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Abstract 
 

One of the main goals of databases is to provide consistent information. In this paper, we present an 

automatic method for reducing inconsistency found in existing databases, and thus, improving data 

quality. All the values that refer to a same term are clustered by measuring their degree of similarity. The 

clustered values can be assigned to a common value that, in principle, could substitute the original 

values. We evaluate different similarity measures for clustering. The method we propose gives good 

results with a considerably low error rate. 

 

1. Introduction 
 

Existing information systems provide rapid and precise access to the information stored in databases. 

One of the main uses of databases is to find information. Traditional search systems work by matching 

the term that is being searched with the values stored in the corresponding database. If the information 

contained in databases is inconsistent (i.e., if a given term appears with different values because several 

denominations exist, or because it is misspelled), a search using a given value will not provide all the 

available information about the term. 

The problem of the inconsistency found in the values stored in databases may have three principal 

causes: 

 

1. If the number of possible values that a single field can accept is not controlled, a given person, (or 

different persons), may insert the same term with different values. For instance, a database that stores the 

names of the departments of a university may have several different forms (e.g., the use of upper-case 

letters or abbreviations): “Departamento de Lenguajes y Sistemas Informáticos”, “Depto. de Lenguajes y 

Sistemas Informáticos”, “Dpt. de lenguajes y sistemas informáticos”, etc. 

2. When we try to integrate different databases into a common repository (e.g., in a data warehouse), 

one or more of them may suffer from the above-mentioned problem. The consistency of their contents has 

been guaranteed separately. However, the criteria used for establishing the consistency of each one might 

well be different and integrating them all could cause inconsistency problems. For example, we wish to 

integrate three different databases that store bibliographical information. The authors might well appear 

in different forms in each one: i.e., full names, “Miguel de Cervantes Saavedra”, or by last names first 

and then the first name, “Cervantes Saavedra, Miguel de”, or by first name and last name only, “Miguel 

de Cervantes”. 

3. Another problem is the multilinguality. In a multilingual society (e.g., European Community) it is 

common to find official names written in different languages. For instance, we consult a database that 



stores information about university researchers, (e.g., researcher’s name, researcher’s university, etc.), 

and we wish to obtain a list of all of the researchers who work at the University of Alicante. We may 

easily find that there are different values for this university: “Universidad de Alicante” (in Spanish), 

“Universitat d'Alacant” (in Catalan), “University of Alicante” or “Alicante University” (in English), and 

“Université d'Alicante” (in French). 

 

The remainder of the paper is structured as follows: Section 2 outlines the origin of the problem and 

the possible causes that give rise to the different variants that appear for the same term; Section 3 

introduces our method for reducing inconsistency found in existing databases; Section 4 explains the core 

of our study and details the technical aspects of our method; Section 5 provides an evaluation of the 

method; and finally, our conclusions are presented in Section 6. 

 

2. Analysis of the Problem 
 

After analysing several databases with information both in Spanish and in English, we have noticed 

that the different values that appear for a given term are due to a combination of the following causes: 

 

1. The omission or inclusion of the written accent: “Asociación Astronómica” or “Asociacion 

Astronomica”. 

2. The use of upper-case and lower-case letters: “Departamento de Lenguajes y Sistemas Informáticos” 

or “Departamento de lenguajes y sistemas informáticos”. 

3. The use of abbreviations and acronyms: “Dpto. de Derecho Civil” or “Departamento de Derecho 

Civil”. 

4. Word order: “Miguel de Cervantes Saavedra” or “Cervantes Saavedra, Miguel de”. 

5. Different denominations: “Unidad de Registro Sismológico” or “Unidad de Registro Sísmico”. 

6. Punctuation marks (e.g., hyphens, commas, semicolons, brackets, exclamation marks, etc.): 

“Laboratorio Multimedia (mmlab)” or “Laboratorio Multimedia – mmlab”. 

7. Errors: Misspelling (apart from the written accent), typing or printing errors (absence of a character, 

interchange of adjacent characters, etc.): “Gabinete de imagen” or “Gavinete de imagen”. 

8. Use of different languages: “Universidad de Alicante” (Spanish) or “Universitat d’Alacant” 

(Catalan). 

 

There has been great interest in studying the quality of the information stored in databases for a long 

time [8, 9, 13], and diverse methods have been developed for the reduction of the inconsistency found in 

databases [11, 12]. 

