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DESIGN AND REPRESENTATION OF MULTIDIMENSIONAL MODELS 

WITH UML AND XML TECHNOLOGIES 

 

Data warehouses (DW), multidimensional databases (MDB), and On-Line Analytical 

Processing (OLAP) applications are based on the Multidimensional (MD) modeling. 

Most of these applications provide their own MD models to represent main MD 

properties, thereby making the design totally dependent of the target commercial 

application. In this chapter, we present how the Unified Modeling Language (UML) can 

be successfully used to abstract the representation of MD properties at the conceptual 

level. Then, from this conceptual model, we generate its corresponding implementation 

into any market OLAP tool. In our approach, the structure of the system is specified by 

means of a UML class diagram that considers main properties of MD modeling. If the 

system to be modeled is too complex, we describe how to use the package grouping 

mechanism provided by the UML to simplify the final model. To facilitate the 

interchange of conceptual MD models, we provide an eXtensible Markup Language 

(XML) Schema which allows us to represent the same MD modeling properties that can 

be considered by using our approach. From this XML Schema, we can directly generate 

valid XML documents that represent MD models at the conceptual level. Finally, we 

provide different presentations of the MD models by means of eXtensible Stylesheet 

Language Transformations (XSLT). 

 

Keywords: Data warehouses, multidimensional databases, OLAP, conceptual 

modeling, UML, object orientation, ODBMS, XML 

 



INTRODUCTION 

 

Multidimensional (MD) modeling is the foundation for Data warehouses (DW), 

multidimensional databases (MDB) and On-Line Analytical Processing (OLAP) 

applications. The benefit of using MD modeling is two-fold. On one hand, the MD 

model is close to data analyzers’ way of thinking; therefore, it helps users understand 

data. On the other hand, the MD model supports performance improvement as its simple 

structure allows us to predict final users’ intentions. 

 

Some approaches have been proposed lately (presented in Section 3) to accomplish the 

conceptual design of these systems. Unfortunately, none of them have been accepted as 

a standard for DW conceptual modeling. These proposals try to represent main MD 

properties at the conceptual level with special emphasis on MD data structures. A 

conceptual modeling approach for DW, however, should also concern other relevant 

aspects such as users' initial requirements, the behavior of the system (e.g. main 

operations to be accomplished on MD data structures), available data sources, specific 

issues for automatic generation of the database schema, and so on. We claim that object 

orientation with the UML provides an adequate notation for modeling every aspect of a 

DW system (MD data structures, the behavior of the system, etc.) from user 

requirements to implementation. 

 

We have previously proposed an object-oriented (OO) approach to accomplish the 

conceptual modeling of DW, MDB and OLAP applications that introduces a set of 

minimal constraints and extensions of the UML (Booch, 1998; OMG, 2001) needed for 

an adequate representation of MD modeling properties (Trujillo, 2001a; Trujillo, 



2001b). These extensions are based on the standard mechanisms provided by the UML 

to adapt it to a specific method or model (e.g. constraints, tagged values). We have also 

presented how to group classes into packages to simplify the final model in case that the 

model becomes too complex due to the high number of classes (Luján-Mora, 2002). 

Furthermore, we have provided a UML-compliant class notation to represent OLAP 

users' initial requirements (called cube class). We have also discussed issues such as 

identifying attributes and descriptor attributes that set the basis for an adequate semi-

automatic generation of a database schema and user requirements in a target commercial 

OLAP tool.  

 

The UML can also be used with powerful mechanisms such as the Object Constraint 

Language (OCL) (Warmer, 1998; OMG, 2001) and the Object Query Language (OQL) 

(Cattell, 2000) to embed DW constraints (e.g. additivity and derived attributes) and 

users' initial requirements in the conceptual model. In this way, when we model a DW 

system, we can obtain simple yet powerful extended UML class diagrams that represent 

main MD properties at a conceptual level. 

 

On the other hand, a salient issue these days in the scientific community and in the 

business world is the interchange of information. The eXtensible Markup Language 

(XML) (W3C, 2000) is rapidly being adopted as the standard syntax for the interchange 

of un-structured, semi-structured and structured data. XML is an open neutral platform 

and vendor independent meta-language, which allows us to reduce the cost, complexity, 

and effort required in integrating data within and between enterprises. XML documents 

can be associated to a Document Type Definition (DTD) (W3C, 2000) or an XML 

Schema (W3C, 2001), both of which allow us to describe and constraint the structure of 



XML documents. Moreover, thanks to the use of eXtensible Stylesheet Language 

Transformations (XSLT) (W3C, 1999), users can express their intentions about how 

XML documents should be presented, so they could be automatically transformed into 

other formats, e.g. HTML documents. An immediate consequence is that we can define 

different XSLT stylesheets to provide different presentations of the same XML 

document. In a previous work (Trujillo, 2004), we have presented a DTD for the 

representation of MD models and this DTD is then used to automatically validate XML 

documents. 

 

From these considerations, in this chapter we present the following contributions. We 

believe that our innovative approach provides a theoretical foundation for the possible 

use of Object-Oriented Databases (OODB) and Object-Relational Databases (ORDB) 

for DW and OLAP applications. For this reason, we provide the representation of our 

approach into the standard for OODB proposed by the Object Database Management 

Group (ODMG) (Catell, 2000). We also believe that a relevant feature of a conceptual 

model should be its capability to share information in an easy and standard form. 

Therefore, we also present how to represent MD models, accomplished by using our 

approach based on the UML, by means of the XML. In order to do this, we provide an 

XML Schema that defines the correct structure and content of a XML document 

representing main MD properties. Moreover, we also address the presentation of MD 

models on the web by means of eXtensible Stylesheet Language Transformations 

(XSLT): we provide XSLT stylesheets that allow us to automatically generate HTML 

pages from XML documents that represent MD models, thereby supporting different 

presentations of the same MD model easily. Finally, to show the benefit of our 



approach, we include a set of case studies to show the elegant way in which our 

proposal represents both structural and dynamic properties of MD modeling. 

 

The remainder of this chapter is organized as follows: Section 2 details the major 

features of MD modeling that should be taken into account for a proper MD conceptual 

design. Section 3 summarizes the most relevant conceptual approaches proposed so far 

by the research community. In Section 4, we present how we use the UML to consider 

main structural and dynamic MD properties at the conceptual level. We also present 

how to facilitate the interchange of MD models by generating the corresponding 

standard provided by the ODMG and the XML Schema from UML. In Section 5, we 

present a set of case studies taken from Kimball [Kimball02] to show the benefit of our 

approach. Finally, Section 6 draws conclusions and sketches out new research that is 

currently being investigated. 

 

MULTIDIMENSIONAL MODELING 

 

In MD modeling, information is structured into facts and dimensions. A fact is an item 

of interest for an enterprise, and is described through a set of attributes called measures 

or fact attributes (atomic or derived), which are contained in cells or points in the data 

cube. This set of measures is based on a set of dimensions that determine the granularity 

adopted for representing facts (i.e. the context in which facts are to be analyzed). 

Moreover, dimensions are also characterized by attributes, which are usually called 

dimension attributes. They are used for grouping, browsing, and constraining 

measures. 

 



Let us consider an example in which the fact is the product sales in a large store chain 

and the dimensions are as follows: product, store, customer and time. On the left hand 

side of Figure 1, we can observe a data cube typically used for representing an MD 

model. In this particular case, we have defined a cube for analyzing measures along the 

product, store and time dimensions. 

 

We note that a fact usually represents a many-to-many relationship between any of two 

dimensions.  For example, a product is sold in many stores and a store sells many 

products. We also assume that there is a many-to-one relationship between a fact and 

each particular dimension. For example, for each store there are many sale tickets, but 

each sale ticket belongs to only one store.  

 

Nevertheless, there are some cases in which a fact may be associated with a particular 

dimension as a many-to-many relationship. For example, the fact product_sales is 

considered as a particular many-to-many relationship to the product dimension, as one 

ticket may consist of more than one product even though every ticket is still purchased 

in only one store by one customer and at one time. 

 

With reference to measures, the concept of additivity or summaribility (Blaschka, 

1998; Golfarelli, 1998; Kimball, 2002; Trujillo, 2001b; Tryfona, 1999) on measures 

along dimensions is crucial for MD data modeling. A measure is additive along a 

dimension if the SUM operator can be used to aggregate attribute values along all 

hierarchies defined on that dimension. The aggregation of some fact attributes (roll-up, 

in OLAP terminology), however, might not be semantically meaningful for all measures 

along all dimensions. A measure is semi-additive if the SUM operator can be applied to 



some dimensions, but not all the dimensions. A measure is non-additive if the SUM 

operator cannot be applied to any dimension. In our example, number of clients 

(estimated by counting the number of purchased receipts for a given product, day and 

store) is not additive along the product dimension. Since the same ticket may include 

other products, adding up the number of clients along two or more products would lead 

to inconsistent results. However, other aggregation operators (e.g. SUM, AVG and 

MIN) could still be used along other dimensions such as time. Thus, number of clients is 

semi-additive. Finally, examples of non-additive measures would be those measures 

that record a static level such as inventory financial account balances or measures of 

intensity such as room temperatures (Kimball, 2002). 

