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Abstract 

The Web has dramatically increased the need for efficient and flexible mechanisms to provide integrated 

views over multiple heterogeneous information sources. One of the main problems in integrating databases 

into a common repository is the possible inconsistency of the values stored in them, i.e., the very same term 

may have different values, due to misspelling, a permuted word order, spelling variants and so on. In this 

paper, we present an automatic method for reducing inconsistency found in existing databases, and thus, 

improving data quality. In particular, the objective of our method is integration and standardization of 

different values that refer to the same term. All the values that refer to a same term are clustered by 

measuring their degree of similarity. The clustered values can be assigned to a common value that could 

substitute the original values. The paper describes and compares five different similarity measures for 

clustering and evaluates their performance on real-world data. The method we propose gives good results 

with a considerably low error rate and improves our previous works. 
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1. Introduction 

Information fusion is the process of integration and interpretation of data from different sources in order 

to derive information of a new quality. Integrating databases into a common repository has become a 



research topic for many years. Information fusion is a very complex problem, and is relevant in several 

fields, such as Data Re-engineering, Data Warehouse, Web Information Systems, E-commerce, Scientific 

Databases, etc. 

One of the main problems in integrating databases into a common repository is the possible inconsistency 

of the values stored in them, i.e., the very same term may have different values. This problem is known as 

the field matching problem, and it is part of the Data Cleaning task. This is an important issue, because 

erroneous datasets propagate error in each successive generation of data. 

The problem of the inconsistency found in the values stored in databases may have two principal causes: 

1. Databases may contain duplicate values concerning the same real-world entity (inconsistency) 

because of data entry errors (misspelling, typing errors), because of unstandardized abbreviations, or 

because different people can use different values to name the same term (spelling variants, permuted 

word order, transliteration differences). For instance, a database that stores the names of the 

departments of a university may have several different forms (e.g., the use of upper-case letters or 

abbreviations): “Department of Software and Computing Systems”, “Dep. of Software and Computing 

Systems”, “D. of software and computing systems”, etc. 

2. On the other hand, this is a common problem in environments where multiple databases must be 

combined: equivalent data in the multiple sources must be identified (knowledge discovery, data 

mining, data warehouse, data re-engineering, etc.). 

In Figure 1, we present an example to show the aim of our proposal. Let us suppose that we have 

different databases (particularly, different relational tables) and the sources have different criteria for 

representing values in affiliation names. For example, with reference to the affiliation of researchers who 

work at the University of Alicante, we may easily find that there are different values for this university: 

“Universidad de Alicante” or “Universidad Alicante” (in Spanish) and “Alicante University” (in English). 

 



 

Figure 1. Solving inconsistency into a common repository 

 

The remainder of the paper is structured as follows: Section 2 outlines the origin of the problem and the 

possible causes that give rise to the different variants that appear for the same term; Section 3 introduces our 

method for reducing inconsistency found in existing databases; Section 4 explains the core of our study and 

details the technical aspects of our method; Section 5 provides an evaluation of the method; and finally, our 

conclusions are presented in Section 6. 

 

2. Analysis of the Problem 

After analysing several databases with information both in Spanish and in English, we have noticed that 

the different values that appear for a given term are due to a combination of the following causes: 

1. The omission or inclusion of the written accent: “Asociación Astronómica” or “Asociacion 

Astronomica”. 

2. The use of upper-case and lower-case letters: “Department of Software and Computing Systems” or 

“Department of software and computing systems”. 



3. The use of abbreviations and acronyms: “Department of Software, University of Alicante” or “Dep. of 

Software, Univ. Alicante”. 

4. Word order: “Miguel de Cervantes Saavedra” or “Cervantes Saavedra, Miguel de”. 

5. Different transliterations1: “Kolmogorov” or “Kolmogorof”, “Chebyshev” or “Tchebysheff”. 

6. Punctuation marks (e.g., hyphens, commas, semicolons, brackets, exclamation marks, etc.): 

“Laboratorio Multimedia (mmlab)” or “Laboratorio Multimedia – mmlab”. 

