
REDUCING INCONSISTENCY IN DATA WAREHOUSES

Sergio Luján-Mora
Departamento de Lenguajes y Sistemas Informáticos, Universidad de Alicante,

Campus de San Vicente del Raspeig, Ap. Correos 99 – E-03080, Alicante, Spain

Email: slujan@dlsi.ua.es, medin.el@ceu.es

Enrique Montenegro
Departamento de Informática, Universidad Cardenal Herrera – CEU, Spain

Email: medin.el@ceu.es

Key words: Data cleaning, Data integration, Data warehouses

Abstract: A data warehouse is a repository of data formed of a collection of data extracted from different and possible

heterogeneous sources (e.g., databases or files). One of the main problems in integrating databases into a

common repository is the possible inconsistency of the values stored in them, i.e., the very same term may

have different values, due to misspelling, a permuted word order, spelling variants and so on. In this paper,

we present an automatic method for reducing inconsistency found in existing databases, and thus,

improving data quality. All the values that refer to a same term are clustered by measuring their degree of

similarity. The clustered values can be assigned to a common value that, in principle, could substitute the

original values. Thus, the values are uniformed. The method we propose provides good results with a

considerably low error rate.

1. INTRODUCTION

Data warehouses (DW) are used for the decision
support process, which manages huge volumes of
data. A DW is a repository of integrated data from
distributed, autonomous, and possibly heterogeneous
sources (Inmon, 1992).

Data cleaning (cleansing) is the process of
removing errors and resolving inconsistencies in
source data before loading them into a common
repository. The aim of data cleaning, which is
especially required when integrating heterogeneous
data sources, is improving data quality (Rahm,
2000).

DW are populated by the data flowing from
source systems such as operational files and
transactional databases. In DW, data cleaning is a
major part of the so-called ETL (Extraction,
Transformation and Loading) process (Chaudhuri,
1997).

Furthermore, data quality is one of the
fundamentals of success in the DW environment.
The discovery of incorrect data weakens the end

users' confidence in the data even if the unit of data
that is incorrect is minimum.

Thus, if the information contained in database
instances is inconsistent (i.e., if a given term appears
with different values because several denominations
exist, or because it is misspelled), it will produce
incorrect or misleading results. The erroneous results
could lead us to wrong business decisions.

The problem of the inconsistency found in the
values stored in databases may have three principal
causes:

1. If the number of possible values that a single
field can accept is not controlled, a given person, (or
different persons), may insert the same term with
different values. For instance, a database that stores
the names of the departments of a university may
have several different forms (e.g., the use of upper-
case letters or abbreviations): “Departamento de
Lenguajes y Sistemas Informáticos”, “Depto. de
Lenguajes y Sistemas Informáticos”, “Dpt. de
lenguajes y sistemas informáticos”, etc.

2. When we try to integrate different databases
into a common repository (e.g., in a DW), one or
more of them may suffer from the above-mentioned
problem. The consistency of their contents has been
guaranteed separately. However, the criteria used for
establishing the consistency of each one might well

mailto:slujan@dlsi.ua.es
mailto:medin.el@ceu.es
mailto:medin.el@ceu.es

be different and integrating them all could cause
inconsistency problems. For example, we wish to
integrate three different databases that store
bibliographical information. The authors might well
appear in different forms in each one: i.e., full
names, “Miguel de Cervantes Saavedra”, or by last
names first and then the first name, “Cervantes
Saavedra, Miguel de”, or by first name and last name
only, “Miguel de Cervantes”.

3. Another problem is the multilinguality. In a
multilingual society (e.g., European Community) it is
common to find official names written in different
languages. For instance, we consult a database that
stores information about university researchers, (e.g.,
researcher’s name, researcher’s university, etc.), and
we wish to obtain a list of all of the researchers who
work at the University of Alicante. We may easily
find that there are different values for this university:
“Universidad de Alicante” (in Spanish), “Universitat
d'Alacant” (in Catalan), “University of Alicante” or
“Alicante University” (in English), and “Université
d'Alicante” (in French).

The remainder of the paper is structured as
follows: Section 2 outlines the origin of the problem
and the possible causes that give rise to the different
variants that appear for the same term; Section 3
introduces our method for reducing inconsistency
found in existing databases: identifying similar
values concerning the same real world entity;
Section 4 explains the core of our study and details
the technical aspects of our method; Section 5
provides an evaluation of the method; and finally,
our conclusions are presented in Section 6.