 

 

Figure 1: A data cube and classification hierarchies defined on dimensions 

 

Regarding dimensions, the classification hierarchies defined on certain dimension 

attributes are crucial because the subsequent data analysis will be addressed by these 

classification hierarchies. A dimension attribute may also be aggregated (related) to 

more than one hierarchy. Therefore, multiple classification hierarchies and 

alternative path hierarchies are also relevant. For this reason, a common way of 

representing and considering dimensions with their classification hierarchies is by 

means of Directed Acyclic Graphs (DAG). 



 

On the right hand side of Figure 1, we can observe different classification hierarchies 

defined on the product, store and time dimensions. On the product dimension, we have 

considered a multiple classification hierarchy to be able to aggregate data values along 

two different hierarchy paths: (i) product, type, family, group and (ii) product, brand. 

On the other hand, we can also find attributes that are not used for aggregating 

purposes, instead they provide features for other dimension attributes (e.g. product 

name). On the store dimension, we have defined an alternative classification hierarchy 

with two different paths that converge into the same hierarchy level: (i) store, city, 

province, state and (ii) store, sales_area, state. Finally, we have defined another 

multiple classification hierarchy with the following paths on the time dimension: (i) 

time, month, semester, year and (ii) time, season. 

 

Nevertheless, classification hierarchies are not so simple in most cases. The concepts of 

strictness and completeness are quite important, not only for conceptual purposes, but 

also for further design steps of MD modeling (Tryfona, 1999). “Strictness” means that 

an object of a lower level in a hierarchy belongs to only one in a higher level, e.g. a 

province is only related to one state. “Completeness” means that all members belong to 

one higher-class object which consists of those members only. For example, suppose 

that the classification hierarchy between the state and province levels is “complete”. In 

this case, a state is formed by all the provinces recorded and all the provinces that form 

the state are recorded. 

 

OLAP scenarios sometimes become very large as the number of dimensions increases 

significantly, which may then lead to extremely sparse dimensions and data cubes. In 



this way, there are some attributes that are normally valid for all elements within a 

dimension while others are only valid for a subset of elements (also known as the 

categorization of dimensions (Lehner, 1998; Tryfona, 1999). For example, attributes 

alcohol percentage and volume would only be valid for drink products and will be 

“null” for food products. Thus, a proper MD data model should be able to consider 

attributes only when necessary, depending on the categorization of dimensions. 

 

Furthermore, let us suppose that apart from a high number of dimensions (e.g. 20) with 

their corresponding hierarchies, we have a considerable number of facts (e.g. 8) sharing 

dimensions and classification hierarchies. This system will lead us to a very complex 

design, thereby increasing the difficulty in reading the modeled system. To avert a 

convoluted design, an MD conceptual model should also provide techniques to avoid 

flat diagrams, allowing us to group dimensions and facts to simplify the final model. 

 

Once the structure of the MD model has been defined, OLAP users usually define a set 

of initial requirements as a starting point for the subsequent data analysis phase. From 

these initial requirements, users can apply a set of operations (usually called OLAP 

operations) (Chaudhuri, 1997) to the MD view of data for further data analysis. These 

OLAP operations are usually as follows: roll-up (increasing the level of aggregation) 

and drill-down (decreasing the level of aggregation) along one or more classification 

hierarchies, slice-dice (selection and projection) and pivoting (re-orienting the MD view 

of data which also allows us to exchange dimensions for facts; i.e. symmetric treatment 

of facts and dimensions). 

 



Star Schema  

 

In this sub-section, we will summarize the star schema popularized by Kimball 

(Kimball, 2002), as it is the most well-known schema representing MD properties in 

relational databases. 

 

Kimball claims that the star schema and its variants fact constellations schema and the 

snowflake schema are logical choices for MD modeling to be implemented in relational 

systems. We will briefly introduce this well-known approach using Sales Dimensional 

Model. 

 

 

Figure 2 shows an example of Kimball’s Sales Dimensional Model. In this model, the 

fact is the name of the middle box (Sales fact table).  Measures are the non-foreign keys 

in the fact table (dollars_sold, units_sold, and dollars_cost).  Dimensions are the boxes 

connected to the fact table in a one-to-many relationship (Time, Store, Product, 

Customer, and Promotion). Each dimension contains relevant attributes: day_of_week, 

week_number, and month in Time; store_name, address, district, and floor_type in 

Store, and so on. 

 

From Figure 2, we can easily see that there are many MD features that are not reflected 

in the Dimensional Model: Which are the classification hierarchies defined on 

dimensions? Can we use all aggregation operators on all measures along all 

dimensions? What are these classification hierarchies like (non-strict, strict, and 

complete)? And many more properties. Therefore, we argue that for a proper DW and 

OLAP design, a conceptual MD model should be provided to better reflect user 



requirements. This conceptual model could then be translated into a logical model for a 

later implementation. In this way, we can be sure that we are analyzing the real world as 

users perceive it.  

 

 

 

Figure 2: Sales Dimension Model 

 

RELATED WORK 

 

Lately, several MD data models have been published. Some of them fall into the logical 

level (such as the well-known star-schema by R. Kimball (Kimball, 2002)). Others may 

be considered as formal models, as they provide a formalism to consider main MD 



properties. A review of the most relevant logical and formal models can be found in 

(Blaschka, 1998; Abello, 2001). 

 

In this section, we will only briefly make reference to the most relevant models that we 

consider “pure” conceptual MD models. These models provide a high level of 

abstraction for the main MD modeling properties presented in Section 2 and are totally 

independent from implementation issues. These are as follows: The Dimensional-Fact 

(DF) model by Golfarelli (1998), The Multidimensional/ER (M/ER) model by Sapia 

(1998; 1999) and The starER model by Tryfona (1999). 

 

In Table 1, we provide the coverage degree of each above-mentioned conceptual model 

regarding the main MD properties described in the previous section. To start with, to the 

best of our knowledge, no proposal provides a grouping mechanism to avoid flat 

diagrams and to simplify the conceptual design when a system becomes complex due to 

a high number of dimensions and facts sharing dimensions and their corresponding 

hierarchies. Regarding facts, only the starER model considers many-to-many 

relationships between facts and particular dimensions by indicating the exact cardinality 

(multiplicity) between them. None of them consider derived measures or their 

derivation rules as part of the conceptual schema. The DF and the starER models 

consider the additivity of measures by explicitly representing the set of aggregation 

operators that can be applied on non-additive measures. With reference to dimensions, 

all of the models consider multiple and alternative path classification hierarchies by 

means of Directed Acyclic Graphs (DAG) defined on certain dimension attributes. 

However, only the starER model considers non-strict and complete classification 

hierarchies by specifying the exact cardinality between classification hierarchy levels. 



As both the M/ER and the starER models are extensions of the Entity Relationship (ER) 

model, they can easily consider the categorization of dimensions by means of Is-a 

relationships. 

 

Multidimensional modeling properties Model 

 DF M/E

R 

StarEr 

Structural level    

Grouping mechanism No No No 

Facts    

    Many-to-many relationships with particular 

dimensions 

No No Yes 

    Atomic measures Yes Yes Yes 

    Derived measures No No No 

    Additivity Yes No Yes 

Dimensions    

    Multiple and alternative path classification 

hierarchies 

Yes Yes Yes 

    Nonstrict classification hierarchies No No Yes 

    Complete classification hierarchies No No Yes 

    Categorization of dimensions No Yes Yes 

Dynamic level    

Specifying users' initial requirements Yes Yes No 

OLAP operations No Yes No 

Modeling system behavior No Yes No 



Graphical notation Yes Yes Yes 

Automatic generation into a target OLAP 

commercial tool 

No Yes No 

Table 1: Comparison of conceptual multidimensional models 

 

With reference to the dynamic level of MD modeling, the starER model is the only one 

that does not provide an explicit mechanism to represent users' initial requirements. On 

the other hand, only the M/ER model provides a set of basic OLAP operations to be 

applied from these users' initial requirements, and it models the behavior of the system 

by means of state diagrams. 

 

We note that all the models provide a graphical notation that facilitates the conceptual 

modeling task to the designer. On the other hand, only the M/ER model provides a 

framework for an automatic generation of the database schema into a target commercial 

OLAP tool (particularly into Informix Metacube and Cognos Powerplay). 

 

Finally, none of the proposals from Table 1 provide a mechanism to facilitate the 

interchange of the models following standard representations. Regarding MD modeling 

and the eXtensible Markup Language (XML) (W3C, 2000), some proposals have been 

presented. All of these proposals make use of XML as the base language for describing 

data. In (Pokorný, 2001), an innovative data structure called an XML-star schema is 

presented with explicit dimension hierarchies using DTDs that describe the structure of 

the objects permitted in XML data. The approach presented in (Golfarelli, 2001) 

propose a semi-automatic approach for building the conceptual schema for a data mart 

starting from the XML sources. However, these approaches focus on the presentation of 



the multidimensional XML data rather than on the presentation of the structure of the 

multidimensional conceptual model itself. 

 

From Table 1, one may conclude that none of the current conceptual modeling 

approaches consider all MD properties at both the structural and dynamic levels. 

Therefore, we claim that a standard conceptual model is needed to consider all MD 

modeling properties at both the structural and dynamic levels. We argue that an OO 

approach with the UML is the right way of linking structural and dynamic level 

properties in an elegant way at the conceptual level. 

