

Clustering Techniques for Reducing Inconsistency in Databases

Sergio Luján-Mora and Manuel Palomar

Departamento de Lenguajes y Sistemas Informáticos, Universidad de Alicante,

Campus de San Vicente del Raspeig

Ap. Correos 99 – E-03080 Alicante, Spain

{slujan, mpalomar}@dlsi.ua.es

Abstract

One of the main goals of databases is to provide consistent information. In this paper, we present an

automatic method for reducing inconsistency found in existing databases, and thus, improving data

quality. All the values that refer to a same term are clustered by measuring their degree of similarity. The

clustered values can be assigned to a common value that, in principle, could substitute the original

values. We evaluate different similarity measures for clustering. The method we propose gives good

results with a considerably low error rate.

1. Introduction

Existing information systems provide rapid and precise access to the information stored in databases.

One of the main uses of databases is to find information. Traditional search systems work by matching

the term that is being searched with the values stored in the corresponding database. If the information

contained in databases is inconsistent (i.e., if a given term appears with different values because several

denominations exist, or because it is misspelled), a search using a given value will not provide all the

available information about the term.

The problem of the inconsistency found in the values stored in databases may have three principal

causes:

1. If the number of possible values that a single field can accept is not controlled, a given person, (or

different persons), may insert the same term with different values. For instance, a database that stores the

names of the departments of a university may have several different forms (e.g., the use of upper-case

letters or abbreviations): “Departamento de Lenguajes y Sistemas Informáticos”, “Depto. de Lenguajes y

Sistemas Informáticos”, “Dpt. de lenguajes y sistemas informáticos”, etc.

2. When we try to integrate different databases into a common repository (e.g., in a data warehouse),

one or more of them may suffer from the above-mentioned problem. The consistency of their contents has

been guaranteed separately. However, the criteria used for establishing the consistency of each one might

well be different and integrating them all could cause inconsistency problems. For example, we wish to

integrate three different databases that store bibliographical information. The authors might well appear

in different forms in each one: i.e., full names, “Miguel de Cervantes Saavedra”, or by last names first

and then the first name, “Cervantes Saavedra, Miguel de”, or by first name and last name only, “Miguel

de Cervantes”.

3. Another problem is the multilinguality. In a multilingual society (e.g., European Community) it is

common to find official names written in different languages. For instance, we consult a database that

stores information about university researchers, (e.g., researcher’s name, researcher’s university, etc.),

and we wish to obtain a list of all of the researchers who work at the University of Alicante. We may

easily find that there are different values for this university: “Universidad de Alicante” (in Spanish),

“Universitat d'Alacant” (in Catalan), “University of Alicante” or “Alicante University” (in English), and

“Université d'Alicante” (in French).

The remainder of the paper is structured as follows: Section 2 outlines the origin of the problem and

the possible causes that give rise to the different variants that appear for the same term; Section 3

introduces our method for reducing inconsistency found in existing databases; Section 4 explains the core

of our study and details the technical aspects of our method; Section 5 provides an evaluation of the

method; and finally, our conclusions are presented in Section 6.

2. Analysis of the Problem

After analysing several databases with information both in Spanish and in English, we have noticed

that the different values that appear for a given term are due to a combination of the following causes:

1. The omission or inclusion of the written accent: “Asociación Astronómica” or “Asociacion

Astronomica”.

2. The use of upper-case and lower-case letters: “Departamento de Lenguajes y Sistemas Informáticos”

or “Departamento de lenguajes y sistemas informáticos”.

3. The use of abbreviations and acronyms: “Dpto. de Derecho Civil” or “Departamento de Derecho

Civil”.

4. Word order: “Miguel de Cervantes Saavedra” or “Cervantes Saavedra, Miguel de”.

5. Different denominations: “Unidad de Registro Sismológico” or “Unidad de Registro Sísmico”.

6. Punctuation marks (e.g., hyphens, commas, semicolons, brackets, exclamation marks, etc.):

“Laboratorio Multimedia (mmlab)” or “Laboratorio Multimedia – mmlab”.