 

3. Intuitive Proposal of a Method to Reduce the Inconsistency Found in Databases 
 

The method we propose in this paper improves our previous works [7] that were developed from 

French’s automatic creation of authority files for bibliographical catalogues [1, 2]. We have added new 

distances, developed different evaluation measures and employed a different clustering algorithm. These 

improvements result in a better performance of the method. 

Our algorithm resolves all the problems detailed in Section 2, except the fifth and the eighth, which 

depend on how different the two strings that represent the same term are. The method that we propose can 

be divided into six steps: 

 

1. Preparation. It may be necessary to prepare the strings before applying the clustering algorithm. 



2. Reading. The following process is repeated for each of the strings contained in the input file: 

Read a string 

Expand abbreviations and acronyms
1
 

Remove accents: e.g., A substitutes Á and À, and a substitutes á and à 

Shift string to lower-case 

Store the string: If it has been stored previously, its frequency of appearance is increased by one 

unit 

3. Sorting. The strings are sorted, in descending order, by frequency of appearance. 

4. Clustering. The most frequent string is chosen and it is compared to the rest of the strings, using a 

measure of similarity. This process is repeated, successively, until all the strings have been clustered. 

5. Checking. The resulting clusters are verified and the possible errors are located and corrected.  

6. Updating. The original database is updated. The strings of a cluster are replaced by its centroid. 

 

4. Technical Description of the Method 
 

In this section, technical aspects of our method are described. We start by introducing a previous 

processing for obtaining better results in Section 4.1. Section 4.2 describes how the similarity between 

two strings is considered. Section 4.3 presents the algorithm itself and finally, Section 4.4 explains the 

last step of the method, i.e., checking that the obtained clusters are correct. 

 

4.1. Previous Processing 
 

The strings undergo a previous processing to obtain better results from the clustering. The objective of 

this processing is to avoid the three first causes of the appearance of different forms for the same term 

(see Section 2.1.): i.e., accents, lower-case/upper-case and abbreviations. The accents are eliminated, the 

string is converted to lower-case and the abbreviations are expanded. 

 

4.2. String Similarity 
 

The similarity between any two strings must be evaluated. There are several similarity measures; in our 

research, we employ five measures: Levenshtein distance (LD), invariant distance from word position 

(IDWP), a modified version of the previous distance (MIDWP), Jaccard’s coefficient (JC), and the 

minimum of the four previous measures (CSM). 

The edit distance or Levenshtein distance (LD) [5] has been traditionally used in approximate-string 

searching and spelling-error detection and correction (causes 6 and 7). The LD of strings x and y is 

defined as the minimal number of simple editing operations that are required to transform x into y. The 

simple editing operations considered are: the insertion of a character, the deletion of a character, and the 

substitution of one character with another. In our method, we have taken a unitary cost function for all the 

operations and for all of the characters. The LD of two strings m and n in length, respectively, can be 

calculated by a dynamic programming algorithm [4]. The algorithm requires (mn) time and space. 

If two strings contain the same words (variant forms of the same term) but with a permuted word order 

(cause 4), the LD will not permit their clustering. To solve this problem, we introduce another distance 

that we call the invariant distance from word position (IDWP) [6]. It is based on the approximate word 

matching referred to in [1]. To calculate the IDWP of two strings, they are broken up into words (we 

                                                 
1
 It is in general impossible to expand all the abbreviations: often names are represented by initials, sometimes by 

only some of the initials, etc. 



consider a word to be any succession of digits and letters of the Spanish alphabet). The idea is to pair off 

the words so that the sum of the LD is minimised. If the strings contain different numbers of words, the 

cost of each word in excess is the length of the word. 

We also use a modified IDWP (MIDWP). We add a new matching condition: if two strings fulfil 

Equation 1, we assume they match perfectly (in that case, we consider their LD is zero). 
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The last similarity measure we have employed is the Jaccard’s coefficient (JC) [10], the ratio of the 

matching words in x and y to all the words in x and y: 

 

YX

YX
JC




 , 

(2) 

 

where X is the set of words of the string x and Y the set of words of y. 

In order to compare the above-mentioned measures, we need the JC subtracted from one (1 – JC). 

