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Abstract: A data warehouse is a repository of data formed of a collection of data extracted from different and possible  

heterogeneous sources (e.g., databases or files). One of the main problems in integrating databases into a 

common repository is the possible inconsistency of the values stored in them, i.e., the very same term may 

have different values, due to misspelling, a permuted word order, spelling variants and so on. In this paper, 

we present an automatic method for reducing inconsistency found in existing databases, and thus, 

improving data quality. All the values that refer to a same term are clustered by measuring their degree of 

similarity. The clustered values can be assigned to a common value that, in principle, could substitute the 

original values.  Thus, the values are uniformed. The method we propose provides good results with a 

considerably low error rate. 

1. INTRODUCTION 

Data warehouses (DW) are used for the decision 
support process, which manages huge volumes of 
data. A DW is a repository of integrated data from 
distributed, autonomous, and possibly heterogeneous 
sources (Inmon, 1992). 

Data cleaning (cleansing) is the process of 
removing errors and resolving inconsistencies in 
source data before loading them into a common 
repository. The aim of data cleaning, which is 
especially required when integrating heterogeneous 
data sources, is improving data quality (Rahm, 
2000). 

DW are populated by the data flowing from 
source systems such as operational files and 
transactional databases. In DW, data cleaning is a 
major part of the so-called ETL (Extraction, 
Transformation and Loading) process (Chaudhuri, 
1997). 

Furthermore, data quality is one of the 
fundamentals of success in the DW environment. 
The discovery of incorrect data weakens the end 

users' confidence in the data even if the unit of data 
that is incorrect is minimum. 

Thus, if the information contained in database 
instances is inconsistent (i.e., if a given term appears 
with different values because several denominations 
exist, or because it is misspelled), it will produce 
incorrect or misleading results. The erroneous results 
could lead us to wrong business decisions. 

The problem of the inconsistency found in the 
values stored in databases may have three principal 
causes: 

1. If the number of possible values that a single 
field can accept is not controlled, a given person, (or 
different persons), may insert the same term with 
different values. For instance, a database that stores 
the names of the departments of a university may 
have several different forms (e.g., the use of upper-
case letters or abbreviations): “Departamento de 
Lenguajes y Sistemas Informáticos”, “Depto. de 
Lenguajes y Sistemas Informáticos”, “Dpt. de 
lenguajes y sistemas informáticos”, etc. 

2. When we try to integrate different databases 
into a common repository (e.g., in a DW), one or 
more of them may suffer from the above-mentioned 
problem. The consistency of their contents has been 
guaranteed separately. However, the criteria used for 
establishing the consistency of each one might well 
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be different and integrating them all could cause 
inconsistency problems. For example, we wish to 
integrate three different databases that store 
bibliographical information. The authors might well 
appear in different forms in each one: i.e., full 
names, “Miguel de Cervantes Saavedra”, or by last 
names first and then the first name, “Cervantes 
Saavedra, Miguel de”, or by first name and last name 
only, “Miguel de Cervantes”. 

3. Another problem is the multilinguality. In a 
multilingual society (e.g., European Community) it is 
common to find official names written in different 
languages. For instance, we consult a database that 
stores information about university researchers, (e.g., 
researcher’s name, researcher’s university, etc.), and 
we wish to obtain a list of all of the researchers who 
work at the University of Alicante. We may easily 
find that there are different values for this university: 
“Universidad de Alicante” (in Spanish), “Universitat 
d'Alacant” (in Catalan), “University of Alicante” or 
“Alicante University” (in English), and “Université 
d'Alicante” (in French). 

The remainder of the paper is structured as 
follows: Section 2 outlines the origin of the problem 
and the possible causes that give rise to the different 
variants that appear for the same term; Section 3 
introduces our method for reducing inconsistency 
found in existing databases: identifying similar 
values concerning the same real world entity; 
Section 4 explains the core of our study and details 
the technical aspects of our method; Section 5 
provides an evaluation of the method; and finally, 
our conclusions are presented in Section 6. 