7. Errors: Misspelling (apart from the written accent), typing or printing errors (absence of a character, 

interchange of adjacent characters, etc.): “Gabinete de imagen” or “Gavinete de imagen”, “Bill 

Clinton” or “Bill Klinton”. 

8. Numbers: “Area 51” or “Area fifty-one”. 

9. Extra words: “Royal Yacht Club” or “Yacht Club”. 

10. Different denominations: “Seismological Register Unit” or “Seismic Register Unit”. 

11. Use of different languages: “Tribunal de Cuentas” (Spanish), “Court of Auditors” (English) or “La 

Cour des Comptes” (French). 

There has been great interest in studying the quality of the information stored in databases for a long time 

[12, 13, 14], and diverse methods have been developed for the reduction of the inconsistency found in 

databases [1, 2, 3, 5, 6, 10, 11]. 

 

3. Intuitive Proposal of a Method to Reduce the Inconsistency Found in 

Databases 

                                                 
1 Transliteration is the general process of converting characters from one particular script to another one, such as 
converting from Greek to Latin, or Japanese katakana to Latin. It is very important to note that this transliteration is not 
translation. It is simply converting the letters from one script to another, not translating the underlying words. 



The method we propose in this paper improves our previous works [10]. We have added new distances, 

developed different evaluation measures and employed a different clustering algorithm. These 

improvements result in a better performance of the method. 

Our algorithm resolves all the problems detailed in Section 2, except the three last causes, which depend 

on how different the two strings that represent the same term are. The method that we propose can be 

divided into six steps: 

1. Preparation. It may be necessary to prepare the strings before applying the clustering algorithm. 

2. Reading. The following process is repeated for each of the strings contained in the input file: 

Read a string 

Expand abbreviations and acronyms2 

Remove accents: e.g., A substitutes Á and À, and a substitutes á and à 

Shift string to lower-case 

Store the string: If it has been stored previously, its frequency of appearance is increased by one unit 

3. Sorting. The strings are sorted, in descending order, by frequency of appearance. 

4. Clustering. The most frequent string is chosen and it is compared to the rest of the strings, using a 

measure of similarity. This process is repeated, successively, until all the strings have been clustered. 

5. Checking. The resulting clusters are verified and the possible errors are located and corrected.  

6. Updating. The original database is updated. The strings of a cluster are replaced by its centroid (the 

centroid is representative of all the strings in its cluster). 

 

4. Technical Description of the Method 

                                                 
2 It is in general impossible to expand all the abbreviations: often names are represented by initials, sometimes by only 
some of the initials, etc. 



In this section, technical aspects of our method are described. We start by introducing a previous 

processing for obtaining better results in Section 4.1. Section 4.2 describes how the similarity between two 

strings is considered. Section 4.3 presents the algorithm itself and finally, Section 4.4 explains the last step 

of the method, i.e., checking that the obtained clusters are correct. 

 

4.1. Previous Processing 

The strings undergo a previous processing to obtain better results from the clustering. The objective of 

this processing is to avoid the three first causes of the appearance of different forms for the same term (see 

Section 2.1.): i.e., accents, lower-case/upper-case and abbreviations. The accents are eliminated, the string is 

converted to lower-case and the abbreviations are expanded. 

 

4.2. String Similarity 

The similarity between any two strings must be evaluated. There are several similarity measures; in our 

research, we employ five measures: Levenshtein distance (LD), invariant distance from word position 

(IDWP), a modified version of the previous distance (MIDWP), Jaccard’s coefficient (JC), and the 

minimum of the four previous measures (CSM). 