Besides, the LD, IDWP, and MIDWP are divided by the length of the longest string. Thus, all the 

measures obtain a similarity value from 0 (x and y are the same string) to 1 (x and y are totally different). 

Finally, we also combine the four previous similarity measures (combined similarity measure, CSM): 

we choose the minimum of the four similarity measures for every pair of strings. 

 

4.3. Algorithm 
 

The goal of clustering is to find similarity between strings and cluster them together based on a 

threshold of similarity between the strings. 

In previous works [1, 2, 7], the clustering algorithm employed is basically the leader algorithm [3]. 

This algorithm is chosen as opposed to more elaborate algorithms (e.g. k-means algorithm, Fisher 

algorithm) because they are slower and the number of clusters is unknown. The leader algorithm is very 

fast, requiring only one pass through the data, but it has several negative properties: the partition is not 

invariant under reordering of the cases, the first clusters are always larger than the later ones and the final 

number of clusters depends on the threshold values. This is due to the very algorithm: the comparison 

between a new string and the existing clusters is made only until a cluster that meets the condition is 

found, without considering the possibility that a better value of the criteria is met later, for another 

cluster.  

The clustering algorithm we propose in Table 1 resolves the previous problem: it uses a centroid 

method and the comparison for every string is made with all the existing clusters for the time being.  

The algorithm chooses the strings, from greater to smaller frequency of appearance, since it assumes 

that the most frequent strings have a greater probability of being correct, and thus, they are taken as being 

representative of the rest. As seen in Table 1, it depends on one parameter  (threshold). The algorithm 

makes one pass through the strings, assigning each string to the cluster whose centroid is closer and close 

enough (distance between the string and the centroid lower than ) and making a new cluster for cases 

that are not close enough to any existing centroid. The distance D is calculated using one of the similarity 

measures explained in Section 4.2. 

 



Table 1. Clustering algorithm 

Input: 

S: Sorted strings in descending order by frequency (s1…sm) 

: Threshold 

 

Output: 

C: Set of clusters (c1…cn) 

 

Variables: 

b, d, i, j, k, l 

 

Begin with string si (i = 1) 

Let the number of clusters be k = 1 

Classify si into the first cluster ck 

 

Increase i by 1 

Do While i  m 

{ 

   Begin working with the cluster cj (j = 1) 

   Calculate the distance between the string si and the centroid of cluster cj: d = D(si, cj) 

   Let the best cluster be cb (b = 1). 

 

   Increase j by 1 

   Do While j  k 

   { 

      If D(si, cj) < d then 

      { 

         Let the lower distance be d = D(si, cj) and the best cluster be b = j 

      } 

      Increase j by 1 

   } 

 

   If d <  then 

   { 

      Assign string si to cluster cb 

      Recalculate the centroid of cluster cb 

   } 

   Else 

   { 

      Increase k by 1 

      Create a new cluster ck and classify si into the new cluster 

   } 

   Increase i by 1 

} 

 

The centroid of a cluster must be recalculated every time a new string is assigned to the cluster. The 

centroid is chosen to minimise the sum-of-squares criterion: 
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where n is the number of strings assigned to the cluster and C is the centroid of the cluster. 

 

4.4. Revision and Updating 
 

The final step of the method consists of checking the obtained clusters and detecting possible errors to 

correct them. In the original database, the strings of a cluster are replaced by its centroid (it represents its 

cluster). Therefore, all variants of a term are put together under a single form. Thus, in searching 

processes, final users will be confident that they have located all values relating to the required term. 

 

5. Experimental Results and Evaluation 
 

We have used three files for evaluating our method
2
. They contain data from three different databases 

with inconsistency problems: files A and B contain information in Spanish, while file C in English. We 

have not compared the proposed method with other existing methods because it is impossible to make a 

direct comparison (the comparison should be made with the same example files). 

The method has been implemented in C and C++, running in Linux. 

 

5.1. File Descriptions 
 

Table 2 gives a description of these three files. The optimal number of clusters (ONC) indicates the 

number of handcrafted clusters. The three last columns contain the number of single strings (not 

duplicated) with and without the expansion of abbreviations, and the rate of reduction (on expanding the 

abbreviations, the number of single strings is reduced, since duplicates are removed). We have done all 

the tests with (W) and without (WO) expansion of abbreviations. 