2. ANALYSIS OF THE PROBLEM

After analysing several databases with
information both in Spanish and in English, we have
noticed that the different values that appear for a
given term are due to a combination of the following
eight causes:

1. The omission or inclusion of the written
accent: “Asociación Astronómica” or “Asociacion
Astronomica”.

2. The use of upper-case and lower-case letters:
“Departamento de Lenguajes y Sistemas
Informáticos” or “Departamento de lenguajes y
sistemas informáticos”.

3. The use of abbreviations and acronyms:
“Dpto. de Derecho Civil” or “Departamento de
Derecho Civil”.

4. Word order: “Miguel de Cervantes Saavedra”
or “Cervantes Saavedra, Miguel de”.

5. Different denominations: “Unidad de Registro
Sismológico” or “Unidad de Registro Sísmico”.

6. Punctuation marks (e.g., hyphens, commas,
semicolons, brackets, exclamation marks, etc.):
“Laboratorio Multimedia (mmlab)” or “Laboratorio
Multimedia – mmlab”.

7. Errors: Misspelling (apart from the written
accent), typing or printing errors (absence of a
character, interchange of adjacent characters, etc.):
“Gabinete de imagen” or “Gavinete de imagen”.

8. Use of different languages: “Universidad de
Alicante” (Spanish) or “Universitat d’Alacant”
(Catalan).

There has been great interest in studying the
quality of the information stored in databases for a
long time ((Motro, 1998), (O’Neill, 1988), (O’Neill,
1989)), and diverse methods have been developed
for the reduction of the inconsistency found in
databases ((Hernández, 1998), (Monge, 1997)).

3. INTUITIVE PROPOSAL OF A

METHOD TO REDUCE THE

INCONSISTENCY FOUND IN

DATABASES

The method we propose in this paper improves
our previous works (Luján-Mora, 2000b) that were
developed from French’s automatic creation of
authority files for bibliographical catalogues
((French, 1997a), (French, 1997b)). We have added
new distances, developed different evaluation
measures and employed a different clustering
algorithm. These improvements result in a better
performance of the method.

Our algorithm resolves all the problems detailed
in Section 2, except the fifth and the eighth, which
depend on how different the two strings that
represent the same term are. The method that we
propose can be divided into six steps:

1. Preparation. It may be necessary to prepare the
strings before applying the clustering algorithm.

2. Reading. The following process is repeated for
each of the strings contained in the input file:

Read a string
Expand abbreviations and acronyms

1

Remove accents: e.g., A substitutes Á and À, and
a substitutes á and à

Shift string to lower-case
Store the string: If it has been stored previously,

its frequency of appearance is increased by one unit
3. Sorting. The strings are sorted, in descending

order, by frequency of appearance.

1
 It is in general impossible to expand all the

abbreviations: often names are represented by
initials, sometimes by only some of the initials, etc.

4. Clustering. The most frequent string is chosen
and it is compared to the rest of the strings, using a
measure of similarity. This process is repeated,
successively, until all the strings have been clustered.

5. Checking. The resulting clusters are verified
and the possible errors are located and corrected.

6. Updating. The original database is updated.
The strings of a cluster are replaced by its centroid.

4. TECHNICAL DESCRIPTION OF

THE METHOD

In this section, technical aspects of our method
are described. We start by introducing a previous
processing for obtaining better results in Section 4.1.
Section 4.2 describes how the similarity between two
strings is considered. Section 4.3 presents the
algorithm itself and finally, Section 4.4 explains the
last step of the method, i.e., checking that the
obtained clusters are correct.

4.1 Previous Processing

The strings undergo a previous processing to
obtain better results from the clustering. The
objective of this processing is to avoid the three first
causes of the appearance of different forms for the
same term (see Section 2.1.): i.e., accents, lower-
case/upper-case and abbreviations. The accents are
eliminated, the string is converted to lower-case and
the abbreviations are expanded.

4.2 String Similarity

The similarity between any two strings must be
evaluated. There are several similarity measures; in
our research, we employ five measures: Levenshtein
distance (LD), invariant distance from word position
(IDWP), a modified version of the previous distance
(MIDWP), Jaccard’s coefficient (JC), and the
minimum of the four previous measures (CSM).