The edit distance or Levenshtein distance (LD) [8] has been traditionally used in approximate-string 

searching and spelling-error detection and correction. The LD of strings x and y is defined as the minimal 

number of simple editing operations that are required to transform x into y. The simple editing operations 

considered are: the insertion of a character, the deletion of a character, and the substitution of one character 

with another. In our method, we have taken a unitary cost function for all the operations and for all of the 

characters. The LD of two strings m and n in length, respectively, can be calculated by a dynamic 

programming algorithm [7]. The algorithm requires Θ(mn) time and space. 



If two strings contain the same words (variant forms of the same term) but with a permuted word order, 

the LD will not permit their clustering. To solve this problem, we introduce another distance that we call the 

invariant distance from word position (IDWP) [9]. It is based on the approximate word matching referred to 

in [2, 3]. To calculate the IDWP of two strings, they are broken up into words (we consider a word to be any 

succession of digits and letters of the Spanish alphabet). The idea is to pair off the words so that the sum of 

the LD is minimised. If the strings contain different numbers of words, the cost of each word in excess is the 

length of the word. 

We also use a modified IDWP (MIDWP). We add a new matching condition: if two strings fulfil 

Equation 1, we assume they match perfectly (in that case, we consider their LD is zero). 
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The last similarity measure we have employed is the Jaccard’s coefficient (JC) [15], the ratio of the 

matching words in x and y to all the words in x and y: 
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where X is the set of words of the string x and Y the set of words of y. 

In order to compare the above-mentioned measures, we need the JC subtracted from one (1 – JC). 

Besides, the LD, IDWP, and MIDWP are divided by the length of the longest string. Thus, all the measures 

obtain a similarity value from 0 (x and y are the same string) to 1 (x and y are totally different). 

Finally, we also combine the four previous similarity measures (combined similarity measure, CSM): we 

choose the minimum of the four similarity measures for every pair of strings. 

 



4.3. Algorithm 

The goal of clustering is to find similarity between strings and cluster them together based on a threshold 

of similarity between the strings. 

In previous works [2, 3, 10], the clustering algorithm employed is basically the leader algorithm [4]. This 

algorithm is chosen as opposed to more elaborate algorithms (e.g. k-means algorithm, Fisher algorithm) 

because they are slower and the number of clusters is unknown. The leader algorithm is very fast, requiring 

only one pass through the data, but it has several negative properties: the partition is not invariant under 

reordering of the cases, the first clusters are always larger than the later ones and the final number of 

clusters depends on the threshold values. This is due to the very algorithm: the comparison between a new 

string and the existing clusters is made only until a cluster that meets the condition is found, without 

considering the possibility that a better value of the criteria is met later, for another cluster.  

The clustering algorithm we propose in Table 1 resolves the previous problem: it uses a centroid method 

and the comparison for every string is made with all the existing clusters for the time being.  

The algorithm chooses the strings, from greater to smaller frequency of appearance, since it assumes that 

the most frequent strings have a greater probability of being correct, and thus, they are taken as being 

representative of the rest. As seen in Table 1, it depends on one parameter α (threshold). The algorithm 

makes one pass through the strings, assigning each string to the cluster whose centroid is closer and close 

enough (distance between the string and the centroid lower than α) and making a new cluster for cases that 

are not close enough to any existing centroid. The distance D is calculated using one of the similarity 

measures explained in Section 4.2. 

The centroid of a cluster must be recalculated every time a new string is assigned to the cluster. The 

centroid is chosen to minimise the sum-of-squares criterion: 
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where n is the number of strings assigned to the cluster and C is the centroid of the cluster. 

 

Table 1. Clustering algorithm 

Input: 
S: Sorted strings in descending order by frequency (s1…sm) 
αααα: Threshold 
 
Output: 
C: Set of clusters (c1…cn) 
 
Variables: 
b, d, i, j, k, l 
 
STEP 1. Begin with string si (i = 1). Let the number of clusters be k = 1, classify si into 
the first cluster ck. 
 
STEP 2. Increase i by 1. If i > m, stop. 
 