 

MULTIDIMENSIONAL MODELING WITH UML 

 

In this section, we summarize how our OO MD model, based on a subset of the UML, 

can represent main structural and dynamic properties of MD modeling. In Section 4.1, 

we will present how to represent main structural properties by means of a UML class 

diagram. Section 4.2 summarizes how users' initial requirements are easily considered 

by what we call cube classes. Section 4.3 sketches how we automatically transform an 

MD model accomplished by following our approach into the Object Database Standard 

defined by the Object Database Management Group (ODMG) (Cattell, 2000). Then, 

Section 4.4 presents the corresponding representation of our approach into the XML 

(W3C, 2000) to allow us an easy interchange of MD information. Finally, Section 4.5 

describes how to use XSLT stylesheets to automatically generate HTML pages from 

XML documents, thereby allowing us to manage different presentations of MD models 

in the Web. 

 



Structural Properties By Using UML Class Diagrams 

 

The main structural features considered by UML class diagrams are the many-to-many 

relationships between facts and dimensions, degenerate dimensions, multiple and 

alternative path classification hierarchies, and non-strict and complete hierarchies. 

 

It is important to remark that if we are modeling complex and large DW systems, we are 

not restricted to using flat UML class diagrams. Instead, we can make use of the 

grouping mechanism provided by the UML called package to group classes together 

into higher level units to create different levels of abstraction, therefore, simplifying the 

final model (Luján-Mora, 2002). In this way, a UML class diagram improves and 

simplifies the system specification accomplished by classic semantic data models such 

as the ER model. Furthermore, necessary operations and constraints (e.g. additivity 

rules) can be embedded in the class diagram by means of OCL expressions (Warmer, 

1998; OMG, 2001). 

 

In this approach, the main structural properties of MD models are specified by means of 

a UML class diagram in which the information is clearly separated into facts and 

dimensions. Dimensions and facts are represented by dimension classes and fact 

classes, respectively. Then, fact classes are specified as composite classes in shared 

aggregation relationships of n dimension classes. The flexibility of shared aggregation 

in the UML allows us to represent many-to-many relationships between facts and 

particular dimensions by indicating the 1..* cardinality on the dimension class role. In 

our example in Figure 3 (a), we can see how the fact class Sales has a many-to-one 

relationship with both dimension classes. 



 

By default, all measures in the fact class are considered additive. For non-additive 

measures, additivity rules are defined as constraints and are included in the fact class. 

Furthermore, derived measures can also be explicitly considered (indicated by /) and 

their derivation rules are placed between braces near the fact class, as shown in Figure 3 

(a). 

 

This OO approach also allows us to define identifying attributes in the fact class, by 

placing the constraint {OID} next to an attribute name. In this way we can represent 

degenerate dimensions (Giovinazzo, 2000; Kimball, 2002), thereby representing other 

fact features in addition to the measures for analysis. For example, we could store the 

ticket number (ticket_num) and the line number (line_num) as degenerate dimensions, 

as reflected in Figure 3 (a). 

 

 

Figure 3: Multidimensional modeling using UML 

 

With respect to dimensions, every classification hierarchy level is specified by a class 

(called a base class). An association of classes specifies the relationships between two 

levels of a classification hierarchy. The only prerequisite is that these classes must 



define a Directed Acyclic Graph (DAG) rooted in the dimension class (constraint {dag} 

placed next to every dimension class). The DAG structure can represent both alternative 

path and multiple classification hierarchies. Every classification hierarchy level must 

have an identifying attribute (constraint {OID}) and a descriptor attribute
1
 (constraint 

{D}). These attributes are necessary for an automatic generation process into 

commercial OLAP tools, as these tools store the information in their metadata. The 

multiplicity 1 and 1..* , defined in the target associated class role, addresses the 

concepts of strictness and non-strictness, respectively. Strictness means that an object at 

a hierarchy's lower level belongs to only one higher-level object (e.g., as one month can 

be related to more than one season, the relationship between them is non-strict). 

Moreover, defining the {completeness} constraint in the target associated class role 

addresses the completeness of a classification hierarchy (see an example in Figure 3 

(b)). By completeness we mean that all members belong to one higher-class object and 

that object consists of those members only. For example, all the recorded seasons form 

a year, and all the seasons that form the year have been recorded. Our approach assumes 

all classification hierarchies are non-complete by default. 

 

Finally, the categorization of dimensions, used to model additional features for a class's 

subtypes, is represented by means of generalization-specialization relationships. 

However, only the dimension class can belong to both a classification and a 

specialization hierarchy at the same time. An example of categorization for the Product 

dimension is shown in Figure 3 (c). 

 

                                                 
1
 A descriptor attribute will be used as the default label in the data analysis. 



Dynamic Properties 

 

Regarding dynamic properties, this approach allows us to specify users' initial 

requirements by means of a UML-compliant class notation called cube class. After 

requirements are specified, behavioral properties are usually then related to these cube 

classes that represent users' initial requirements.  

 

Cube classes follow the query by example (QBE) method: the requirements are defined 

by means of a template with blank fields. Once requirements are define, the user can 

then enter conditions for each field that are included in the query. We provide a 

graphical representation to specify users' initial requirements because QBE systems are 

considered easier to learn than formal query languages. The structure of a cube class is 

shown in Figure 4: 

 

 Cube class name. 

 Measures area, which contains the measures from the fact to be analyzed. 

 Slice area, which contains the constraints to be satisfied in the dimensions. 

 Dice area, which contains the dimensions and their grouping conditions to address 

the analysis. 

 Order area, which specifies the order of the result set. 

 Cube operations, which cover the OLAP operations for a further data-analysis 

phase.  

 



 

Figure 4: Cube class structure 

 

We should point out that this graphical notation of the cube class aims at facilitating the 

definition of users' initial requirements to non-expert UML or databases users. In a more 

formal way, every one of these cube classes has its underlying OQL specification. 

Moreover, an expert user can directly define cube classes by specifying the OQL 

sentences (see Section 4.3 for more detail on the representation of cube classes by using 

OQL). 

 

Standard Representation By Using The ODMG Proposal 

 

Our approach generates the corresponding representation of an MD model in most of 

the relational database management systems such as Oracle, Informix, Microsoft SQL 

Server, IBM DB2 and so on (Trujillo, 2001b). Furthermore, we also provide the 

corresponding representation into object-oriented databases. However, this 

representation is totally dependent on the object database management system 

(ODBMS) used for the corresponding implementation. For this reason, in this Section, 

we present the corresponding representation of an MD model accomplished by our 



approach following the standard for ODBMS
2
 proposed by the Object Database 

Management Group (ODMG) (Cattell, 2000). The adoption of this standard ensures the 

portability of our MD model across platforms and products, thereby facilitating the use 

of our approach. However, we also point out some properties that cannot be directly 

represented by using this standard and that should be taken into account when 

transforming this ODBM into a particular object-oriented model of the target ODBMS. 

 

The major components of the ODMG standard are the Object Model, the Object 

Definition Language (ODL), the Object Query Language (OQL), and the bindings of 

the ODMG implementations to different programming languages (C++, Smalltalk, and 

Java). In this chapter, we will start by providing the corresponding representation for 

structural properties into the ODL, a specification language used to define the 

specifications of object types. Then, we will sketch how to represent cube classes into 

the OQL, a query language that supports the ODMG data model. The great benefit of 

this OQL is that is very close to SQL, and is therefore, a very simple-to-use query 

language.  

 

ODL definition of an MD model 

 

Our three-level MD model cannot be represented in an ODBMS, because the ODL uses 

a flat representation for the class diagram without providing any package mechanism in 

the ODL. Therefore, we start the transformation of the MD models from the third level 

                                                 
2
 The ODMG defines an ODBMS as "[…] a DBMS that integrates database capabilities with object-

oriented programming language capabilities". 



in the fact package, because it contains the complete MD model definition: fact classes, 

dimension classes, base classes, classification hierarchy properties, etc.  

 

In the following, we are going to use an actual example to clarify our approach. We 

have selected a simplification of the grocery example taken from Kimball's book 

(Kimball, 2002). In this example, the corresponding MD model contains the following 

elements: 

 

 One fact (Sales) with three measures (quantity, price and total_price) and two 

degenerate dimensions (ticket_num and line_num). 

 Two dimensions: Product, with three hierarchy levels (Brand, Subgroup, and 

Group) and Time, with two hierarchy levels (Month and Year). 

 

The first level of the MD model is represented in Figure 5 and only contains one star 

schema package, as the example only contains one fact. The second level contains one 

fact package (Sales product) and two dimension packages (Product and Time), as it can 

be seen in Figure 6. Finally, Figure 7 represents the content of the Product dimension 

package, and Figure 8 the content of the Time dimension package. 

 

 

Figure 5: First level 

 

Figure 6: Second level 

 



 

Figure 7: Product dimension (third level) 

 

Figure 8: Time dimension (third level) 

 

In Figure 9, we can see the content (level 3) of the Sales products fact package, where 

the complete definition of the MD model is available. The transformation process starts 

from this view of the MD model. 

 

 

Figure 9: Third level of the MD model 

 



For the sake of simplicity, we show the ODL representation of only three classes: Sales, 

Product, and Time (the representation of the other classes is very similar). The 

transformation process starts from the fact class (Sales). Since OID attributes cannot be 

represented in ODL, we have decided to use the unsigned long type to represent them. 