The edit distance or Levenshtein distance (LD)
(Levenshtein, 1966) has been traditionally used in
approximate-string searching and spelling-error
detection and correction. The LD of strings x and y
is defined as the minimal number of simple editing
operations that are required to transform x into y.
The simple editing operations considered are: the
insertion of a character, the deletion of a character,
and the substitution of one character with another. In
our method, we have taken a unitary cost function
for all the operations and for all of the characters.
The LD of two strings m and n in length,

respectively, can be calculated by a dynamic
programming algorithm (Hirschberg, 1997). The
algorithm requires (mn) time and space.

If two strings contain the same words (variant
forms of the same term) but with a permuted word
order, the LD will not permit their clustering. To
solve this problem, we introduce another distance
that we call the invariant distance from word position
(IDWP) (Luján-Mora, 2000a). It is based on the
approximate word matching referred to in (French,
1997b). To calculate the IDWP of two strings, they
are broken up into words (we consider a word to be
any succession of digits and letters of the Spanish
alphabet). The idea is to pair off the words so that
the sum of the LD is minimised. If the strings contain
different numbers of words, the cost of each word in
excess is the length of the word.

We also use a modified IDWP (MIDWP). We
add a new matching condition: if two strings fulfil
Equation 1, we assume they match perfectly (in that
case, we consider their LD is zero).

20
1),(

yx
yxLD


 .

(1)

The last similarity measure we have employed is
the Jaccard’s coefficient (JC) (Rijsbergen, 1979), the
ratio of the matching words in x and y to all the
words in x and y:

YX

YX
JC




 ,

(2)

where X is the set of words of the string x and Y
the set of words of y.

In order to compare the above-mentioned
measures, we need the JC subtracted from one (1 –
JC). Besides, the LD, IDWP, and MIDWP are
divided by the length of the longest string. Thus, all
the measures obtain a similarity value from 0 (x and
y are the same string) to 1 (x and y are totally
different).

Finally, we also combine the four previous
similarity measures (combined similarity measure,
CSM): we choose the minimum of the four similarity
measures for every pair of strings.

4.3 Algorithm

The goal of clustering is to find similarity
between strings and cluster them together based on a
threshold of similarity between the strings.

In previous works ((French, 1997a), (French,
1997b), (Luján-Mora, 2000b)), the clustering
algorithm employed is basically the leader algorithm
(Hartigan, 1975). This algorithm is chosen as
opposed to more elaborate algorithms (e.g. k-means

algorithm, Fisher algorithm) because they are slower
and the number of clusters is unknown. The leader
algorithm is very fast, requiring only one pass
through the data, but it has several negative
properties: the partition is not invariant under
reordering of the cases, the first clusters are always
larger than the later ones and the final number of
clusters depends on the threshold values. This is due
to the very algorithm: the comparison between a new
string and the existing clusters is made only until a
cluster that meets the condition is found, without
considering the possibility that a better value of the
criteria is met later, for another cluster.

The clustering algorithm we propose in Table 1
resolves the previous problem: it uses a centroid
method and the comparison for every string is made
with all the existing clusters for the time being.

The algorithm chooses the strings, from greater
to smaller frequency of appearance, since it assumes
that the most frequent strings have a greater
probability of being correct, and thus, they are taken
as being representative of the rest. As seen in Table
1, it depends on one parameter  (threshold). The
algorithm makes one pass through the strings,
assigning each string to the cluster whose centroid is
closer and close enough (distance between the string
and the centroid lower than ) and making a new
cluster for cases that are not close enough to any
existing centroid. The distance D is calculated using
one of the similarity measures explained in Section
4.2.

Table 1. Clustering algorithm

Input:

S: Sorted strings in descending order by frequency

(s1…sm)

: Threshold

Output:

C: Set of clusters (c1…cn)

Variables:

b, d, i, j, k, l

STEP 1. Begin with string si (i = 1). Let the

number of clusters be k = 1, classify si into the first

cluster ck.

STEP 2. Increase i by 1. If i > m, stop.

STEP 3. Begin working with the cluster cj (j = 1).

Calculate the distance between the string si and the

centroid of cluster cj: d = D(si, cj). Let the best

cluster be cb (b = 1).

STEP 4. Increase j by 1. If j > k, then go to Step 7.

STEP 5. If D(si, cj) < d, then let the lower distance

be d = D(si, cj) and the best cluster be b = j.

STEP 6. Return to Step 4.

STEP 7. If d < , assign string si to cluster cb;

recalculate the centroid of cluster cb and return to

Step 2.

STEP 8. Increase k by 1. Create a new cluster ck

and classify si into the new cluster. Return to Step

2.