STEP 3. Begin working with the cluster cj (j = 1). Calculate the distance between the 
string si and the centroid of cluster cj: d = D(si, cj). Let the best cluster be cb (b = 1). 
 
STEP 4. Increase j by 1. If j > k, then go to Step 7. 
 
STEP 5. If D(si, cj) < d, then let the lower distance be d = D(si, cj) and the best cluster be 
b = j. 
 
STEP 6. Return to Step 4. 
 
STEP 7. If d < αααα, assign string si to cluster cb; recalculate the centroid of cluster cb and 
return to Step 2. 
 
STEP 8. Increase k by 1. Create a new cluster ck and classify si into the new cluster. 
Return to Step 2. 

 

4.4. Revision and Updating 

The final step of the method consists of checking the obtained clusters and detecting possible errors to 

correct them. In the original database, the strings of a cluster are replaced by its centroid (it represents its 

cluster). Therefore, all variants of a term are put together under a single form. Thus, in searching processes, 

final users will be confident that they have located all values relating to the required term. 



 

5. Experimental Results and Evaluation 

We have used four files for evaluating our method3. They contain data from four different databases with 

inconsistency problems: files A, B, and D contain information in Spanish, while file C in English. The 

method has been implemented in C and C++, running in Linux. 

 

5.1. File Descriptions 

Table 2 gives a description of these four files. The optimal number of clusters (ONC) indicates the 

number of handcrafted clusters. The three last columns contain the number of single strings (not duplicated) 

with (W) and without (WO) the expansion of abbreviations, and the rate of reduction (on expanding the 

abbreviations, the number of single strings is reduced, since duplicates are removed). We have done all the 

tests with and without the expansion of abbreviations. 

 

Table 2. File descriptions 

File Size 
(Bytes) 

ONC Strings in 
file 

Strings 
WO 

Strings 
W 

Reduction 
(%) 

A 
B 
C 
D 

10,399 
1,717,706 
108,608 
24,364 

92 
92 
57 
226 

234 
37,599 
2,206 
596 

234 
1,212 
119 
584 

145 
1,117 
118 
505 

38.0 
7.8 
0.8 

13.5 
 

The amount of duplication of a file is measured by the duplication factor (DF) [1], which indicates how 

many duplicates of each record appear in the file, on the average. Table 3 shows the DF of the four files. It 

also shows the reduction of the DF when the abbreviations are expanded. 

 

                                                 
3 These test files are available at http://www.dlsi.ua.es/~slujan/files/clusterfiles.tgz. 



Table 3. Duplication factor 

File DF 
WO 

Standard 
deviation 

DF 
W 

Standard 
deviation 

Reduction 
(%) 

A 
B 
C 
D 

2.54 
13.17 
2.09 
2.58 

1.00 
5.39 
2.88 
1.16 

1.58 
12.14 
2.07 
2.23 

0.84 
5.23 
2.80 
1.08 

37.8 
7.8 
0.9 

13.6 
 

The DF shows how many duplicates of each record exist, but it does not indicates if the duplicates look 

like each other or not. We have developed a coefficient (consistency index) that permits the evaluation of 

the complexity of a cluster: the greater the value of the coefficient is, the more different the strings that form 

the cluster are. A null value indicates that the cluster contains only one string. The consistency index (CI) of 

a cluster of n strings is defined as: 
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The file consistency index (FCI) of a file that contains m clusters is defined as the average of the 

consistency indexes of all the existing clusters in the file: 

m
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The FCI of the files A, B, C, and D are shown in Table 4. As the FCI is an average, the table also shows 

the standard deviation. It is obvious that the clusters of file B are more complex than those of files A , C, 

and D. In all cases, however, the FCI is reduced when expanding the abbreviations, since the discrepancies 

between the strings of a given cluster tend to diminish. With respect to file C, the reduction of FCI when the 

abbreviations are expanded is minimum, because the reduction of strings is not appreciable: only 0.8% 

versus 38.0% (file A), 7.8% (file B), and 13.5% (file D) as it is shown in Table 2. 