 

Table 2. File descriptions 
File Size 

(Bytes) 

ONC Strings 

in file 

Strings 

WO 

Strings 

W 

Reduction 

(%) 

 

A 

B 

C 

10,399 

1,717,706 

108,608 

92 

92 

57 

234 

37,599 

2,206 

234 

1,212 

119 

145 

1,117 

118 

38.0 

7.8 

0.8 

 

We have developed a coefficient (consistency index) that permits the evaluation of the complexity of a 

cluster: the greater the value of the coefficient is, the more different the strings that form the cluster are. 

A null value indicates that the cluster contains only one string. The consistency index (CI) of a cluster of 

n strings is defined as: 

 

                                                 
2
 These test files are available at http://www.dlsi.ua.es/~slujan/files/clusterfiles.tgz. 
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The file consistency index (FCI) of a file that contains m clusters is defined as the average of the 

consistency indexes of all the existing clusters in the file: 
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The FCI of the files A, B and C are shown in Table 3. As the FCI is an average, the table also shows 

the standard deviation. It is obvious that the clusters of file B are more complex than those of file A and 

C. In all cases, however, the FCI is reduced when expanding the abbreviations, since the discrepancies 

between the strings of a given cluster tend to diminish. With respect to file C, the reduction of FCI when 

the abbreviations are expanded is minimum, because the reduction of strings is not appreciable: only 

0.8% versus 38.0% (file A) and 7.8% (file B), as it is shown in Table 2. 

 

Table 3. File consistency indexes 
File FCI 

WO 

Standard 

deviation 

FCI 

W 

Standard 

deviation 

A 

B 

C 

0.311 

1.726 

0.337 

0.298 

1.267 

1.181 

0.127 

1.113 

0.319 

0.269 

1.142 

1.136 

 

5.2. Evaluation Measures 
 

We have evaluated the quality of the produced clusters when our method is applied by using four 

measures that are obtained by comparing the clusters produced by our method with the optimal clusters: 

 

1. NC: number of clusters. Clusters that have been generated. 

2. NCC: number of completely correct clusters. Clusters that coincide with the optimal ones: they contain 

the same strings. From this measure, we obtain Precision: NCC divided by ONC. 

3. NIC: number of incorrect clusters. Clusters that contain an erroneous string. From this measure, we 

obtain the Error: NIC divided by ONC. 

4. NES: number of erroneous strings. Strings incorrectly clustered. 
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Figure 1. NC and NCC vs. Threshold. File A with and without expansion of abbreviations 

(CSM) 
 

NC and NCC versus Threshold for File A with (W) and without (WO) expansion of abbreviations, 

using the CSM, are plotted in Figure 1. The expansion of abbreviations diminishes NC and increases 

NCC. 

 

5.3. Evaluation and Discussion 
 

As we have already mentioned, the clustering algorithm depends on one parameter (). We have done 

all the tests on setting its value from 0.0 to 0.599, in 0.001 steps.  

We compare the performance of the five similarity measures. The result of the experiments using files 

A and C are shown in Tables 4, 5, 6 and 7. The tables show the highest precision rate and the 

corresponding error obtained in each file when the LD, IDWP, MIDWP and JC are used. The 

corresponding threshold () also appears. 

Note that the expansion of abbreviations improves the precision and diminishes the error. Moreover, 

the best precision, with a lower error, is obtained at a lower threshold. 

 

Table 4. LD 
File  Precision 

(%) 

Error 

(%) 

A WO 0.311 76.0 8.6 

W [0.146, 0.151] 83.6 0 

C WO [0.159, 0.199] 84.2 1.7 

W [0.100, 0.127] 84.2 0 

 

Table 5. IDWP 
File  Precision 

(%) 

Error 

(%) 

A WO [0.334, 0.344] 81.5 10.8 

W [0.160, 0.166] 84.7 0 

C WO [0.143, 0.227] 82.4 1.7 

W [0.072, 0.119] 82.4 0 



 

As you can see in Table 6, File A obtains the higher precision (89.1%) when the MIDWP with the 

expansion of abbreviations is employed. However, as seen in Table 7, File C obtains it (89.4%) when the 

JC without the expansion of abbreviations is used. 