2. ANALYSIS OF THE PROBLEM 

After analysing several databases with 
information both in Spanish and in English, we have 
noticed that the different values that appear for a 
given term are due to a combination of the following 
eight causes: 

1. The omission or inclusion of the written 
accent: “Asociación Astronómica” or “Asociacion 
Astronomica”. 

2. The use of upper-case and lower-case letters: 
“Departamento de Lenguajes y Sistemas 
Informáticos” or “Departamento de lenguajes y 
sistemas informáticos”. 

3. The use of abbreviations and acronyms: 
“Dpto. de Derecho Civil” or “Departamento de 
Derecho Civil”. 

4. Word order: “Miguel de Cervantes Saavedra” 
or “Cervantes Saavedra, Miguel de”. 

5. Different denominations: “Unidad de Registro 
Sismológico” or “Unidad de Registro Sísmico”. 

6. Punctuation marks (e.g., hyphens, commas, 
semicolons, brackets, exclamation marks, etc.): 
“Laboratorio Multimedia (mmlab)” or “Laboratorio 
Multimedia – mmlab”. 

7. Errors: Misspelling (apart from the written 
accent), typing or printing errors (absence of a 
character, interchange of adjacent characters, etc.): 
“Gabinete de imagen” or “Gavinete de imagen”. 

8. Use of different languages: “Universidad de 
Alicante” (Spanish) or “Universitat d’Alacant” 
(Catalan). 

There has been great interest in studying the 
quality of the information stored in databases for a 
long time ((Motro, 1998), (O’Neill, 1988), (O’Neill, 
1989)), and diverse methods have been developed 
for the reduction of the inconsistency found in 
databases ((Hernández, 1998), (Monge, 1997)). 

3. INTUITIVE PROPOSAL OF A 

METHOD TO REDUCE THE 

INCONSISTENCY FOUND IN 

DATABASES 

The method we propose in this paper improves 
our previous works (Luján-Mora, 2000b) that were 
developed from French’s automatic creation of 
authority files for bibliographical catalogues 
((French, 1997a), (French, 1997b)). We have added 
new distances, developed different evaluation 
measures and employed a different clustering 
algorithm. These improvements result in a better 
performance of the method. 

Our algorithm resolves all the problems detailed 
in Section 2, except the fifth and the eighth, which 
depend on how different the two strings that 
represent the same term are. The method that we 
propose can be divided into six steps: 

1. Preparation. It may be necessary to prepare the 
strings before applying the clustering algorithm. 

2. Reading. The following process is repeated for 
each of the strings contained in the input file: 

Read a string 
Expand abbreviations and acronyms

1
 

Remove accents: e.g., A substitutes Á and À, and 
a substitutes á and à 

Shift string to lower-case 
Store the string: If it has been stored previously, 

its frequency of appearance is increased by one unit 
3. Sorting. The strings are sorted, in descending 

order, by frequency of appearance. 

                                                 
1
 It is in general impossible to expand all the 

abbreviations: often names are represented by 
initials, sometimes by only some of the initials, etc. 



 

4. Clustering. The most frequent string is chosen 
and it is compared to the rest of the strings, using a 
measure of similarity. This process is repeated, 
successively, until all the strings have been clustered. 

5. Checking. The resulting clusters are verified 
and the possible errors are located and corrected.  

6. Updating. The original database is updated. 
The strings of a cluster are replaced by its centroid. 

4. TECHNICAL DESCRIPTION OF 

THE METHOD 

In this section, technical aspects of our method 
are described. We start by introducing a previous 
processing for obtaining better results in Section 4.1. 
Section 4.2 describes how the similarity between two 
strings is considered. Section 4.3 presents the 
algorithm itself and finally, Section 4.4 explains the 
last step of the method, i.e., checking that the 
obtained clusters are correct. 