Aggregation relationships cannot be directly represented, but we transform them to 

association relationships. Moreover, maximum cardinality of relationships can be 

expressed, but the minimum cardinality is lost in the transformation process. In ODL, 

the definition of a relationship includes designation of the target type, the cardinality on 

the target side, and information about the inverse relationship found in the target side. 

The ODL definition for the Sales fact class is as follows: 

 

class Sales 

{ 

  attribute unsigned long ticket_num; 

  attribute unsigned long line_num; 

  attribute long quantity; 

  attribute double price; 

  attribute double total_price; 

  relationship Product sales_product inverse Product::product_sales; 

  relationship Time sales_time inverse Time::time_sale; 

}; 

 

For expressing the cardinality ?-to-many, we use the ODL constructor set. For 

example, the Product class has three relationships: with Sales class (?-to-many), with 

Brand class (?-to-one) and with Subgroup class (?-to-many). In order to know the 

cardinality of the relationships in this side, we have to consult the inverse relationship in 

the target side. For example, the relationship between Product and Sales is one-to-

many, since the type of the relationship is set<Sales> (many) in this side, but in the 



inverse relationship (Sales::sales_product) it is Product (one). Product and Time 

dimension classes are specified in ODL as: 

 

class Product 

{ 

  attribute unsigned long upc; 

  attribute string name; 

  attribute float weight; 

  relationship set<Sales> product_sales inverse Sales::sales_product; 

  relationship Brand product_brand inverse Brand::brand_product; 

  relationship set<Subgroup> product_subgroup inverse Subgroup::subgroup_product; 

}; 

 

class Time 

{ 

  attribute unsigned long code; 

  attribute date day; 

  attribute boolean holiday; 

  relationship set<Sales> time_sales inverse Sales::sales_time; 

  relationship Month time_month inverse Month::month_time; 

}; 

 

Loss of expressiveness 

 

As previously commented, some MD properties that are captured in our approach 

cannot be directly considered by using ODL. This is an obvious problem, because the 

ODL is a general definition language that is not oriented to represent MD properties 

used in a conceptual design. Specifically, we ignore or transform the following 

properties: 

 



 Identifying attribute (OID) and descriptor attribute (D) are ignored because they are 

considered to be an implementation issue that will be automatically generated by the 

ODBMS. 

 Initial values are ignored. This is not a key issue in conceptual MD modeling. 

 Derived attributes and their corresponding derivation rules are ignored. These 

derivation rules will have to be specified when defining user requirements by using 

the OQL. 

 Additivity rules are ignored because the ODL specification cannot represent any 

information related to the aggregation operators that can be applied on measures. 

 Minimum cardinality cannot be specified either. 

 Completeness of a classification hierarchy is also ignored. 

 

Up to now, these ignored properties have to be considered as footnotes in the ODMG 

specification. For an unambiguous specification of MD models using the ODMG 

specification, a formal constraint language should be used. Unfortunately, a constraint 

language is completely missing from the ODMG standard specification. 

 

Cube Classes Represented By Using OQL 

 

The OQL is not easy to use for defining users' initial requirements, because the user 

needs to know the underlying ODL representation corresponding to the MD model. Due 

to this fact, we also provide cube classes, which allow the user to define initial 

requirements in a graphical way. These cube classes can automatically be transformed 

into OQL sentences, and can therefore be used to query an ODBMS that stores an MD 

model. For example, let us suppose the following initial requirement: 



 

The quantity sold of the products belonging to the "Grocery" Group 

during "January", grouped according to the product Subgroup and the 

Year and ordered by the Brand of the product 

 

In Figure 10, we can see the corresponding cube class to the previous requirement. It is 

easy to see how the cube class is formed: 

 

Measures contains the goal of the analysis: SUM(quantity). 

Slice the restrictions defined on the Time and Product dimensions. 

Dice the grouping conditions required along the Product and Time dimensions. 

 And Order defines the order of the result set. 

 

 

Figure 10: An example of a user's initial requirement 

 

The cube class can be automatically translated into OQL. The algorithm uses the 

corresponding ODL definition of the MD model to obtain the paths from the fact class 

(the core of the analysis) to the rest of classes (dimension and base classes). For 

example, the path from the Sales fact class to the Year base class along the Time 



dimension traverses the relationships sales_time in Sales fact class, time_month in 

Time dimension class, and month_year in Month base class. Moreover, when attributes’ 

names are omitted in the cube class, the algorithm automatically selects the descriptor 

attribute defined in the MD model. For example, the expression Time.Month="January" 

of the cube class in Figure 10 involves the use of the descriptor attribute from the 

Month base class, because no further attribute is specified. In the same way, the order 

expression Product.Brand involves the use of the descriptor attribute from Brand. The 

OQL for the corresponding cube class in Figure 10 is as follows: 

 

SELECT SUM(s.quantity) 

FROM Sales s, s.sales_time st, s.sales_product sp 

WHERE st.time_month.name = "January" AND 

sp.product_subgroup.subgroup_group.name = "Grocery" 

GROUP BY sp.product_subgroup.name AND st.time_month.month_year.number 

ORDER BY sp.product_brand.name 

 

XML to Interchange Multidimensional Properties 

 

One key aspect in the success of an MD model should be its capability to interchange 

information in an easy and standard format. The eXtensible Markup Language (XML) 

(W3C, 2000) is rapidly being adopted as the standard for the exchange of un-structured, 

semi-structured and structured data. Furthermore, XML is an open neutral platform and 

vendor independent meta-language, which allows users to reduce the cost, complexity, 

and effort required in integrating data within and between enterprises. In the future, all 

applications may exchange their data in XML and then conversion utilities will not be 

necessary any more. 



 

We have adopted the XML to represent our MD models due to its advantages, such as 

standardization, usability, versatility and so on. We have defined an XML Schema 

(W3C, 2001) that determines the correct structure and content of XML documents that 

represent MD models. Moreover, this XML Schema can be used to automatically 

validate the XML documents. In Appendix 1 we include the whole XML Schema that 

we have defined to represent MD models in XML. This XML Schema allows us to 

represent both structural and dynamic properties of MD models. 

 

In Figure 11, Figure 12, and Figure 13
3
, we have graphically represented the main rules 

of our XML Schema, which contains the definition of 25 elements (tags). We have 

defined additional elements (in plural form) in order to group common elements 

together, so that they can be exploited to provide optimum and correct comprehension 

of the model, e.g. elements in plural like PKSCHEMAS or DEPENDENCIES. 

 

The XML Schema follows the three-level structure of our MD approach: 

 

 An MDMODEL contains PKSCHEMAS (star schema packages) at level 1 (Figure 11). 

 A PKSCHEMA contains at most one PKFACT (fact package) and many PKDIM 

(dimension packages) grouped by a PKDIMS element at level 2 (Figure 12). 

 A PKFACT contains at most one FACTCLASS (Figure 12) and a PKDIM contains at 

most one DIMCLASS and many BASECLASSES (Figure 13) at level 3. 

 

                                                 
3
 In these figures we use the following notation: the box with three linked dots represents a sequence of 

elements, the range in which an element can occur is showed with numbers (the default minimum and 



 

Figure 11: MDMODEL element 

 

 

 

Figure 12: PKSCHEMA element 

 

 

Figure 13: PKDIM element 

 

Within our XML Schema, fact classes labeled FACTCLASS may have no fact 

attributes to consider fact-less fact tables, as can be observed in the content of the 

element FACTATTS (0 or more FACTATT): 

 

                                                                                                                                               
maximum number of occurrences is 1) and graphically (a box with a dashed line indicates that the 



<xs:element name="FACTATTS"> 

<xs:annotation> 

<xs:documentation>Group of attributes of a fact class</xs:documentation> 

</xs:annotation> 

<xs:complexType> 

<xs:sequence> 

<xs:element ref="FACTATT" minOccurs="0" maxOccurs="unbounded"/> 

</xs:sequence> 

</xs:complexType> 

</xs:element> 

 

From now on, we are going to explain the structure of our XML Schema by means of 

the grocery example presented in the previous section. In the next fragment of the XML 

document that represents the grocery example, the first line defines the XML version 

and the character encoding used in the document. Then, the second line describes the 

root element of the document (MDMODEL) and declares the XML Schema that defines 

the structure of the document. An MDMODEL element contains two attributes: id and 

name. Finally, an MD model (Figure 11) contains star schema packages (PKSCHEMAS) 

with dependencies between them (DEPENDECIES). 

 

In this example, the MD model only contains one star schema package (Figure 5); as 

there is not any dependency between star schema packages the DEPENDENCIES 

element is empty. 

 

<?xml version="1.0" encoding="UTF-8"?> 

<MDMODEL id="ID5" name="Grocery example" xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance" xsi:noNamespaceSchemaLocation="mdmodel.xsd"> 

  <PKSCHEMAS> 

    <PKSCHEMA id="ID6" name="Grocery" caption="Grocery"> 

    ... 

                                                                                                                                               
minimum number of occurrences is 0).   



    </PKSCHEMA> 

  </PKSCHEMAS> 

  <DEPENDENCIES/> 

</MDMODEL> 

 

In our XML Schema, every MD element has an ID attribute that must be unique to the 

whole XML document. The value of this attribute is automatically generated by our 

exportation process and is used in the definition of relationships between elements in 

our MD model, e.g., in the definition of the dependencies between packages. 

