CPS defines the physical structure of the specific
structures that are used by the clients to access the DW.
Diverse configurations exist that can be used: exportation
of data to data marts, use of an OLAP server, etc. In our
example, we have chosen a client/server architecture and
the same DW server provides access to data for the clients.
Therefore, we do not need to define a specific structure for
the clients.

5.5 Customization Transportation Diagram

The CTD defines the exportation processes from the DW
towards the specific structures used by the clients. In this
diagram, the DW is represented by means of the DWPS and
clients are represented by means of the CPS. Since the DWPS
and the CPS have been previously defined, in this diagram
we do not have to define them again, but they are directly
imported.

For example, in Figure 15, the CTD of our running exam-
ple is shown. On the left hand side of this diagram, part of
the DWPS, which has been previously defined in Figure 12,
is shown; on the right hand side, three types of clients who
will use the DW are shown: a Web client with operating
system Apple Macintosh, a Web client with operating sys-
tem Microsoft Windows and, finally, a client with a specific
desktop application (MicroStrategy) with operating system
Microsoft Windows. Whereas both Web clients communi-
cate with the server by means of HT'TP, the desktop client
uses ODBC (they Open Connectivity Database).

6. CONCLUSIONS AND FUTURE WORK
After about 15 years of research and development in Data
Warehouses (DW), few efforts have been dedicated to the
modeling of the physical design of a DW from the early
stages of a project. In this paper, we have presented an

"The configuration of a server is defined by means of tagged
values: OS, SW, CPU, etc.

56

<<Client>>
MacWebClient
{0S=MacOS,SW=Safari,

<<HTTP>> CPU=PowerPC G4 800MHz,Mem=256MB}

<<Server>>
DWServer
{OS=Linux,SW=0Oracle 9i,
CPU=PIV 3GHz,Mem=4GB}

 —— <<Database>>
AutoSales
 ——

<<Client>>
WinWebClient
{OS=Windows,SW=Internet Explorer,
CPU=PIII 1,25GHz,Mem=256MB}

<<HTTP>>

<<Client>>
WinDesktopClient
{OS=Windows,SW=MicroStrategy,
CPU=PIV 2GHz,Mem=512MB}

<<ODBC>>'

Figure 15: Customization Transportation Diagram:
deployment diagram

adaptation of the component and deployment diagrams of
the Unified Modeling Language (UML), the standard graph-
ical notation for modeling software application needs, for the
modeling of the physical design of a DW. This proposal is
part of our DW engineering process [10] that tackles the
design and development of both the DW back-stage and
front-end. Our method provides a unifying framework that
facilitates the integration of different DW models. For ex-
ample, the DW designers work with the DW administrators
to understand the storage needed for the data. Thanks to
our approach, they can coordinate their efforts to include
the hardware configuration (servers and drives necessary for
the data) as well as the best way to organize the data into
the database logical structures (tablespaces and tables).

Thanks to the use of the component and deployment dia-
grams, a DW designer can specify both hardware, software,
and middelware needs for a DW project. The main advan-
tages provided by our approach are as follows:

e It is part of an integrated approach in which we use
different diagrams -always following the same standard
notation based on UML, for modeling all main aspects
of a DW.

e Traceability of the design of a DW, from the concep-
tual model up to the physical model.

e Reducing the overall development cost as we accom-
plish implementation issues from the early stages of a
DW project. We should take into account that modi-
fying these aspects in ulterior design phases may result
in increasing the total cost of the project.

e Different levels of abstraction by providing different
levels of details for the same diagram.

Moreover, since our approach is based on UML, there
are different CASE (Computer-Aided Software Engineering)
tools that can support our entire approach and having the
entire design in one language (UML) breaks down the bar-
riers of communication between the different participants in
a DW project.

Regarding future works, we are working on the formal def-
inition of our proposal by means of Object Constraint Lan-
guage (OCL). Moreover, we plan to provide guidelines on
developing a DW by means of our DW engineering process.
These guidelines will include validation checks to ensure that
nothing is missed when going from one step to the next.

7.

ACKNOWLEDGMENTS

We would like to thank Panos Vassiliadis for his helpful
comments during the writing of the first version of this pa-

per.

This work has been partially supported by the HIDRA
project (TIC2001-3530-C02-02) from the Spanish Ministry
of Education and Science.

8.
(1]

2]

[3

(4]
(5]

(6]

(7]

18]

9]

[10]

[11]

[12]

REFERENCES

A. Abello, J. Samos, and F. Saltor. A Framework for
the Classification and Description of Multidimensional
Data Models. In Proceedings of the 12th International
Conference on Database and Expert Systems
Applications (DEXA’01), volume 2113 of Lecture
Notes in Computer Science, pages 668—677, Munich,
Germany, September 2001. Springer-Verlag.