4.1 Previous Processing 

The strings undergo a previous processing to 
obtain better results from the clustering. The 
objective of this processing is to avoid the three first 
causes of the appearance of different forms for the 
same term (see Section 2.1.): i.e., accents, lower-
case/upper-case and abbreviations. The accents are 
eliminated, the string is converted to lower-case and 
the abbreviations are expanded. 

4.2 String Similarity 

The similarity between any two strings must be 
evaluated. There are several similarity measures; in 
our research, we employ five measures: Levenshtein 
distance (LD), invariant distance from word position 
(IDWP), a modified version of the previous distance 
(MIDWP), Jaccard’s coefficient (JC), and the 
minimum of the four previous measures (CSM). 

The edit distance or Levenshtein distance (LD)  
(Levenshtein, 1966) has been traditionally used in 
approximate-string searching and spelling-error 
detection and correction. The LD of strings x and y 
is defined as the minimal number of simple editing 
operations that are required to transform x into y. 
The simple editing operations considered are: the 
insertion of a character, the deletion of a character, 
and the substitution of one character with another. In 
our method, we have taken a unitary cost function 
for all the operations and for all of the characters. 
The LD of two strings m and n in length, 

respectively, can be calculated by a dynamic 
programming algorithm (Hirschberg, 1997). The 
algorithm requires (mn) time and space. 

If two strings contain the same words (variant 
forms of the same term) but with a permuted word 
order, the LD will not permit their clustering. To 
solve this problem, we introduce another distance 
that we call the invariant distance from word position 
(IDWP) (Luján-Mora, 2000a). It is based on the 
approximate word matching referred to in (French, 
1997b). To calculate the IDWP of two strings, they 
are broken up into words (we consider a word to be 
any succession of digits and letters of the Spanish 
alphabet). The idea is to pair off the words so that 
the sum of the LD is minimised. If the strings contain 
different numbers of words, the cost of each word in 
excess is the length of the word. 

We also use a modified IDWP (MIDWP). We 
add a new matching condition: if two strings fulfil 
Equation 1, we assume they match perfectly (in that 
case, we consider their LD is zero). 
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The last similarity measure we have employed is 
the Jaccard’s coefficient (JC) (Rijsbergen, 1979), the 
ratio of the matching words in x and y to all the 
words in x and y: 
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where X is the set of words of the string x and Y 
the set of words of y. 

In order to compare the above-mentioned 
measures, we need the JC subtracted from one (1 – 
JC). Besides, the LD, IDWP, and MIDWP are 
divided by the length of the longest string. Thus, all 
the measures obtain a similarity value from 0 (x and 
y are the same string) to 1 (x and y are totally 
different). 

Finally, we also combine the four previous 
similarity measures (combined similarity measure, 
CSM): we choose the minimum of the four similarity 
measures for every pair of strings. 

4.3 Algorithm 

The goal of clustering is to find similarity 
between strings and cluster them together based on a 
threshold of similarity between the strings. 

In previous works ((French, 1997a), (French, 
1997b), (Luján-Mora, 2000b)), the clustering 
algorithm employed is basically the leader algorithm 
(Hartigan, 1975). This algorithm is chosen as 
opposed to more elaborate algorithms (e.g. k-means 



 

algorithm, Fisher algorithm) because they are slower 
and the number of clusters is unknown. The leader 
algorithm is very fast, requiring only one pass 
through the data, but it has several negative 
properties: the partition is not invariant under 
reordering of the cases, the first clusters are always 
larger than the later ones and the final number of 
clusters depends on the threshold values. This is due 
to the very algorithm: the comparison between a new 
string and the existing clusters is made only until a 
cluster that meets the condition is found, without 
considering the possibility that a better value of the 
criteria is met later, for another cluster.  

The clustering algorithm we propose in Table 1 
resolves the previous problem: it uses a centroid 
method and the comparison for every string is made 
with all the existing clusters for the time being.  