 

The next fragment represents the definition of the star schema Grocery. A PKSCHEMA 

(Figure 12) can contain: 

 

 At most one PKFACT. 

 0 or more dimension packages (PKDIM) defined in the very star schema. 

 Dependencies between the dimensions packages (DEPENDENCIES). 

 

Every package, regardless being a fact or a dimension package, has a name used in the 

exportation process and a caption used in the graphical representation. As seen in this 

fragment of the XML document, two dependencies have been defined from the Sales 

products package (ID7) to the Product package (ID8) and the Time package (ID9). 

Thanks to the use of the IDREF attribute type in the XML Schema, we can define that 

start and end attributes of DEPENDENCY element that must take a value from an ID 

attribute of an element in the XML document. 

 

<PKSCHEMA id="ID6" name="Grocery" caption="Grocery"> 

  <PKFACT id="ID7" name="Sales_products" caption="Sales products"> 



  ... 

  </PKFACT> 

  <PKDIMS> 

    <PKDIM id="ID8" name="Product"> 

    ... 

    </PKDIM> 

    <PKDIM id="ID9" name="Time"> 

    ... 

    </PKDIM> 

  </PKDIMS> 

  <DEPENDENCIES> 

    <DEPENDENCY id="ID10" start="ID7" end="ID8"/> 

    <DEPENDENCY id="ID11" start="ID7" end="ID9"/> 

  </DEPENDENCIES> 

</PKSCHEMA> 

 

The following fragment defines the dimension package Product.  A dimension package 

(Figure 13) contains: 

 

- At most one dimension class (DIMCLASS). 

- 0 or more base classes (BASECLASS) that represent hierarchy levels and 

grouped by a BASECLASSES element. 

 

In this fragment we can see how the relationships between a dimension class and base 

classes are expressed in our XML Schema; the cardinality of the relationship is 

expressed by means of the attributes roleA and roleB. We can also see the definition 

of the three attributes of the Product dimension class: upc, name, and weight. In the 

XML Schema, the {OID} and {D} constraints of our MD model are represented as 

boolean attributes OID and D of the DIMATT element. 

 



<PKDIM id="ID8" name="Product"> 

  <DIMCLASS id="ID12" name="Product"> 

    <DIMATTS> 

      <DIMATT id="ID15" name="upc" atomic="true" type="Integer" 

       OID="true" D="false"/> 

      <DIMATT id="ID16" name="name" atomic="true" type="String" 

       OID="false" D="true"/> 

      <DIMATT id="ID17" name="weight" atomic="true" type="Single" 

       OID="false" D="false"/> 

    </DIMATTS> 

    <RELATIONASOCS> 

      <RELATIONASOC id="ID35" child="ID18" roleA="1..M" roleB="1" 

       completeness="false"/> 

      <RELATIONASOC id="ID36" child="ID25" roleA="1..M" roleB="1..M" 

       completeness="false"/> 

    </RELATIONASOCS> 

    <RELATIONCATS/> 

    <METHODS/> 

  </DIMCLASS> 

  <BASECLASSES> 

    <BASECLASS id="ID18" name="Brand"> 

    ... 

    </BASECLASS> 

    <BASECLASS id="ID25" name="Subgroup"> 

    ... 

    </BASECLASS> 

    <BASECLASS id="ID30" name="Group"> 

    ... 

    </BASECLASS> 

  </BASECLASSES> 

  <IMPBASECLASSES/> 

</PKDIM> 

 



 

Figure 14: PKFACT element 

 

Finally, a fact package (Figure 12) contains at most one fact class, and each fact class 

(Figure 14) can contain fact attributes (FACATTS), methods (METHODS) and shared 

aggregations with the dimension classes (SHAREDAGGS). Notice that many-to-many 

relationships between facts and dimensions can also be expressed by assigning the same 

value "M" to both attributes roleA and roleB in the XML Schema element 

SHAREDAGG. 

 

<PKFACT id="ID7" name="Sales_products" caption="Sales products"> 

  <FACTCLASS id="ID70" name="Sales"> 

    <FACTATTS> 

      <FACTATT id="ID71" name="ticket_num" atomic="true" 

       type="Integer" OID="true"/> 

      <FACTATT id="ID72" name="line_num" atomic="true" type="Integer" 

       OID="true"/> 

      <FACTATT id="ID73" name="quantity" atomic="true" type="Integer" 

       OID="false"/> 

      <FACTATT id="ID74" name="price" atomic="true" type="Currency" 

       OID="false"/> 

      <FACTATT id="ID75" name="total_price" atomic="true" 

       type="Currency" derivationRule="quantity * price" OID="false"/> 

    </FACTATTS> 

    <METHODS/> 

    <SHAREDAGGS> 

      <SHAREDAGG id="ID80" dimclass="ID12" roleA="1" roleB="1..M"/> 



      <SHAREDAGG id="ID81" dimclass="ID49" roleA="1" roleB="1..M"/> 

    </SHAREDAGGS> 

  </FACTCLASS> 

</PKFACT> 

 

Different Presentations Of MD Models 

 

Another relevant issue of our approach was to provide different presentations of the MD 

models in the Web. To solve this problem, XSL Transformations (XSLT) (W3C, 1999) 

is a technology that allows us to define the presentation for XML documents. XSLT 

stylesheets describe a set of patterns (templates) to match both elements and attributes 

defined in an XML Schema, in order to apply specific transformations for each 

considered match. Thanks to XSLT, the source document can be filtered and reordered 

in constructing the resulting output. 

 

Figure 15 illustrates the overall transformation process for a MD model. The MD model 

is stored in an XML document and an XSLT stylesheet is provided to generate different 

presentations of the MD model: e.g., as a Portable Document Format (PDF) file or as a 

HyperText Markup Language (HTML) document.  

 



 

Figure 15: Generating different presentations from the same MD model 

 

Due to space constraints, it is not possible to include the complete definition of the 

XSLT stylesheet here. Therefore, we only exhibit some fragments of the XSLT. The 

first example shows the instructions that generate the HTML code to display 

information about fact attributes (FACTATT): 

 

<xsl:if test="FACTATTS/FACTATT"> 

 <tr> 

  <td class="data"> 

  <table class="data" cellpadding="2" cellspacing="2" border="0" width="100%"> 

  <tr> 

   <th class="name">Name</th> 

   <th class="name">Type</th> 

   <th class="name">Initial</th> 

   <th class="name">Derivation Rule</th> 

   <th class="name">DD</th> 

  </tr> 

<xsl:for-each select="FACTATTS/FACTATT"> 

  <tr> 

   <td class="value"><xsl:value-of select="@name"/></td> 

   <td class="value"><xsl:value-of select="@type"/></td> 

   <td class="value"><xsl:value-of select="@initial"/></td> 



   <td class="value"><xsl:value-of select="@derivationRule"/></td> 

   <td class="value"> 

<xsl:choose> 

 <xsl:when test="@DD"><xsl:value-of select="@DD"/></xsl:when> 

 <xsl:otherwise>false</xsl:otherwise> 

</xsl:choose> 

   </td> 

  </tr> 

</xsl:for-each> 

  </table> 

  </td> 

 </tr> 

</xsl:if> 

 

Notice that XSLT instructions (highlighted in bold typeface) and HTML tags are 

intermingled. The XSLT processor copies the HTML tags to the transformed document 

and interprets any XSLT instruction encountered. Applied to this example, the value of 

the attributes of the element FACTATT are inserted in the resulting document in an 

HTML table. 

 

CASE STUDIES 

 

The aim of this section is to exemplify the usage of our conceptual modeling approach 

on modeling MD databases. We have selected three different examples taken from 

Kimball’s book (Kimball, 2002), each of which introduces a new particular modeling 

feature: a warehouse, a large bank, and a college course. Due to the lack of space, we 

will only apply our complete modeling approach for the first example: we will apply all 

of the diagrams we use for modeling a DW (package diagrams, class diagrams, 

interaction diagrams, etc.). For the rest of the examples, due to space constraints, we 



will only focus on representing the structural properties of MD modeling by specifying 

the corresponding UML class diagram. This class diagram is the key one in our 

approach since the rest of diagrams can be easily obtained from it.  

 

The Warehouse 

 

This example explores three inventory models of a warehouse. The first one is the 

inventory snapshot, where the inventory levels are measured every day and are placed in 

separate records in the database. The second model is the delivery status model, which 

contains one record for each delivery to the warehouse and the disposition of all the 

items is registered until they have left the warehouse. Finally, the third inventory model 

is the transaction model, which records every change of the status of delivery products 

as they arrive at the warehouse, are processed into the warehouse, etc. 

 

This example introduces two important concepts: the semi-additivity and the multistar 

model (also known as fact constellations). The former has already been introduced in 

Section 2 and refers to the fact that a measure cannot be summarized by using the sum 

function along a dimension. In this example, the inventory level (stock) of the 

warehouse is semi-additive, because it cannot be summed along time dimension, but it 

can be averaged along the same dimension. The multistar (fact constellations) concept 

refers to the fact that the same MD model has multiple facts. 

 

To start with, in our approach we model multistar models by means of package 

diagrams. In this way, at the first level, we create a package diagram for each one of the 

facts considered in the model. At this level, connecting package diagrams means that a 



model will use elements (e.g. dimensions, hierarchies) defined in the other package. 

Figure 16 shows the first level of the model formed by three packages that represent the 

different star schemas in the case study.  