7. Errors: Misspelling (apart from the written accent), typing or printing errors (absence of a character,

interchange of adjacent characters, etc.): “Gabinete de imagen” or “Gavinete de imagen”.

8. Use of different languages: “Universidad de Alicante” (Spanish) or “Universitat d’Alacant”

(Catalan).

There has been great interest in studying the quality of the information stored in databases for a long

time [8, 9, 13], and diverse methods have been developed for the reduction of the inconsistency found in

databases [11, 12].

3. Intuitive Proposal of a Method to Reduce the Inconsistency Found in Databases

The method we propose in this paper improves our previous works [7] that were developed from

French’s automatic creation of authority files for bibliographical catalogues [1, 2]. We have added new

distances, developed different evaluation measures and employed a different clustering algorithm. These

improvements result in a better performance of the method.

Our algorithm resolves all the problems detailed in Section 2, except the fifth and the eighth, which

depend on how different the two strings that represent the same term are. The method that we propose can

be divided into six steps:

1. Preparation. It may be necessary to prepare the strings before applying the clustering algorithm.

2. Reading. The following process is repeated for each of the strings contained in the input file:

Read a string

Expand abbreviations and acronyms
1

Remove accents: e.g., A substitutes Á and À, and a substitutes á and à

Shift string to lower-case

Store the string: If it has been stored previously, its frequency of appearance is increased by one

unit

3. Sorting. The strings are sorted, in descending order, by frequency of appearance.

4. Clustering. The most frequent string is chosen and it is compared to the rest of the strings, using a

measure of similarity. This process is repeated, successively, until all the strings have been clustered.

5. Checking. The resulting clusters are verified and the possible errors are located and corrected.

6. Updating. The original database is updated. The strings of a cluster are replaced by its centroid.

4. Technical Description of the Method

In this section, technical aspects of our method are described. We start by introducing a previous

processing for obtaining better results in Section 4.1. Section 4.2 describes how the similarity between

two strings is considered. Section 4.3 presents the algorithm itself and finally, Section 4.4 explains the

last step of the method, i.e., checking that the obtained clusters are correct.

4.1. Previous Processing

The strings undergo a previous processing to obtain better results from the clustering. The objective of

this processing is to avoid the three first causes of the appearance of different forms for the same term

(see Section 2.1.): i.e., accents, lower-case/upper-case and abbreviations. The accents are eliminated, the

string is converted to lower-case and the abbreviations are expanded.

4.2. String Similarity

The similarity between any two strings must be evaluated. There are several similarity measures; in our

research, we employ five measures: Levenshtein distance (LD), invariant distance from word position

(IDWP), a modified version of the previous distance (MIDWP), Jaccard’s coefficient (JC), and the

minimum of the four previous measures (CSM).

The edit distance or Levenshtein distance (LD) [5] has been traditionally used in approximate-string

searching and spelling-error detection and correction (causes 6 and 7). The LD of strings x and y is

defined as the minimal number of simple editing operations that are required to transform x into y. The

simple editing operations considered are: the insertion of a character, the deletion of a character, and the

substitution of one character with another. In our method, we have taken a unitary cost function for all the

operations and for all of the characters. The LD of two strings m and n in length, respectively, can be

calculated by a dynamic programming algorithm [4]. The algorithm requires (mn) time and space.

If two strings contain the same words (variant forms of the same term) but with a permuted word order

(cause 4), the LD will not permit their clustering. To solve this problem, we introduce another distance

that we call the invariant distance from word position (IDWP) [6]. It is based on the approximate word

matching referred to in [1]. To calculate the IDWP of two strings, they are broken up into words (we

1
 It is in general impossible to expand all the abbreviations: often names are represented by initials, sometimes by

only some of the initials, etc.

consider a word to be any succession of digits and letters of the Spanish alphabet). The idea is to pair off

the words so that the sum of the LD is minimised. If the strings contain different numbers of words, the

cost of each word in excess is the length of the word.

We also use a modified IDWP (MIDWP). We add a new matching condition: if two strings fulfil

Equation 1, we assume they match perfectly (in that case, we consider their LD is zero).