The algorithm chooses the strings, from greater 
to smaller frequency of appearance, since it assumes 
that the most frequent strings have a greater 
probability of being correct, and thus, they are taken 
as being representative of the rest. As seen in Table 
1, it depends on one parameter  (threshold). The 
algorithm makes one pass through the strings, 
assigning each string to the cluster whose centroid is 
closer and close enough (distance between the string 
and the centroid lower than ) and making a new 
cluster for cases that are not close enough to any 
existing centroid. The distance D is calculated using 
one of the similarity measures explained in Section 
4.2. 

 

Table 1. Clustering algorithm 

Input: 

S: Sorted strings in descending order by frequency 

(s1…sm) 

: Threshold 

Output: 

C: Set of clusters (c1…cn) 

Variables: 

b, d, i, j, k, l 

 

STEP 1. Begin with string si (i = 1). Let the 

number of clusters be k = 1, classify si into the first 

cluster ck. 

STEP 2. Increase i by 1. If i > m, stop. 

STEP 3. Begin working with the cluster cj (j = 1). 

Calculate the distance between the string si and the 

centroid of cluster cj: d = D(si, cj). Let the best 

cluster be cb (b = 1). 

STEP 4. Increase j by 1. If j > k, then go to Step 7. 

STEP 5. If D(si, cj) < d, then let the lower distance 

be d = D(si, cj) and the best cluster be b = j. 

STEP 6. Return to Step 4. 

STEP 7. If d < , assign string si to cluster cb; 

recalculate the centroid of cluster cb and return to 

Step 2. 

STEP 8. Increase k by 1. Create a new cluster ck 

and classify si into the new cluster. Return to Step 

2. 

 
The centroid of a cluster must be recalculated 

every time a new string is assigned to the cluster. 
The centroid is chosen to minimise the sum-of-
squares criterion: 
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where n is the number of strings assigned to the 
cluster and C is the centroid of the cluster. 

4.4 Revision and Updating 

The final step of the method consists of checking 
the obtained clusters and detecting possible errors to 
correct them. In the original database, the strings of a 
cluster are replaced by its centroid (it represents its 
cluster). Therefore, all variants of a term are put 
together under a single form. Thus, in searches, data 
calculations and decision processes, final users will 
be confident that they have located all values relating 
to the required term. 

5. EXPERIMENTAL RESULTS 

AND EVALUATION 

We have used three files for evaluating our 
method. They contain data from three different 
databases with inconsistency problems: files A and B 
contain information in Spanish, while file C in 
English. 

The method has been implemented in C and 
C++, running in Linux. 

5.1 File Descriptions 

Table 2 gives a description of these three files. 
The optimal number of clusters (ONC) indicates the 
number of handcrafted clusters. The three last 
columns contain the number of single strings (not 
duplicated) with and without the expansion of 
abbreviations, and the rate of reduction (on 
expanding the abbreviations, the number of single 
strings is reduced, since duplicates are removed). We 
have done all the tests with (W) and without (WO) 
expansion of abbreviations. 

 



 

Table 2. File descriptions 
File Size 

(Bytes) 

ONC Strings 

WO 

Strings 

W 

Reduction 

(%) 

 

A 

B 

C 

10,399 

1,717,706 

108,608 

92 

92 

57 

234 

1,212 

119 

145 

1,117 

118 

38.0 

7.8 

0.8 

 
We have developed a coefficient (consistency 

index) that permits the evaluation of the complexity 
of a cluster: the greater the value of the coefficient is, 
the more different the strings that form the cluster 
are. A null value indicates that the cluster contains 
only one string. The consistency index (CI) of a 
cluster of n strings is defined as: 
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The file consistency index (FCI) of a file that 
contains m clusters is defined as the average of the 
consistency indexes of all the existing clusters in the 
file: 

m

CI

FCI

m
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The FCI of the files A, B and C are shown in 
Table 3. As the FCI is an average, the table also 
shows the standard deviation. It is obvious that the 
clusters of file B are more complex than those of file 
A and C. In all cases, however, the FCI is reduced 
when expanding the abbreviations, since the 
discrepancies between the strings of a given cluster 
tend to diminish. With respect to file C, the 
reduction of FCI when the abbreviations are 
expanded is minimum, because the reduction of 
strings is not appreciable: only 0.8% versus 38.0% 
(file A) and 7.8% (file B), as it is shown in Table 2. 