 

 

Figure 16: Level 1 

 

Then, we explore each package diagram at the second level to define packages for each 

one of the facts and dimensions defined in the corresponding package diagram. Figure 

17 shows the content of the package Inventory Snapshot Star at level 2. The fact package 

Inventory Snapshot Fact is represented in the middle of Figure 17, and the dimension 

packages (Product Dimension, Time Dimension, and Warehouse Dimension) are placed 

around the fact package. As can be seen, a dependency is drawn from the fact package 

to each one of the dimension packages, because the fact package comprises the whole 

definition of the star schema. At level 2, it is possible to create a dependency from a fact 

package to a dimension package or between dimension packages (when they share some 

hierarchy levels), but not from a dimension package to a fact package. 

 

 

Figure 17: Level 2 of Inventory Snapshot 

Star 

 

Figure 18: Level 2 of Inventory Transaction Star 

 

 



Figure 18 shows the content of the package Inventory Transaction Star at level 2. As in the 

Inventory Snapshot Star, the fact package is placed in the middle of the figure and the 

dimension packages are placed around the fact package in a star fashion. Three 

dimension packages (Product Dimension, Time Dimension, and Warehouse Dimension) 

have been previously defined in the Inventory Snapshot Star (Figure 17), and they are 

imported in this package. Therefore, the name of the package where they have been 

previously defined appears below the package name (from Inventory Snapshot Star).  

 

The content of the dimension and fact packages is represented at level 3. The diagrams 

at this level are only comprised of classes and their associations. For example, Figure 19 

shows the content of the package Warehouse Dimension at level 3. In a dimension 

package, a class is drawn for the dimension class (Warehouse) and a class for each 

classification hierarchy level (ZIP, City, County, State, SubRegion, and Region). For the 

sake of simplicity, the methods of each class have not been depicted in the figure. As 

can be seen in Figure 19, Warehouse presents alternative path classification hierarchies: 

(i) ZIP, City, County, State, and (ii) SubRegion, Region, State. 

 



 

Figure 19: Level 3 of Warehouse Dimension 

 

Finally, Figure 20 shows the content of the package Inventory Snapshot Fact. In this 

package, the whole star schema is displayed: the fact class (Inventory Snapshot) is 

defined and the dimensions with their corresponding hierarchy levels are imported from 

the dimension packages. To avoid unnecessary details, we have hidden the attributes 

and methods of dimensions and hierarchy levels, but the measures of the fact are shown 

as attributes of the fact class: four atomic measures (quantity_on_hand, 

quantity_shipped, value_at_cost, and value_at_LSP), and three derived measures 

(number_of_turns, gross_profit, and gross_margin). The definition of the derived 

measures is included in the model by means of derivation rules. Regarding the 

additivity of the measures, only quantity_on_hand is semi-additive; because of this, an 

additivity rule has been added to the model. Finally, Warehouse presents alternative path 

classification hierarchies and Time and Product present multiple classification 

hierarchies, as can be seen in Figure 20. 

 



 

Figure 20: Level 3 of Inventory Snapshot Fact 

 

Regarding the dynamic part of the model, let us suppose the following user's initial 

requirement on the MD model specified by the UML class diagram of Figure 20: ‘We 

wish to analyze the quantity_on_hand of products where the group of products is 

“Grocery” and the warehouse state is “Valencia”, grouped according to the product 

subgroup and the warehouse region and subregion, and ordered by the warehouse 

subregion and region’. On the left hand side of Figure 21, we can observe the graphical 

notation of the cube class that corresponds to this requirement. The measure to be 

analyzed (quantity_on_hand) is specified in the measure area. Constraints defined on 

dimension classification hierarchy levels (group and state) are included in the slice area, 

while classification hierarchy levels along which we are interested in analyzing 

measures (subgroup, region, and subregion) are included in the dice area. Finally, the 

available OLAP operations are specified in the CO (Cube Operations) section (in this 



example the CO are omitted to avoid unnecessary detail). On the right hand side of 

Figure 21 the OQL sentence corresponding to the cube class is shown. We can notice 

how the descriptor attributes from the MD model are used when the attributes of the 

hierarchy levels are omitted in the analysis. For example, the expression 

Warehouse.State="Valencia" of the cube class involves the use of the descriptor 

attribute from the State base class (Figure 19). 

 

 

 

SELECT quantity_on_hand 

FROM Inventory_Snapshot i, i.is_warehouse iw, i.is_product ip 

WHERE iw.warehouse_subregion.subregion_region.region_state.State_name = 

"Valencia" AND ip.product_subgroup.subgroup_group.Name = "Grocery" 

GROUP BY iw.warehouse_subregion.subregion_region.Region_name, 

iw.warehouse_subregion.Subregion_name, ip.product_subgroup.Name 

ORDER BY iw.warehouse_subregion.Subregion_name, 

iw.warehouse_subregion.subregion_region.Region_name 

 

Figure 21: An example of a user's initial requirement 

 

From the MD model stored in an XML document, we can provide different 

presentations thanks to the use of XSLT stylesheets. For example, we use XSLT 

stylesheets and XML documents in a transformation process to automatically generate 

HTML pages that can represent different presentations of the same MD model. As an 

example of the applicability of our proposal, these HTML pages can be used to 

document the MD models in the Web, with the advantages that it implies 

(standardization, access from any computer with a browser, ease of use, etc.). Moreover, 

the automatic generation of documentation from conceptual models avoids the problem 



of documentation out of date (incoherencies, features not reflected in the 

documentation, etc.).  

 

For example, in Figure 22, we show the definition of Inventory Snapshot Star on a web 

page. This page contains the general description of a star: name, description, and the 

names of the fact classes and dimension classes, which are active links that allow us to 

navigate through the different presentations of the model on a web browser. All the 

information about the MD properties of the model is represented in the HTML pages. 

 

 

Figure 22: Multidimensional model on the Web 

 

A Large Bank 

 



In this example, a DW for a large bank is presented. The bank offers a significant 

portfolio of financial services: checking accounts, savings accounts, mortgage loans, 

safe deposit boxes, and so on. 

 

This example introduces the following concepts: 

 

 Heterogeneous dimension: a dimension that describes a large number of 

heterogeneous items with different attributes. Kimball’s recommended technique is 

“to create a core fact table and a core dimension table in order to allow queries to 

cross the disparate types and to create a custom fact table and a custom dimension 

table for querying each individual type in depth”. However, our conceptual MD 

approach can provide an elegant and simple solution to this problem, thanks to the 

categorization of dimensions. 

 Categorization of dimensions: it allows us to model additional features for a 

dimension’s subtypes. 

 Shared classification hierarchies between dimensions: our approach allows two or 

more dimensions to share some levels of their classification hierarchies.  

 

Figure 23 represents level 1, which comprises five star packages: Saving Accounts Star, 

Personal Loans Star, Investment Loans Star, Safe Deposit Boxes Star, and Mortgage 

Loans Star. For now, we will only center on the Mortgage Loans Star. The 

corresponding level 2 of this star package is depicted in Figure 24.  

 



 

Figure 23: Level 1 

 

Figure 24: Level 2 of Mortgage Loans Star 

 

Level 3 of Mortgage Loans Fact is shown in Figure 25. To avoid unnecessarily 

complicating the figure, three of the dimensions (Account, Time, and Status) with their 

corresponding hierarchies are not represented. Moreover, the attributes of the 

represented hierarchy levels have been omitted. The fact class (Mortgage Loans) 

contains four attributes that represent the measures: total, balance, and payment_number 

are atomic; whereas debt is derived (the corresponding derivation rule is placed next to 

the fact class). None of the measures is additive. Consequently, the additivity rules are 

also placed next to the fact class. 

 

In this example, the dimensions present two special characteristics. On one hand, 

Branch and Customer share some hierarchy levels: ZIP, City, County, and State. On the 

other hand, the Product dimension has a generalization-specialization hierarchy. This 

kind of hierarchy allows us to easily deal with heterogeneous dimensions: the different 

items can be grouped together in different categorization levels depending on their 

properties. 

 



 

Figure 25: Level 3 of Mortgage Loans Fact 

 

Finally, this MD model can be accessible through the Web thanks to the use of XSLT 

stylesheets. In Figure 26, we show the definition of the Mortgage Loans Star schema. 

On the left hand side of this figure we can notice a hierarchy index that shows the five 

star schemas that the MD model comprises. From this web page, if the Mortgage Loans 

link is selected, the page showed in Figure 27 is loaded. 

 



 

Figure 26: Multidimensional model on the Web 

 

In Figure 27, the definition of Mortgage Loans fact class is shown: the name of the fact 

class, the measures, methods, and shared aggregations. In this example, Mortgage 

Loans contains three measures: total, balance, and payment_number. Moreover, this fact 

class holds six aggregation relationships with the dimensions Account, Status, Time, 

Branch dim, Customer dim, and Product dim, which are active links and allow us to 

continue exploring the model on the Web. 



 

Figure 27: Multidimensional model on the Web 

 

The College Course 

 

This example introduces the concept of the factless fact table (FFT): fact tables for 

which there are no measured facts. Kimball distinguishes two major variations of FFT: 

event tracking tables and coverage tables. In this example we will focus on the first 

type. 