 

Table 6. MIDWP 
File  Precision 

(%) 

Error 

(%) 

A WO [0.276, 0.277] 80.4 9.7 

W [0.153, 0.166] 89.1 0 

C WO [0.143, 0.227] 82.4 1.7 

W [0.072, 0.119] 82.4 0 

 

Table 7. JC 
File  Precision 

(%) 

Error 

(%) 

A WO [0.400, 0.416] 72.8 6.5 

W [0.286, 0.299] 85.8 0 

C WO [0.471, 0.499] 89.4 1.7 

W [0.471, 0.499] 87.7 1.7 

 

Table 8 shows highest precision and the corresponding error obtained for files A, B, and C when the 

CSM is employed. Files A and C have better precision than file B because their clusters are less complex: 

files A and C have a FCI around 0.3, whereas file B has a FCI of 1.7 (WO) and 1.1 (W). 

 

Table 8. CSM 
File  Precision 

(%) 

Error 

(%) 

A WO [0.236, 0.249] 81.5 8.6 

W [0.147, 0.151] 89.1 0 

B WO [0.270, 0.288] 71.7 9.7 

W [0.174, 0.176] 77.1 2.1 

C WO [0.143, 0.199] 84.2 1.7 

W [0.097, 0.119] 84.2 0 

 

In Table 9, we show the precision and error obtained in our previous works [7]. The test files A, B and 

C are the same of this paper. If this table is compared to Table 8, you can see the new method achieves 

better results: the precision increases and the error keeps very similar values or even diminish. 

 

Table 9. Precision and Error in previous works 
File Precision (%) Error (%) 

A WO 70.7 7.6 

W 84.8 0 

B WO 67.4 8.7 

W 72.8 6.5 

C WO 85.9 1.7 

W 84.2 1.7 

 



We compare the effect of the expansion of abbreviations in Figure 2. It shows Precision and Error 

versus Threshold for File A with (W) and without (WO) expansion of abbreviations using the CSM. It is 

seen that the expansion of abbreviations produces the maximum precision (90%) at a threshold of 0.15. 

From a threshold of 0.25, the expansion of abbreviations does not influence the precision as observed in 

the figure. 
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Figure 2. Precision and Error vs. Threshold. File A with and without expansion of 

abbreviations (CSM) 
 

Figure 3 shows Precision versus Threshold for File C without expansion of abbreviations using 

different similarity measures. The JC obtains the maximum value (90%). All the measures, except the JC, 

have a similar behaviour: they start at the same level (75%), rise until 85% and then plunge until 20%. 

However, the JC remains steady over 75% for all the threshold values. 
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Figure 3. Precision vs. Threshold. File C without expansion of abbreviations (different 

measures) 
 



Finally, from Figure 4 it can be again seen that the expansion of abbreviations influences the precision 

at a low threshold, but from a threshold of 0.25, the influence is imperceptible (the behaviour is very 

similar to Figure 2). Also, note that there is not error when the threshold is lower than 0.15. 
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Figure 4. Precision and Error vs. Threshold. File B with and without expansion of 

abbreviations (CSM) 
 

6. Conclusions and Work in Progress 
 

Referential integrity provided by relational database management systems prevents users or 

applications from entering inconsistent data. Databases with an inadequate design may suffer data 

redundancy and inconsistency. This paper has discussed techniques for improving data quality by 

clustering different values that refer to the same term and replacing them with a unique form. So, we have 

presented an automatic method for reducing the inconsistency found in existing databases. The method 

we have proposed achieves successful results with a considerably low error rate, although it does no 

eliminate the need to review the clusters obtained. 

The expansion of abbreviations improves the results in most cases, but we have detected some cases in 

which it actually makes the results worse. In addition, we have seen that the combined use of four 

similarity measures (Levenshtein distance, invariant distance from word position, modified IDWP, and 

Jaccard’s coefficient) normally obtains the best performance. 

The final number of clusters strongly depends on the threshold value fixed by the user. A very small 

threshold (conservative) will produce a large number of small clusters, meanwhile a very large 

(aggressive) one will produce a small number of large clusters. Based on the data obtained in our 

research, we propose the use of a threshold between 0.1 and 0.25. 

Other algorithms like k-means can not be applied to this problem because the number of clusters is 

unknown (k-means requires the number of clusters to be specified beforehand). 

Currently, we are working on improving the algorithm in order to cluster the multilingual values. We 

are applying dictionaries and other techniques relating to natural language processing. 
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