S. Ambler. A UML Profile for Data Modeling.
Internet: http://www.agiledata.org/essays/-
umlDataModelingProfile.html,

2002.

M. Blaschka, C. Sapia, G. H6fling, and B. Dinter.
Finding your way through multidimensional data
models. In Proceedings of the 9th International
Conference on Database and Expert Systems
Applications (DEXA’98), volume 1460 of Lecture
Notes in Computer Science, pages 198—203, Vienna,
Austria, August 1998. Springer-Verlag.

W. Giovinazzo. Object-Oriented Data Warehouse
Design. Building a star schema. Prentice-Hall, 2000.
I. Jacobson, G. Booch, and J. Rumbaugh. The Unified
Software Development Process. Object Technology
Series. Addison-Wesley, 1999.

M. Jarke, M. Lenzerini, Y. Vassiliou, and

P. Vassiliadis. Fundamentals of Data Warehouses.
Springer-Verlag, 2 edition, 2003.

R. Kimball. The Data Warehouse Toolkit. John Wiley
& Sons, 1996. (Last edition: 2nd edition, John Wiley
& Sons, 2002).

R. Kimball, L. Reeves, M. Ross, and

W. Thornthwaite. The Data Warehouse Lifecycle
Toolkit. John Wiley & Sons, 1998.

S. Lujan-Mora and J. Trujillo. A Comprehensive
Method for Data Warehouse Design. In Proceedings of
the 5th International Workshop on Design and
Management of Data Warehouses (DMDW’03), pages
1.1-1.14, Berlin, Germany, September 2003.

S. Lujan-Mora and J. Trujillo. A Data Warehouse
Engineering Process. In Proceedings of the 3rd
Biennial International Conference on Advances in
Information Systems (ADVIS’04), Lecture Notes in
Computer Science, Izmir, Turkey, October 2004.
Springer-Verlag.

S. Lujan-Mora, J. Trujillo, and I. Song. Extending
UML for Multidimensional Modeling. In Proceedings
of the 5th International Conference on the Unified
Modeling Language (UML’02), volume 2460 of Lecture
Notes in Computer Science, pages 290-304, Dresden,
Germany, September 2002. Springer-Verlag.

S. Lujan-Mora, J. Trujillo, and I. Song.
Multidimensional Modeling with UML Package
Diagrams. In Proceedings of the 21st International
Conference on Conceptual Modeling (ER’02), volume

57

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

2503 of Lecture Notes in Computer Science, pages
199-213, Tampere, Finland, October 2002.
Springer-Verlag.

S. Lujan-Mora, P. Vassiliadis, and J. Trujillo. Data
Mapping Diagrams for Data Warehouse Design with
UML. In Proceedings of the 23rd International
Conference on Conceptual Modeling (ER’04), Lecture
Notes in Computer Science, Shanghai, China,
November 2004. Springer-Verlag.

E. Naiburg and R. Maksimchuk. UML for Database
Design. Object Technology Series. Addison-Wesley,
2001.

M. Nicola and H. Rizvi. Storage Layout and I/O
Performance in Data Warehouses. In Proceedings of
the 5th International Workshop on Design and
Management of Data Warehouses (DMDW’03), pages
7.1-7.9, Berlin, Germany, September 2003.

Object Management Group (OMG). Unified Modeling
Language Specification 1.5. Internet:
http://www.omg.org/cgi-bin/doc?formal /03-03-01,
March 2003.

V. Poe, P. Klauer, and S. Brobst. Building a Data
Warehouse for Decision Support. Prentice-Hall, 2
edition, 1998.

S. Rizzi. Open problems in data warehousing: eight
years later. In Proceedings of the 5th International
Workshop on Design and Management of Data
Warehouses (DMDW’03), Berlin, Germany,
September 2003.

J. Trujillo and S. Lujan-Mora. A UML Based
Approach for Modeling ETL Processes in Data
Warehouses. In Proceedings of the 22nd International
Conference on Conceptual Modeling (ER’03), volume
2813 of Lecture Notes in Computer Science, pages
307-320, Chicago, USA, October 2003.
Springer-Verlag.

J. Truyjillo, M. Palomar, J. Gémez, and 1. Song.
Designing Data Warehouses with OO Conceptual
Models. IEEE Computer, special issue on Data
Warehouses, 34(12):66-75, December 2001.