 

Event tracking tables are used when a large number of events need to be recorded as a 

number of dimensional entities coming together simultaneously. In this example, we 

will model daily class attendance at a college. In Figure 28 and Figure 29, level 1 and 



level 2 of this model are depicted respectively. In this case, level 1 only contains one 

star package. 

 

 

Figure 28: Level 1 

 

Figure 29: Level 2 of College Course Star 

 

Figure 30 shows level 3 of College Course Fact. For the sake of simplicity, the 

attributes and methods of every class have not been depicted in the figure. As shown, 

the fact class College Course contains no measures because it is a FFT. In FFT, the 

majority of the questions that users create imply counting the number of records that 

satisfy a constraint, such as: which facilities were used most heavily? Or, which courses 

were the least attended? 

 

Regarding the dimensions, Course and Time present multiple classification hierarchies, 

Professor and Student share some hierarchy levels, and Facility presents a categorization 

hierarchy. 

 



 

Figure 30: Level 3 of College Course Star 

 

CONCLUSIONS 

 

In this chapter, we have presented an OO conceptual modeling approach, based on the 

UML, to design DWs, MD databases and OLAP applications. Structural aspects of MD 

modeling are easily specified by means of a UML class diagram in which classes are 

related through association and shared aggregation relationships. In this context, thanks 

to the flexibility and the power of the UML, all the semantics required for proper MD 

conceptual modeling are considered, such as many-to-many relationships between facts 

and particular dimensions, multiple path hierarchies of dimensions, the strictness and 

completeness of classification hierarchies, and categorization of dimension attributes. 

Regarding dynamic aspects, we provide a UML-compliant class graphical notation 

(called cube classes) to specify users' initial requirements at the conceptual level. 

Moreover, we have sketched out how to represent a conceptual MD model 

accomplished by our approach in the ODMG standard as a previous step for a further 



implementation of MD models into OODB and ORDB. Furthermore, to facilitate the 

interchange of MD models, we provide an XML Schema from which we can obtain 

valid XML documents. Moreover, we apply XSLT stylesheets in order to provide 

different presentations of the MD models. Finally, we have selected three case studies 

from Kimball’s book and modeled them following our approach. This shows that our 

approach is a very easy-to-use yet powerful conceptual model that represents main 

structural and dynamic properties of MD modeling in an easy and elegant way.  

 

Currently, we are working on several issues. On one hand, we are extending our 

approach to key issues in MD modeling, including temporal and slowly changing 

dimensions. On the other hand, we are also working on the definition of a formal 

constraint language for ODMG that allows us to represent the MD modeling necessarily 

ignored in the generation process from our approach based on the UML.  

 

APPENDIX 1 

 

 In this section we include the whole XML Schema that we have defined to 

represent MD models in XML. This XML Schema allows us to represent both structural 

and dynamic properties of MD models and initial requirements (cube classes). 

 
<?xml version="1.0" encoding="ISO-8859-1"?> 

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified" 
attributeFormDefault="unqualified"> 

 

<xs:attributeGroup name="id_name"> 
<xs:annotation> 

<xs:documentation>Common attributes to different elements (id y name)</xs:documentation> 

</xs:annotation> 
<xs:attribute name="id" type="xs:ID" use="required"/> 

<xs:attribute name="name" type="xs:string" use="required"/> 

</xs:attributeGroup> 
 

<xs:attributeGroup name="dim_fact_atts"> 

<xs:annotation> 
<xs:documentation>Common attributes to dimension and fact classes</xs:documentation> 

</xs:annotation> 

<xs:attribute name="id" type="xs:ID" use="required"/> 



<xs:attribute name="name" type="xs:string" use="required"/> 

<xs:attribute name="derived" type="xs:boolean" default="false"/> 

<xs:attribute name="derivationRule" type="xs:string" use="optional"/> 
<xs:attribute name="type" type="xs:string" use="required"/> 

<xs:attribute name="initial" type="xs:string" use="optional"/> 

</xs:attributeGroup> 
 

<xs:element name="MDMODEL"> 

<xs:annotation> 
<xs:documentation>Root element of the model</xs:documentation> 

</xs:annotation> 

<xs:complexType> 
<xs:sequence> 

<xs:element ref="PKSCHEMAS"/> 

<xs:element name="DEPENDENCIES"> 
<xs:annotation> 

<xs:documentation>Group of dependencies</xs:documentation> 

</xs:annotation> 
<xs:complexType> 

<xs:sequence> 

<xs:element name="DEPENDENCY"> 
<xs:annotation> 

<xs:documentation>Dependency between two packages</xs:documentation> 

</xs:annotation> 
<xs:complexType> 

<xs:attribute name="id" type="xs:ID" use="required"/> 

<xs:attribute name="start" type="xs:IDREF" use="required"/> 
<xs:attribute name="end" type="xs:IDREF" use="required"/> 

</xs:complexType> 

</xs:element> 
</xs:sequence> 

</xs:complexType> 

</xs:element> 

</xs:sequence> 

<xs:attributeGroup ref="id_name"/> 

</xs:complexType> 
<xs:key name="PKSCHEMAKey"> 

<xs:selector xpath="PKSCHEMAS/PKSCHEMA"/> 

<xs:field xpath="@id"/> 
</xs:key> 

<xs:keyref name="startPKSCHEMAKey" refer="PKSCHEMAKey"> 
<xs:selector xpath="DEPENDENCIES/DEPENDENCY"/> 

<xs:field xpath="@start"/> 

</xs:keyref> 
<xs:keyref name="endPKSCHEMAKey" refer="PKSCHEMAKey"> 

<xs:selector xpath="DEPENDENCIES/DEPENDENCY"/> 

<xs:field xpath="@end"/> 
</xs:keyref> 

</xs:element> 

 
 

<xs:element name="PKSCHEMAS"> 

<xs:annotation> 
<xs:documentation>Group of star schema packages</xs:documentation> 

</xs:annotation> 

<xs:complexType> 
<xs:sequence> 

<xs:element ref="PKSCHEMA" minOccurs="0" maxOccurs="unbounded"/> 

</xs:sequence> 
</xs:complexType> 

</xs:element> 

 
 

<xs:element name="PKSCHEMA"> 

<xs:annotation> 
<xs:documentation>Star schema package (first level)</xs:documentation> 

</xs:annotation> 

<xs:complexType> 
<xs:sequence> 

<xs:element ref="PKFACT" minOccurs="0"/> 

<xs:element ref="PKDIMS"/> 
<xs:element name="DEPENDENCIES"> 

<xs:annotation> 

<xs:documentation>Group of dependencies</xs:documentation> 
</xs:annotation> 

<xs:complexType> 



<xs:sequence> 

<xs:element name="DEPENDENCY"> 

<xs:annotation> 
<xs:documentation>Dependency between two packages</xs:documentation> 

</xs:annotation> 

<xs:complexType> 
<xs:attribute name="id" type="xs:ID" use="required"/> 

<xs:attribute name="start" type="xs:IDREF" use="required"/> 

<xs:attribute name="end" type="xs:IDREF" use="required"/> 
</xs:complexType> 

</xs:element> 

</xs:sequence> 
</xs:complexType> 

</xs:element> 

</xs:sequence> 
<xs:attributeGroup ref="id_name"/> 

</xs:complexType> 

<xs:key name="DIMCLASSKey"> 
<xs:selector xpath="PKDIMS/PKDIM/DIMCLASS"/> 

<xs:field xpath="@id"/> 

</xs:key> 
<xs:keyref name="sharedaggDIMCLASSKey" refer="DIMCLASSKey"> 

<xs:selector xpath="PKFACT/FACTCLASS/SHAREDAGGS/SHAREDAGG"/> 

<xs:field xpath="@dimclass"/> 
</xs:keyref> 

<xs:key name="PKDIMKey"> 

<xs:selector xpath="PKDIMS/PKDIM"/> 
<xs:field xpath="@id"/> 

</xs:key> 

<xs:key name="PKFACTKey"> 
<xs:selector xpath="PKFACT"/> 

<xs:field xpath="@id"/> 

</xs:key> 

<xs:keyref name="startPKDIMKey" refer="PKDIMKey"> 

<xs:selector xpath="DEPENDENCIES/DEPENDENCY"/> 

<xs:field xpath="@start"/> 
</xs:keyref> 

<xs:keyref name="startPKFACTKey" refer="PKFACTKey"> 

<xs:selector xpath="DEPENDENCIES/DEPENDENCY"/> 
<xs:field xpath="@start"/> 

</xs:keyref> 
<xs:keyref name="endPKDIMKey" refer="PKDIMKey"> 

<xs:selector xpath="DEPENDENCIES/DEPENDENCY"/> 

<xs:field xpath="@end"/> 
</xs:keyref> 

</xs:element> 

 
<xs:element name="PKFACT"> 

<xs:annotation> 

<xs:documentation>Fact package (second level)</xs:documentation> 
</xs:annotation> 

<xs:complexType> 

<xs:sequence> 
<xs:element ref="FACTCLASS"/> 

</xs:sequence> 

<xs:attributeGroup ref="id_name"/> 
</xs:complexType> 

</xs:element> 

 
<xs:element name="FACTCLASS"> 

<xs:annotation> 

<xs:documentation>Fact class (third level)</xs:documentation> 
</xs:annotation> 

<xs:complexType> 

<xs:sequence> 
<xs:element ref="FACTATTS"/> 

<xs:element ref="METHODS"/> 

<xs:element ref="SHAREDAGGS"/> 
</xs:sequence> 

<xs:attributeGroup ref="id_name"/> 

</xs:complexType> 
</xs:element> 

 