 

Table 3. File consistency indexes 
File FCI 

WO 

Standard 

deviation 

FCI 

W 

Standard 

deviation 

A 

B 

C 

0.311 

1.726 

0.337 

0.298 

1.267 

1.181 

0.127 

1.113 

0.319 

0.269 

1.142 

1.136 

5.2 Evaluation Measures 

We have evaluated the quality of the produced 
clusters when our method is applied by using four 
measures that are obtained by comparing the clusters 
produced by our method with the optimal clusters: 

1. NC: number of clusters. Clusters that have 
been generated. 

2. NCC: number of completely correct clusters. 
Clusters that coincide with the optimal ones: they 
contain the same strings. From this measure, we 
obtain Precision: NCC divided by ONC. 

3. NIC: number of incorrect clusters. Clusters 
that contain an erroneous string. From this measure, 
we obtain the Error: NIC divided by ONC. 

4. NES: number of erroneous strings. Strings 
incorrectly clustered. 
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Figure 1. NC and NCC vs. Threshold. File A with 

and without expansion of abbreviations (CSM) 
 
NC and NCC versus Threshold for File A with 

(W) and without (WO) expansion of abbreviations, 
using the CSM, are plotted in Figure 1. The 
expansion of abbreviations diminishes NC and 
increases NCC. 

5.3 Evaluation and Discussion 

As we have already mentioned, the clustering 
algorithm depends on one parameter (). We have 
done all the tests on setting its value from 0.0 to 
0.599, in 0.001 steps.  

We compare the performance of the five 
similarity measures. The result of the experiments 
using files A and C are shown in Tables 4, 5, 6 and 
7. The tables show the highest precision rate and the 
corresponding error obtained in each file when the 
LD, IDWP, MIDWP and JC are used. The 
corresponding threshold () also appears. 

Note that the expansion of abbreviations 
improves the precision and diminishes the error. 
Moreover, the best precision, with a lower error, is 
obtained at a lower threshold. 

 



 

Table 4. LD 
File  Precision 

(%) 

Error 

(%) 

A WO 0.311 76.0 8.6 

W [0.146, 0.151] 83.6 0 

C WO [0.159, 0.199] 84.2 1.7 

W [0.100, 0.127] 84.2 0 

 

Table 5. IDWP 
File  Precision 

(%) 

Error 

(%) 

A WO [0.334, 0.344] 81.5 10.8 

W [0.160, 0.166] 84.7 0 

C WO [0.143, 0.227] 82.4 1.7 

W [0.072, 0.119] 82.4 0 

 
As you can see in Table 6, File A obtains the 

higher precision (89.1%) when the MIDWP with the 
expansion of abbreviations is employed. However, 
as seen in Table 7, File C obtains it (89.4%) when 
the JC without the expansion of abbreviations is 
used. 

 

Table 6. MIDWP 
File  Precision 

(%) 

Error 

(%) 

A WO [0.276, 0.277] 80.4 9.7 

W [0.153, 0.166] 89.1 0 

C WO [0.143, 0.227] 82.4 1.7 

W [0.072, 0.119] 82.4 0 

 

Table 7. JC 
File  Precision 

(%) 

Error 

(%) 

A WO [0.400, 0.416] 72.8 6.5 

W [0.286, 0.299] 85.8 0 

C WO [0.471, 0.499] 89.4 1.7 

W [0.471, 0.499] 87.7 1.7 

 
Table 8 shows highest precision and the 

corresponding error obtained for files A, B, and C 
when the CSM is employed. Files A and C have 
better precision than file B because their clusters are 
less complex: files A and C have a FCI around 0.3, 
whereas file B has a FCI of 1.7 (WO) and 1.1 (W). 