20
1),(

yx
yxLD


 .

(1)

The last similarity measure we have employed is the Jaccard’s coefficient (JC) [10], the ratio of the

matching words in x and y to all the words in x and y:

YX

YX
JC




 ,

(2)

where X is the set of words of the string x and Y the set of words of y.

In order to compare the above-mentioned measures, we need the JC subtracted from one (1 – JC).

Besides, the LD, IDWP, and MIDWP are divided by the length of the longest string. Thus, all the

measures obtain a similarity value from 0 (x and y are the same string) to 1 (x and y are totally different).

Finally, we also combine the four previous similarity measures (combined similarity measure, CSM):

we choose the minimum of the four similarity measures for every pair of strings.

4.3. Algorithm

The goal of clustering is to find similarity between strings and cluster them together based on a

threshold of similarity between the strings.

In previous works [1, 2, 7], the clustering algorithm employed is basically the leader algorithm [3].

This algorithm is chosen as opposed to more elaborate algorithms (e.g. k-means algorithm, Fisher

algorithm) because they are slower and the number of clusters is unknown. The leader algorithm is very

fast, requiring only one pass through the data, but it has several negative properties: the partition is not

invariant under reordering of the cases, the first clusters are always larger than the later ones and the final

number of clusters depends on the threshold values. This is due to the very algorithm: the comparison

between a new string and the existing clusters is made only until a cluster that meets the condition is

found, without considering the possibility that a better value of the criteria is met later, for another

cluster.

The clustering algorithm we propose in Table 1 resolves the previous problem: it uses a centroid

method and the comparison for every string is made with all the existing clusters for the time being.

The algorithm chooses the strings, from greater to smaller frequency of appearance, since it assumes

that the most frequent strings have a greater probability of being correct, and thus, they are taken as being

representative of the rest. As seen in Table 1, it depends on one parameter  (threshold). The algorithm

makes one pass through the strings, assigning each string to the cluster whose centroid is closer and close

enough (distance between the string and the centroid lower than ) and making a new cluster for cases

that are not close enough to any existing centroid. The distance D is calculated using one of the similarity

measures explained in Section 4.2.

Table 1. Clustering algorithm

Input:

S: Sorted strings in descending order by frequency (s1…sm)

: Threshold

Output:

C: Set of clusters (c1…cn)

Variables:

b, d, i, j, k, l

Begin with string si (i = 1)

Let the number of clusters be k = 1

Classify si into the first cluster ck

Increase i by 1

Do While i  m

{

 Begin working with the cluster cj (j = 1)

 Calculate the distance between the string si and the centroid of cluster cj: d = D(si, cj)

 Let the best cluster be cb (b = 1).

 Increase j by 1

 Do While j  k

 {

 If D(si, cj) < d then

 {

 Let the lower distance be d = D(si, cj) and the best cluster be b = j

 }

 Increase j by 1

 }

 If d <  then

 {

 Assign string si to cluster cb

 Recalculate the centroid of cluster cb

 }

 Else

 {

 Increase k by 1

 Create a new cluster ck and classify si into the new cluster

 }

 Increase i by 1

}

The centroid of a cluster must be recalculated every time a new string is assigned to the cluster. The

centroid is chosen to minimise the sum-of-squares criterion:




n

i

i CsD
1

2)),((,
(3)

where n is the number of strings assigned to the cluster and C is the centroid of the cluster.

4.4. Revision and Updating

The final step of the method consists of checking the obtained clusters and detecting possible errors to

correct them. In the original database, the strings of a cluster are replaced by its centroid (it represents its

cluster). Therefore, all variants of a term are put together under a single form. Thus, in searching

processes, final users will be confident that they have located all values relating to the required term.

5. Experimental Results and Evaluation

We have used three files for evaluating our method
2
. They contain data from three different databases

with inconsistency problems: files A and B contain information in Spanish, while file C in English. We

have not compared the proposed method with other existing methods because it is impossible to make a

direct comparison (the comparison should be made with the same example files).