The centroid of a cluster must be recalculated

every time a new string is assigned to the cluster.
The centroid is chosen to minimise the sum-of-
squares criterion:




n

i

i CsD
1

2)),((,
(3)

where n is the number of strings assigned to the
cluster and C is the centroid of the cluster.

4.4 Revision and Updating

The final step of the method consists of checking
the obtained clusters and detecting possible errors to
correct them. In the original database, the strings of a
cluster are replaced by its centroid (it represents its
cluster). Therefore, all variants of a term are put
together under a single form. Thus, in searches, data
calculations and decision processes, final users will
be confident that they have located all values relating
to the required term.

5. EXPERIMENTAL RESULTS

AND EVALUATION

We have used three files for evaluating our
method. They contain data from three different
databases with inconsistency problems: files A and B
contain information in Spanish, while file C in
English.

The method has been implemented in C and
C++, running in Linux.

5.1 File Descriptions

Table 2 gives a description of these three files.
The optimal number of clusters (ONC) indicates the
number of handcrafted clusters. The three last
columns contain the number of single strings (not
duplicated) with and without the expansion of
abbreviations, and the rate of reduction (on
expanding the abbreviations, the number of single
strings is reduced, since duplicates are removed). We
have done all the tests with (W) and without (WO)
expansion of abbreviations.

Table 2. File descriptions
File Size

(Bytes)

ONC Strings

WO

Strings

W

Reduction

(%)

A

B

C

10,399

1,717,706

108,608

92

92

57

234

1,212

119

145

1,117

118

38.0

7.8

0.8

We have developed a coefficient (consistency

index) that permits the evaluation of the complexity
of a cluster: the greater the value of the coefficient is,
the more different the strings that form the cluster
are. A null value indicates that the cluster contains
only one string. The consistency index (CI) of a
cluster of n strings is defined as:

 







 


n

i

i

n

i

n

j

ji

x

xxLD

CI

1

1 1

,

.

(4)

The file consistency index (FCI) of a file that
contains m clusters is defined as the average of the
consistency indexes of all the existing clusters in the
file:

m

CI

FCI

m

i

i
 1 .

(5)

The FCI of the files A, B and C are shown in
Table 3. As the FCI is an average, the table also
shows the standard deviation. It is obvious that the
clusters of file B are more complex than those of file
A and C. In all cases, however, the FCI is reduced
when expanding the abbreviations, since the
discrepancies between the strings of a given cluster
tend to diminish. With respect to file C, the
reduction of FCI when the abbreviations are
expanded is minimum, because the reduction of
strings is not appreciable: only 0.8% versus 38.0%
(file A) and 7.8% (file B), as it is shown in Table 2.

Table 3. File consistency indexes
File FCI

WO

Standard

deviation

FCI

W

Standard

deviation

A

B

C

0.311

1.726

0.337

0.298

1.267

1.181

0.127

1.113

0.319

0.269

1.142

1.136

5.2 Evaluation Measures

We have evaluated the quality of the produced
clusters when our method is applied by using four
measures that are obtained by comparing the clusters
produced by our method with the optimal clusters:

1. NC: number of clusters. Clusters that have
been generated.

2. NCC: number of completely correct clusters.
Clusters that coincide with the optimal ones: they
contain the same strings. From this measure, we
obtain Precision: NCC divided by ONC.

3. NIC: number of incorrect clusters. Clusters
that contain an erroneous string. From this measure,
we obtain the Error: NIC divided by ONC.

4. NES: number of erroneous strings. Strings
incorrectly clustered.

0

20

40

60

80

100

120

140

160

180

200

0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5 0,55

ONC NC WO NCC WO

NC W NCC W

Figure 1. NC and NCC vs. Threshold. File A with

and without expansion of abbreviations (CSM)

NC and NCC versus Threshold for File A with

(W) and without (WO) expansion of abbreviations,
using the CSM, are plotted in Figure 1. The
expansion of abbreviations diminishes NC and
increases NCC.

5.3 Evaluation and Discussion

As we have already mentioned, the clustering
algorithm depends on one parameter (). We have
done all the tests on setting its value from 0.0 to
0.599, in 0.001 steps.

We compare the performance of the five
similarity measures. The result of the experiments
using files A and C are shown in Tables 4, 5, 6 and
7. The tables show the highest precision rate and the
corresponding error obtained in each file when the
LD, IDWP, MIDWP and JC are used. The
corresponding threshold () also appears.

Note that the expansion of abbreviations
improves the precision and diminishes the error.
Moreover, the best precision, with a lower error, is
obtained at a lower threshold.