 



Table 4. File consistency indexes 

File FCI 
WO 

Standard 
deviation 

FCI 
W 

Standard 
deviation 

Reduction 
(%) 

A 
B 
C 
D 

0.31 
1.72 
0.33 
0.53 

0.29 
1.26 
1.18 
0.44 

0.12 
1.11 
0.31 
0.27 

0.26 
1.14 
1.13 
0.27 

61.2 
35.4 
6.0 

49.0 
 

5.2. Evaluation Measures 

We have evaluated the quality of the produced clusters when our method is applied by using four 

measures that are obtained by comparing the clusters produced by our method with the optimal clusters 

(ONC): 

1. NC: number of clusters. Clusters that have been generated. 

2. NCC: number of completely correct clusters. Clusters that coincide with the optimal ones: they contain 

the same strings. From this measure, we obtain Precision: NCC divided by ONC. 

3. NIC: number of incorrect clusters. Clusters that contain an erroneous string. From this measure, we 

obtain the Error: NIC divided by ONC. 

4. NES: number of erroneous strings. Strings incorrectly clustered. 

NC and NCC versus Threshold for File A with (W) and without (WO) expansion of abbreviations, using 

the CSM, are plotted in Figure 2. The ONC is the horizontal line. The expansion of abbreviations diminishes 

NC and increases NCC. 
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Figure 2. NC and NCC vs. Threshold. File A 

with and without expansion of abbreviations 

(CSM) 
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Figure 3. Precision and Error vs. Threshold. 

File A with and without expansion of 

abbreviations (CSM) 

 

5.3. Evaluation and Discussion 

As we have already mentioned, the clustering algorithm depends on one parameter (α). We have done all 

the tests on setting its value from 0.0 to 0.599, in 0.001 steps.  

We compare the performance of the five similarity measures. The result of the experiments using the four 

files are shown in Tables 5, 6, 7, 8, and 9. The tables show the highest precision rate and the corresponding 

error obtained in each file when the LD, IDWP, MIDWP, JC, and CSM are used. The corresponding 

threshold (α) also appears. 

Note that the expansion of abbreviations improves the precision and diminishes the error. Moreover, the 

best precision, with a lower error, is obtained at a lower threshold when the abbreviations are expanded. 

 



Table 5. LD 

File αααα Precision 
(%) 

Error 
(%) 

WO 0.311 76.0 8.6 A 
W [0.146, 0.151] 83.6 0 

WO [0.272, 0.281] 68.4 9.7 B 
W [0.276, 0.281] 73.9 5.4 

WO [0.159, 0.199] 84.2 1.7 C 
W [0.100, 0.127] 84.2 0 

WO [0.429, 0.433] 49.5 19.9 D 
W [0.320, 0.321] 63.2 11.9 

 

Table 6. IDWP 

File αααα Precision 
(%) 

Error 
(%) 

WO [0.334, 0.344] 81.5 10.8 A 
W [0.160, 0.166] 84.7 0 

WO [0.347, 0.369] 64.1 11.9 B 
W [0.341, 0.342] 67.3 8.6 

WO [0.143, 0.227] 82.4 1.7 C 
W [0.072, 0.119] 82.4 0 

WO [0.435, 0.437] 53.0 15.9 D 
W [0.218, 0.222] 72.1 3.0 

 

As you can see in Table 7, file A obtains the higher precision (89.1%) when the MIDWP with the 

expansion of abbreviations is employed. File B obtains the higher precision (77.1%) with the CSM and the 

expansion of abbreviations (Table 9). As seen in Table 8, file C obtains it (89.4%) when the JC without the 

expansion of abbreviations is used. Finally, file D achieves the best precision (76.1%) when the MIDWP 

with the expansion of abbreviations is used (Table 7). 