The method has been implemented in C and C++, running in Linux.

5.1. File Descriptions

Table 2 gives a description of these three files. The optimal number of clusters (ONC) indicates the

number of handcrafted clusters. The three last columns contain the number of single strings (not

duplicated) with and without the expansion of abbreviations, and the rate of reduction (on expanding the

abbreviations, the number of single strings is reduced, since duplicates are removed). We have done all

the tests with (W) and without (WO) expansion of abbreviations.

Table 2. File descriptions
File Size

(Bytes)

ONC Strings

in file

Strings

WO

Strings

W

Reduction

(%)

A

B

C

10,399

1,717,706

108,608

92

92

57

234

37,599

2,206

234

1,212

119

145

1,117

118

38.0

7.8

0.8

We have developed a coefficient (consistency index) that permits the evaluation of the complexity of a

cluster: the greater the value of the coefficient is, the more different the strings that form the cluster are.

A null value indicates that the cluster contains only one string. The consistency index (CI) of a cluster of

n strings is defined as:

2
 These test files are available at http://www.dlsi.ua.es/~slujan/files/clusterfiles.tgz.

 







 


n

i

i

n

i

n

j

ji

x

xxLD

CI

1

1 1

,

.

(4)

The file consistency index (FCI) of a file that contains m clusters is defined as the average of the

consistency indexes of all the existing clusters in the file:

m

CI

FCI

m

i

i
 1 .

(5)

The FCI of the files A, B and C are shown in Table 3. As the FCI is an average, the table also shows

the standard deviation. It is obvious that the clusters of file B are more complex than those of file A and

C. In all cases, however, the FCI is reduced when expanding the abbreviations, since the discrepancies

between the strings of a given cluster tend to diminish. With respect to file C, the reduction of FCI when

the abbreviations are expanded is minimum, because the reduction of strings is not appreciable: only

0.8% versus 38.0% (file A) and 7.8% (file B), as it is shown in Table 2.

Table 3. File consistency indexes
File FCI

WO

Standard

deviation

FCI

W

Standard

deviation

A

B

C

0.311

1.726

0.337

0.298

1.267

1.181

0.127

1.113

0.319

0.269

1.142

1.136

5.2. Evaluation Measures

We have evaluated the quality of the produced clusters when our method is applied by using four

measures that are obtained by comparing the clusters produced by our method with the optimal clusters:

1. NC: number of clusters. Clusters that have been generated.

2. NCC: number of completely correct clusters. Clusters that coincide with the optimal ones: they contain

the same strings. From this measure, we obtain Precision: NCC divided by ONC.

3. NIC: number of incorrect clusters. Clusters that contain an erroneous string. From this measure, we

obtain the Error: NIC divided by ONC.

4. NES: number of erroneous strings. Strings incorrectly clustered.

0

20

40

60

80

100

120

140

160

180

200

0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5 0,55

Threshold

ONC NC WO NCC WO

NC W NCC W

Figure 1. NC and NCC vs. Threshold. File A with and without expansion of abbreviations

(CSM)

NC and NCC versus Threshold for File A with (W) and without (WO) expansion of abbreviations,

using the CSM, are plotted in Figure 1. The expansion of abbreviations diminishes NC and increases

NCC.

5.3. Evaluation and Discussion

As we have already mentioned, the clustering algorithm depends on one parameter (). We have done

all the tests on setting its value from 0.0 to 0.599, in 0.001 steps.

We compare the performance of the five similarity measures. The result of the experiments using files

A and C are shown in Tables 4, 5, 6 and 7. The tables show the highest precision rate and the

corresponding error obtained in each file when the LD, IDWP, MIDWP and JC are used. The

corresponding threshold () also appears.

Note that the expansion of abbreviations improves the precision and diminishes the error. Moreover,

the best precision, with a lower error, is obtained at a lower threshold.