Table 4. LD
File  Precision

(%)

Error

(%)

A WO 0.311 76.0 8.6

W [0.146, 0.151] 83.6 0

C WO [0.159, 0.199] 84.2 1.7

W [0.100, 0.127] 84.2 0

Table 5. IDWP
File  Precision

(%)

Error

(%)

A WO [0.334, 0.344] 81.5 10.8

W [0.160, 0.166] 84.7 0

C WO [0.143, 0.227] 82.4 1.7

W [0.072, 0.119] 82.4 0

As you can see in Table 6, File A obtains the

higher precision (89.1%) when the MIDWP with the
expansion of abbreviations is employed. However,
as seen in Table 7, File C obtains it (89.4%) when
the JC without the expansion of abbreviations is
used.

Table 6. MIDWP
File  Precision

(%)

Error

(%)

A WO [0.276, 0.277] 80.4 9.7

W [0.153, 0.166] 89.1 0

C WO [0.143, 0.227] 82.4 1.7

W [0.072, 0.119] 82.4 0

Table 7. JC
File  Precision

(%)

Error

(%)

A WO [0.400, 0.416] 72.8 6.5

W [0.286, 0.299] 85.8 0

C WO [0.471, 0.499] 89.4 1.7

W [0.471, 0.499] 87.7 1.7

Table 8 shows highest precision and the

corresponding error obtained for files A, B, and C
when the CSM is employed. Files A and C have
better precision than file B because their clusters are
less complex: files A and C have a FCI around 0.3,
whereas file B has a FCI of 1.7 (WO) and 1.1 (W).

Table 8. CSM
File  Precision

(%)

Error

(%)

A WO [0.236, 0.249] 81.5 8.6

W [0.147, 0.151] 89.1 0

B WO [0.270, 0.288] 71.7 9.7

W [0.174, 0.176] 77.1 2.1

C WO [0.143, 0.199] 84.2 1.7

W [0.097, 0.119] 84.2 0

In Table 9, we show the precision and error

obtained in our previous works (Luján-Mora,

2000b). The test files A, B and C are the same of this
paper. If this table is compared to Table 8, you can
see the new method achieves better results: the
precision increases and the error keeps very similar
values or even diminish.

Table 9. Precision and Error in previous works
File Precision (%) Error (%)

A WO 70.7 7.6

W 84.8 0

B WO 67.4 8.7

W 72.8 6.5

C WO 85.9 1.7

W 84.2 1.7

We compare the effect of the expansion of

abbreviations in Figure 2. It shows Precision versus
Threshold for File A with (W) and without (WO)
expansion of abbreviations using the CSM. It is seen
that the expansion of abbreviations produces the
maximum precision (90%) at a threshold of 0.15.
From a threshold of 0.25, the expansion of
abbreviations does not influence the precision as
observed in the figure.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5 0,55

WO W

Figure 2. Precision vs. Threshold. File A with and

without expansion of abbreviations (CSM)

Figure 3 shows Precision versus Threshold for

File C without expansion of abbreviations using
different similarity measures. The JC obtains the
maximum value (90%). All the measures, except the
JC, have a similar behaviour: they start at the same
level (75%), rise until 85% and then plunge until
20%. However, the JC remains steady over 75% for
all the threshold values.

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5 0,55

LD IDWP MIDWP

JC CSM

Figure 3. Precision vs. Threshold. File C without

expansion of abbreviations (different measures)

Finally, from Figure 4 it can be again seen that

the expansion of abbreviations influences the
precision at a low threshold, but from a threshold of
0.25, the influence is imperceptible (the behaviour is
very similar to Figure 2). Also, note that there is not
error when the threshold is lower than 0.15.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5 0,55

Pre. WO Error WO Pre. W Error W

Figure 4. Precision and Error vs. Threshold. File

B with and without expansion of abbreviations

(CSM)

6. CONCLUSIONS AND WORK

IN PROGRESS

In a DW, data is gathered from a variety of
different sources. Removing errors and
inconsistencies from data being imported into a DW
is critical, because incorrect data will have a
negative impact on the effective use of this data.

This paper has discussed techniques for
improving data quality by clustering different values
that refer to the same term and replacing them with a
unique form. Therefore, we have presented an
automatic method for reducing on the inconsistency
found in existing databases. The method we have
proposed achieves successful results with a
considerably low error rate, although it does no
eliminate the need to review the clusters obtained.