 

Table 8. CSM 
File  Precision 

(%) 

Error 

(%) 

A WO [0.236, 0.249] 81.5 8.6 

W [0.147, 0.151] 89.1 0 

B WO [0.270, 0.288] 71.7 9.7 

W [0.174, 0.176] 77.1 2.1 

C WO [0.143, 0.199] 84.2 1.7 

W [0.097, 0.119] 84.2 0 

 
In Table 9, we show the precision and error 

obtained in our previous works (Luján-Mora, 

2000b). The test files A, B and C are the same of this 
paper. If this table is compared to Table 8, you can 
see the new method achieves better results: the 
precision increases and the error keeps very similar 
values or even diminish. 

 

Table 9. Precision and Error in previous works 
File Precision (%) Error (%) 

A WO 70.7 7.6 

W 84.8 0 

B WO 67.4 8.7 

W 72.8 6.5 

C WO 85.9 1.7 

W 84.2 1.7 

 
We compare the effect of the expansion of 

abbreviations in Figure 2. It shows Precision versus 
Threshold for File A with (W) and without (WO) 
expansion of abbreviations using the CSM. It is seen 
that the expansion of abbreviations produces the 
maximum precision (90%) at a threshold of 0.15. 
From a threshold of 0.25, the expansion of 
abbreviations does not influence the precision as 
observed in the figure. 
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Figure 2. Precision vs. Threshold. File A with and 

without expansion of abbreviations (CSM) 
 
Figure 3 shows Precision versus Threshold for 

File C without expansion of abbreviations using 
different similarity measures. The JC obtains the 
maximum value (90%). All the measures, except the 
JC, have a similar behaviour: they start at the same 
level (75%), rise until 85% and then plunge until 
20%. However, the JC remains steady over 75% for 
all the threshold values. 
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Finally, from Figure 4 it can be again seen that 

the expansion of abbreviations influences the 
precision at a low threshold, but from a threshold of 
0.25, the influence is imperceptible (the behaviour is 
very similar to Figure 2). Also, note that there is not 
error when the threshold is lower than 0.15. 
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Figure 4. Precision and Error vs. Threshold. File 

B with and without expansion of abbreviations 

(CSM) 

6. CONCLUSIONS AND WORK 

IN PROGRESS 

In a DW, data is gathered from a variety of 
different sources. Removing errors and 
inconsistencies from data being imported into a DW 
is critical, because incorrect data will have a 
negative impact on the effective use of this data. 

This paper has discussed techniques for 
improving data quality by clustering different values 
that refer to the same term and replacing them with a 
unique form. Therefore, we have presented an 
automatic method for reducing on the inconsistency 
found in existing databases. The method we have 
proposed achieves successful results with a 
considerably low error rate, although it does no 
eliminate the need to review the clusters obtained. 

The expansion of abbreviations improves on the 
results in most cases, but we have detected some 
cases in which it actually makes the results worse. In 
addition, we have seen that the combined use of four 
similarity measures (Levenshtein distance, invariant 
distance from word position, modified IDWP, and 
Jaccard’s coefficient) normally obtains the best 
performance. 

The final number of clusters strongly depends on 
the threshold value fixed by the user. A very small 
threshold (conservative) will produce a large number 
of small clusters, meanwhile a very large 
(aggressive) one will produce a small number of 
large clusters. Based on the data obtained in our 
research, we propose the use of a threshold between 
0.1 and 0.25. 

We are currently developing a graphical user 
interface to allow the user to control the data 
cleaning activity through parameters and a 
spreadsheet-like interface. As the proposed method 
is time-consuming, we are also considering to 
evaluate the impact of removing stop words 
(conjunctions, prepositions, articles and so on: words 
that contain little meaning) both in precision and 
time. 