Table 4. LD
File  Precision

(%)

Error

(%)

A WO 0.311 76.0 8.6

W [0.146, 0.151] 83.6 0

C WO [0.159, 0.199] 84.2 1.7

W [0.100, 0.127] 84.2 0

Table 5. IDWP
File  Precision

(%)

Error

(%)

A WO [0.334, 0.344] 81.5 10.8

W [0.160, 0.166] 84.7 0

C WO [0.143, 0.227] 82.4 1.7

W [0.072, 0.119] 82.4 0

As you can see in Table 6, File A obtains the higher precision (89.1%) when the MIDWP with the

expansion of abbreviations is employed. However, as seen in Table 7, File C obtains it (89.4%) when the

JC without the expansion of abbreviations is used.

Table 6. MIDWP
File  Precision

(%)

Error

(%)

A WO [0.276, 0.277] 80.4 9.7

W [0.153, 0.166] 89.1 0

C WO [0.143, 0.227] 82.4 1.7

W [0.072, 0.119] 82.4 0

Table 7. JC
File  Precision

(%)

Error

(%)

A WO [0.400, 0.416] 72.8 6.5

W [0.286, 0.299] 85.8 0

C WO [0.471, 0.499] 89.4 1.7

W [0.471, 0.499] 87.7 1.7

Table 8 shows highest precision and the corresponding error obtained for files A, B, and C when the

CSM is employed. Files A and C have better precision than file B because their clusters are less complex:

files A and C have a FCI around 0.3, whereas file B has a FCI of 1.7 (WO) and 1.1 (W).

Table 8. CSM
File  Precision

(%)

Error

(%)

A WO [0.236, 0.249] 81.5 8.6

W [0.147, 0.151] 89.1 0

B WO [0.270, 0.288] 71.7 9.7

W [0.174, 0.176] 77.1 2.1

C WO [0.143, 0.199] 84.2 1.7

W [0.097, 0.119] 84.2 0

In Table 9, we show the precision and error obtained in our previous works [7]. The test files A, B and

C are the same of this paper. If this table is compared to Table 8, you can see the new method achieves

better results: the precision increases and the error keeps very similar values or even diminish.

Table 9. Precision and Error in previous works
File Precision (%) Error (%)

A WO 70.7 7.6

W 84.8 0

B WO 67.4 8.7

W 72.8 6.5

C WO 85.9 1.7

W 84.2 1.7

We compare the effect of the expansion of abbreviations in Figure 2. It shows Precision and Error

versus Threshold for File A with (W) and without (WO) expansion of abbreviations using the CSM. It is

seen that the expansion of abbreviations produces the maximum precision (90%) at a threshold of 0.15.

From a threshold of 0.25, the expansion of abbreviations does not influence the precision as observed in

the figure.

0

10

20

30

40

50

60

70

80

90

100

0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5 0,55

Threshold

%

Pre. WO Error WO Pre. W Error W

Figure 2. Precision and Error vs. Threshold. File A with and without expansion of

abbreviations (CSM)

Figure 3 shows Precision versus Threshold for File C without expansion of abbreviations using

different similarity measures. The JC obtains the maximum value (90%). All the measures, except the JC,

have a similar behaviour: they start at the same level (75%), rise until 85% and then plunge until 20%.

However, the JC remains steady over 75% for all the threshold values.

20

30

40

50

60

70

80

90

0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5 0,55

Threshold

%

LD IDWP MIDWP

JC CSM

Figure 3. Precision vs. Threshold. File C without expansion of abbreviations (different

measures)

Finally, from Figure 4 it can be again seen that the expansion of abbreviations influences the precision

at a low threshold, but from a threshold of 0.25, the influence is imperceptible (the behaviour is very

similar to Figure 2). Also, note that there is not error when the threshold is lower than 0.15.

0

10

20

30

40

50

60

70

80

90

0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5 0,55

Threshold

%

Pre. WO Error WO Pre. W Error W

Figure 4. Precision and Error vs. Threshold. File B with and without expansion of

abbreviations (CSM)

6. Conclusions and Work in Progress

Referential integrity provided by relational database management systems prevents users or

applications from entering inconsistent data. Databases with an inadequate design may suffer data

redundancy and inconsistency. This paper has discussed techniques for improving data quality by

clustering different values that refer to the same term and replacing them with a unique form. So, we have

presented an automatic method for reducing the inconsistency found in existing databases. The method

we have proposed achieves successful results with a considerably low error rate, although it does no

eliminate the need to review the clusters obtained.