The expansion of abbreviations improves on the
results in most cases, but we have detected some
cases in which it actually makes the results worse. In
addition, we have seen that the combined use of four
similarity measures (Levenshtein distance, invariant
distance from word position, modified IDWP, and
Jaccard’s coefficient) normally obtains the best
performance.

The final number of clusters strongly depends on
the threshold value fixed by the user. A very small
threshold (conservative) will produce a large number
of small clusters, meanwhile a very large
(aggressive) one will produce a small number of
large clusters. Based on the data obtained in our
research, we propose the use of a threshold between
0.1 and 0.25.

We are currently developing a graphical user
interface to allow the user to control the data
cleaning activity through parameters and a
spreadsheet-like interface. As the proposed method
is time-consuming, we are also considering to
evaluate the impact of removing stop words
(conjunctions, prepositions, articles and so on: words
that contain little meaning) both in precision and
time.

ACKNOWLEDGMENTS

We would like to thank Juan Carlos Trujillo for
helpful comments and support in the final version of
the paper.

REFERENCES

Chaudhuri, S., and Dayal, U., 1997, “An Overview of

Data Warehousing and OLAP Technology”, ACM

Sigmod Record, 26(1), pages 65-74.

French, J.C., et al, 1997a, “Automating the Construction

of Authority Files in Digital Libraries: A Case Study”.

In Peters, C., and Thanos, C., editors, Proceedings of

the First European Conference on Research and

Advanced Technology for Digital Libraries (ECDL

1997), September, Pisa (Italy), pages 55-71.

French, J.C, Powell, A.L., and Schulman, E., 1997b,

“Applications of Approximate Word Matching in

Information Retrieval”. In Golshani, F., Makki, K.,

editors, Proceedings of the Sixth International

Conference on Information and Knowledge

Management (CIKM 1997), November, Las Vegas

(USA), pages 9-15.

Hartigan, J.A., 1975, Clustering Algorithms, New York

(USA): John Wiley & Sons.

Hernández, M.A., and Stolfo, S.J., 1998, “Real-world data

is dirty: Data cleansing and the merge/purge problem”,

Journal of Data Mining and Knowledge Discovery,

2(1), pages 9-37.

Hirschberg, D.S., 1997, “Serial Computations of

Levenshtein Distances”. In Apostolico, A., and Galil,

Z., editors, Pattern Matching Algorithms, Oxford

University Press.

Inmon, W.H., 1990, Building the Data Warehouse, New

York (USA): John Wiley & Sons.

Levenshtein, V.I., 1966, “Binary codes capable of

correcting deletions, insertions, and reversals”,

Cybernetics and Control Theory, 10, pages 707-710.

Luján-Mora, S., 2000a, “An Algorithm for Computing the

Invariant Distance from Word Position”, [Internet],

June. Available from: <http://www.dlsi.ua.es/~slujan/

files/idwp.ps>.

Luján-Mora, S., and Palomar, M., 2000b, “Clustering of

Similar Values, in Spanish, for the Improvement of

Search Systems”. In Monard, M.C., and Sichman, J.S.,

editors, IBERAMIA-SBIA 2000 Open Discussion

Track Proceedings, November, Sao Paulo (Brazil),

pages 217-226.

Monge, A.E., and Elkan, C.P., 1997, “An efficient

domain-independent algorithm for detecting

approximately duplicate database records”. In

SIGMOD Workshop on Research Issues on Data

Mining and Knowledge Discovery (DMKD’97), pages

23-29.

Motro, A., and Rakov, I., 1998, “Estimating the Quality of

Databases”. In Andreasen, T., Chistiansen, H., and

Larsen, H.L., editors, Proceedings of FQAS 98: Third

International Conference on Flexible Query

Answering Systems, Lecture Notes in Artificial

Intelligence, vol. 1495, Springer-Verlag.

O’Neill, E.T., and Vizine-Goetz, D., 1988, “Quality

Control in Online Databases”, Annual Review of

Information Science and Technology, 23, pages 125-

156.

O'Neill, E.T., and Vizine-Goetz, D., 1989, “The Impact of

Spelling Errors on Databases and Indexes”. In

National Online Meeting Proceedings, May, New

York (USA), pages 313-320.

Rahm, E., and Do, H., 2000, Data Cleaning: Problems and

Current Approaches, IEEE Bulletin of the Technical

Committee on Data Engineering, 23(14).

Rijsbergen, C.J. van, 1979, Information Retrieval, London

(UK): Butterworhs.