ACKNOWLEDGMENTS 

We would like to thank Juan Carlos Trujillo for 
helpful comments and support in the final version of 
the paper. 

REFERENCES 

Chaudhuri, S., and Dayal, U., 1997, “An Overview of 

Data Warehousing and OLAP Technology”, ACM 

Sigmod Record, 26(1), pages 65-74. 

French, J.C., et al, 1997a, “Automating the Construction 

of Authority Files in Digital Libraries: A Case Study”. 

In Peters, C., and Thanos, C., editors, Proceedings of 

the First European Conference on Research and 

Advanced Technology for Digital Libraries (ECDL 

1997), September, Pisa (Italy), pages 55-71. 



 

French, J.C, Powell, A.L., and Schulman, E., 1997b, 

“Applications of Approximate Word Matching in 

Information Retrieval”. In Golshani, F., Makki, K., 

editors, Proceedings of the Sixth International 

Conference on Information and Knowledge 

Management (CIKM 1997), November, Las Vegas 

(USA),  pages 9-15. 

Hartigan, J.A., 1975, Clustering Algorithms, New York 

(USA): John Wiley & Sons. 

Hernández, M.A., and Stolfo, S.J., 1998, “Real-world data 

is dirty: Data cleansing and the merge/purge problem”, 

Journal of Data Mining and Knowledge Discovery, 

2(1), pages 9-37. 

Hirschberg, D.S., 1997, “Serial Computations of 

Levenshtein Distances”. In Apostolico, A., and Galil, 

Z., editors, Pattern Matching Algorithms, Oxford 

University Press. 

Inmon, W.H., 1990, Building the Data Warehouse, New 

York (USA): John Wiley & Sons. 

Levenshtein, V.I., 1966, “Binary codes capable of 

correcting deletions, insertions, and reversals”, 

Cybernetics and Control Theory, 10, pages 707-710. 

Luján-Mora, S., 2000a, “An Algorithm for Computing the 

Invariant Distance from Word Position”, [Internet], 

June. Available from: <http://www.dlsi.ua.es/~slujan/ 

files/idwp.ps>. 

Luján-Mora, S., and Palomar, M., 2000b, “Clustering of 

Similar Values, in Spanish, for the Improvement of 

Search Systems”. In Monard, M.C., and Sichman, J.S., 

editors, IBERAMIA-SBIA 2000 Open Discussion 

Track Proceedings, November, Sao Paulo (Brazil), 

pages 217-226. 

Monge, A.E., and Elkan, C.P., 1997, “An efficient 

domain-independent algorithm for detecting 

approximately duplicate database records”. In 

SIGMOD Workshop on Research Issues on Data 

Mining and Knowledge Discovery (DMKD’97), pages 

23-29. 

Motro, A., and Rakov, I., 1998, “Estimating the Quality of 

Databases”. In Andreasen, T., Chistiansen, H., and 

Larsen, H.L., editors, Proceedings of FQAS 98: Third 

International Conference on Flexible Query 

Answering Systems, Lecture Notes in Artificial 

Intelligence, vol. 1495, Springer-Verlag. 

O’Neill, E.T., and Vizine-Goetz, D., 1988, “Quality 

Control in Online Databases”, Annual Review of 

Information Science and Technology, 23, pages 125-

156. 

O'Neill, E.T., and Vizine-Goetz, D., 1989, “The Impact of 

Spelling Errors on Databases and Indexes”. In 

National Online Meeting Proceedings, May, New 

York (USA), pages 313-320. 

Rahm, E., and Do, H., 2000, Data Cleaning: Problems and 

Current Approaches, IEEE Bulletin of the Technical 

Committee on Data Engineering, 23(14). 

Rijsbergen, C.J. van, 1979, Information Retrieval, London 

(UK): Butterworhs. 