<xs:element name="FACTATTS"> 
<xs:annotation> 

<xs:documentation>Group of attributes of a fact class</xs:documentation> 



</xs:annotation> 

<xs:complexType> 

<xs:sequence> 
<xs:element ref="FACTATT" minOccurs="0" maxOccurs="unbounded"/> 

</xs:sequence> 

</xs:complexType> 
</xs:element> 

 

<xs:element name="FACTATT"> 
<xs:annotation> 

<xs:documentation>Fact attribute</xs:documentation> 

</xs:annotation> 
<xs:complexType> 

<xs:attributeGroup ref="dim_fact_atts"/> 

<xs:attribute name="DD" type="xs:boolean" default="false"/> 
</xs:complexType> 

</xs:element> 

 
<xs:element name="DEGFACT"> 

<xs:annotation> 

<xs:documentation>Degenerate fact</xs:documentation> 
</xs:annotation> 

<xs:complexType> 

<xs:sequence> 
<xs:element ref="FACTATTS"/> 

<xs:element ref="METHODS"/> 

</xs:sequence> 
<xs:attributeGroup ref="id_name"/> 

</xs:complexType> 

</xs:element> 
 

<xs:element name="METHODS"> 

<xs:annotation> 

<xs:documentation>Group of methods of a fact or a base class</xs:documentation> 

</xs:annotation> 

<xs:complexType> 
<xs:sequence> 

<xs:element ref="METHOD" minOccurs="0" maxOccurs="unbounded"/> 

</xs:sequence> 
</xs:complexType> 

</xs:element> 
 

<xs:element name="METHOD"> 

<xs:annotation> 
<xs:documentation>Method of a fact or a base class</xs:documentation> 

</xs:annotation> 

<xs:complexType> 
<xs:attributeGroup ref="id_name"/> 

</xs:complexType> 

</xs:element> 
 

<xs:element name="SHAREDAGGS"> 

<xs:annotation> 
<xs:documentation>Group of aggregations of a fact</xs:documentation> 

</xs:annotation> 

<xs:complexType> 
<xs:sequence> 

<xs:element ref="SHAREDAGG" minOccurs="0" maxOccurs="unbounded"/> 

</xs:sequence> 
</xs:complexType> 

</xs:element> 

 
<xs:element name="SHAREDAGG"> 

<xs:annotation> 

<xs:documentation>Aggregation between a fact and a dimension</xs:documentation> 
</xs:annotation> 

<xs:complexType> 

<xs:sequence> 
<xs:element ref="DEGFACT" minOccurs="0"/> 

</xs:sequence> 

<xs:attribute name="id" type="xs:ID" use="required"/> 
<xs:attribute name="dimclass" type="xs:IDREF" use="required"/> 

<xs:attribute name="name" type="xs:string" use="optional"/> 

<xs:attribute name="description" type="xs:string" use="optional"/> 
<xs:attribute name="roleA" type="xs:string" use="optional"/> 

<xs:attribute name="roleB" type="xs:string" use="optional"/> 



</xs:complexType> 

</xs:element> 

 
 

<xs:element name="PKDIMS"> 

<xs:annotation> 
<xs:documentation>Group of dimension packages of a star schema</xs:documentation> 

</xs:annotation> 

<xs:complexType> 
<xs:sequence> 

<xs:element ref="PKDIM" minOccurs="0" maxOccurs="unbounded"/> 

</xs:sequence> 
</xs:complexType> 

</xs:element> 

 
<xs:element name="PKDIM"> 

<xs:annotation> 

<xs:documentation>Dimension package (second level)</xs:documentation> 
</xs:annotation> 

<xs:complexType> 

<xs:sequence> 
<xs:element ref="DIMCLASS"/> 

<xs:element ref="BASECLASSES"/> 

</xs:sequence> 
<xs:attributeGroup ref="id_name"/> 

</xs:complexType> 

<xs:key name="BASECLASSKey"> 
<xs:selector xpath="BASECLASSES/BASECLASS"/> 

<xs:field xpath="@id"/> 

</xs:key> 
<xs:keyref name="dimclassBASECLASSKey" refer="BASECLASSKey"> 

<xs:selector xpath="DIMCLASS"/> 

<xs:field xpath="@baseclass"/> 

</xs:keyref> 

<xs:keyref name="relationasocBASECLASSKey" refer="BASECLASSKey"> 

<xs:selector xpath="BASECLASSES/BASECLASS/RELATIONASOCS/RELATIONASOC"/> 
<xs:field xpath="@child"/> 

</xs:keyref> 

<xs:keyref name="relationcatBASECLASSKey" refer="BASECLASSKey"> 
<xs:selector xpath="BASECLASSES/BASECLASS/RELATIONCATS/RELATIONCAT"/> 

<xs:field xpath="@child"/> 
</xs:keyref> 

</xs:element> 

 
<xs:element name="DIMCLASS"> 

<xs:annotation> 

<xs:documentation>Dimension class (third level)</xs:documentation> 
</xs:annotation> 

<xs:complexType> 

<xs:attributeGroup ref="id_name"/> 
<xs:attribute name="baseclass" type="xs:IDREF" use="optional"/> 

<xs:attribute name="isTime" type="xs:boolean" default="false"/> 

</xs:complexType> 
</xs:element> 

 

<xs:element name="BASECLASSES"> 
<xs:annotation> 

<xs:documentation>Group of base classes of a dimension</xs:documentation> 

</xs:annotation> 
<xs:complexType> 

<xs:sequence> 

<xs:element ref="BASECLASS" minOccurs="0" maxOccurs="unbounded"/> 
</xs:sequence> 

</xs:complexType> 

</xs:element> 
 

<xs:element name="BASECLASS"> 

<xs:annotation> 
<xs:documentation>Base class (third level)</xs:documentation> 

</xs:annotation> 

<xs:complexType> 
<xs:sequence> 

<xs:element ref="DIMATTS"/> 

<xs:choice minOccurs="0"> 
<xs:element ref="RELATIONASOCS"/> 

<xs:element ref="RELATIONCATS"/> 



</xs:choice> 

<xs:element ref="METHODS"/> 

</xs:sequence> 
<xs:attributeGroup ref="id_name"/> 

</xs:complexType> 

</xs:element> 
 

<xs:element name="DIMATTS"> 

<xs:annotation> 
<xs:documentation>Group of attributes of a base class</xs:documentation> 

</xs:annotation> 

<xs:complexType> 
<xs:sequence> 

<xs:element ref="DIMATT" minOccurs="0" maxOccurs="unbounded"/> 

</xs:sequence> 
</xs:complexType> 

</xs:element> 

 
<xs:element name="DIMATT"> 

<xs:annotation> 

<xs:documentation>Attribute of a base class</xs:documentation> 
</xs:annotation> 

<xs:complexType> 

<xs:attributeGroup ref="id_name"/> 
<xs:attribute name="derived" type="xs:boolean" default="false"/> 

<xs:attribute name="derivationRule" type="xs:string" use="optional"/> 

<xs:attribute name="type" type="xs:string" use="required"/> 
<xs:attribute name="initial" type="xs:string" use="optional"/> 

<xs:attribute name="OID" type="xs:boolean" default="false"/> 

<xs:attribute name="D" type="xs:boolean" default="false"/> 
</xs:complexType> 

</xs:element> 

 

<xs:element name="RELATIONASOCS"> 

<xs:annotation> 

<xs:documentation>Group of relationships between classes</xs:documentation> 
</xs:annotation> 

<xs:complexType> 

<xs:sequence> 
<xs:element ref="RELATIONASOC" minOccurs="0" maxOccurs="unbounded"/> 

</xs:sequence> 
</xs:complexType> 

</xs:element> 

 
<xs:element name="RELATIONASOC"> 

<xs:annotation> 

<xs:documentation>Relationship between two classes</xs:documentation> 
</xs:annotation> 

<xs:complexType> 

<xs:attribute name="ID" type="xs:ID" use="required"/> 
<xs:attribute name="child" type="xs:IDREF" use="required"/> 

<xs:attribute name="name" type="xs:string" use="optional"/> 

<xs:attribute name="roleA" type="xs:string" use="optional"/> 
<xs:attribute name="roleB" type="xs:string" use="optional"/> 

<xs:attribute name="completeness" type="xs:boolean" default="false"/> 

</xs:complexType> 
</xs:element> 

 

<xs:element name="RELATIONCATS"> 
<xs:annotation> 

<xs:documentation>Group of categorization relationships between classes</xs:documentation> 

</xs:annotation> 
<xs:complexType> 

<xs:sequence> 

<xs:element ref="RELATIONCAT" minOccurs="0" maxOccurs="unbounded"/> 
</xs:sequence> 

</xs:complexType> 

</xs:element> 
 

<xs:element name="RELATIONCAT"> 

<xs:annotation> 
<xs:documentation>Categorization relationship between two classes</xs:documentation> 

</xs:annotation> 

<xs:complexType> 
<xs:attribute name="id" type="xs:ID" use="required"/> 

<xs:attribute name="child" type="xs:IDREF" use="required"/> 



<xs:attribute name="name" type="xs:string" use="optional"/> 

</xs:complexType> 

</xs:element> 
</xs:schema> 