The expansion of abbreviations improves the results in most cases, but we have detected some cases in

which it actually makes the results worse. In addition, we have seen that the combined use of four

similarity measures (Levenshtein distance, invariant distance from word position, modified IDWP, and

Jaccard’s coefficient) normally obtains the best performance.

The final number of clusters strongly depends on the threshold value fixed by the user. A very small

threshold (conservative) will produce a large number of small clusters, meanwhile a very large

(aggressive) one will produce a small number of large clusters. Based on the data obtained in our

research, we propose the use of a threshold between 0.1 and 0.25.

Other algorithms like k-means can not be applied to this problem because the number of clusters is

unknown (k-means requires the number of clusters to be specified beforehand).

Currently, we are working on improving the algorithm in order to cluster the multilingual values. We

are applying dictionaries and other techniques relating to natural language processing.

References

1. James C. French, Allison L. Powell, Eric Schulman. Applications of Approximate Word Matching in

Information Retrieval. In Forouzan Golshani, Kia Makki, editors, Proceedings of the Sixth International

Conference on Information and Knowledge Management (CIKM 1997), pages 9-15, Las Vegas (USA),

November 1997.

2. James C. French, Allison L. Powell, Eric Schulman, John L. Pfaltz. Automating the Construction of

Authority Files in Digital Libraries: A Case Study. In Carol Peters, Costantino Thanos, editors,

Proceedings of the First European Conference on Research and Advanced Technology for Digital

Libraries (ECDL 1997), pages 55-71, Pisa (Italy), September 1997.

3. John A. Hartigan. Clustering Algorithms. John Wiley & Sons, New York (USA), 1975.

4. D.S. Hirschberg. Serial Computations of Levenshtein Distances. In A. Apostolico, Z. Galil, editors,

Pattern Matching Algorithms. Oxford University Press, 1997.

5. V.I. Levenshtein. Binary codes capable of correcting deletions, insertions, and reversals. Cybernetics

and Control Theory, 10:707-710, 1966.

6. Sergio Luján-Mora. An Algorithm for Computing the Invariant Distance from Word Position.

Available at http://www.dlsi.ua.es/~slujan/files/idwp.ps June 2000.

7. Sergio Luján-Mora, Manuel Palomar. Clustering of Similar Values, in Spanish, for the Improvement of

Search Systems. In Maria Carolina Monard, Jaime Simão Sichman, editors, appear in IBERAMIA-SBIA

2000 Open Discussion Track Proceedings, pages 217-226, Sao Paulo (Brazil), November 2000.

8. Edward T. O’Neill, Diane Vizine-Goetz. Quality Control in Online Databases. Annual Review of

Information Science and Technology, 23:125-156, 1988.

9. Edward T. O'Neill, Diane Vizine-Goetz. The Impact of Spelling Errors on Databases and Indexes. In

National Online Meeting Proceedings, pages 313-320, New York (USA), May 1989.

10. C.J. van Rijsbergen. Information Retrieval. Butterworhs, London (UK), 1979.

11. Mauricio Antonio Hernández, Salvatore J. Stolfo. Real-world data is dirty: Data cleansing and the

merge/purge problem. Journal of Data Mining and Knowledge Discovery, 2(1):9-37, 1998.

12. Alvaro E. Monge, Charles P. Elkan. An efficient domain-independent algorithm for detecting

approximately duplicate database records. In SIGMOD Workshop on Research Issues on Data Mining

and Knowledge Discovery (DMKD’97), pages 23-29, 1997.

13. Amihai Motro, Igor Rakov. Estimating the Quality of Databases. In T. Andreasen, H. Chistiansen,

H.L. Larsen, editors, Proceedings of FQAS 98: Third International Conference on Flexible Query

Answering Systems, Lecture Notes in Artificial Intelligence, vol. 1495, Springer-Verlag, 1998.