Table 9 shows highest precision and the corresponding error obtained for the four files when the CSM is 

employed. Files A and C have better precision than file B because their clusters are less complex: files A 

and C have a FCI around 0.3, whereas file B has a FCI of 1.7 (WO) and 1.1 (W). However, the file D 

obtains a smaller precision than the file B, although its FCI is smaller. 



 

Table 7. MIDWP 

File αααα Precision 
(%) 

Error 
(%) 

WO [0.276, 0.277] 80.4 9.7 A 
W [0.153, 0.166] 89.1 0 

WO [0.381, 0.382] 66,3 16.3 B 
W [0.369, 0.370] 68,4 8.6 

WO [0.143, 0.227] 82.4 1.7 C 
W [0.072, 0.119] 82.4 0 

WO 0.388 52.2 16.3 D 
W 0.187 76.1 2.6 

 

Table 8. JC 

File αααα Precision 
(%) 

Error 
(%) 

WO [0.400, 0.416] 72.8 6.5 A 
W [0.286, 0.299] 85.8 0 

WO [0.500, 0.538] 56.5 17.3 B 
W [0.455, 0.461] 58.6 7.6 

WO [0.471, 0.499] 89.4 1.7 C 
W [0.471, 0.499] 87.7 1.7 

WO [0.500, 0.533] 52.6 13.2 D 
W [0.385, 0.399] 73.4 3.5 

 

Table 9. CSM 

File αααα Precision 
(%) 

Error 
(%) 

WO [0.236, 0.249] 81.5 8.6 A 
W [0.147, 0.151] 89.1 0 

WO [0.270, 0.288] 71.7 9.7 B 
W [0.174, 0.176] 77.1 2.1 

WO [0.143, 0.199] 84.2 1.7 C 
W [0.097, 0.119] 84.2 0 

WO [0.385, 0.387] 52.6 17.2 D 
W [0.195, 0.199] 75.2 3.9 

 



In Table 10, we show the precision and error obtained in our previous works [10] and in the current work 

(the best precision for each file). The test files A, B, C, and D are the same of this paper. As you can see, the 

new method achieves better results: the precision increases and the error keeps very similar values or even 

diminish. 

 

Table 10. Precision and Error in previous works 

Previous works Current work File 
Precision (%) Error (%) Precision (%) Error (%) 

WO 70.7 7.6 81.5 8.6 A 
W 84.8 0 89.1 0 

WO 67.4 8.7 71.7 9.7 B 
W 72.8 6.5 77.1 2.1 

WO 85.9 1.7 89.4 1.7 C 
W 84.2 1.7 87.7 1.7 

WO 43.8 16.8 53.0 15.9 D 
W 67.7 6.2 76.1 2.6 

 

We compare the effect of the expansion of abbreviations in Figure 3. It shows Precision and Error versus 

Threshold for File A with (W) and without (WO) expansion of abbreviations using the CSM. It is seen that 

the expansion of abbreviations produces the maximum precision (90%) at a threshold of 0.15. From a 

threshold of 0.25, the expansion of abbreviations does not influence the precision as observed in the figure. 

Also, note that there is not error when the threshold is lower than 0.15. 

Figure 4 shows Precision versus Threshold for File C without expansion of abbreviations using different 

similarity measures. The JC obtains the maximum value (90%). All the measures, except the JC, have a 

similar behaviour: they start at the same level (75%), rise until 85% and then plunge until 20%. However, 

the JC remains steady over 75% for all the threshold values. 
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Figure 5. Precision and Error vs. Threshold. 

File B with and without expansion of 

abbreviations (CSM) 

 

Finally, from Figure 5 it can be again seen that the expansion of abbreviations influences the precision at 

a low threshold, but from a threshold of 0.25, the influence is imperceptible. Also, note that there is not 

error when the threshold is lower than 0.15. The behaviour is very similar to Figure 3. 

 

6. Conclusions and Work in Progress 

Referential integrity provided by relational database management systems prevents users or applications 

from entering inconsistent data. Databases with an inadequate design may suffer data redundancy and 

inconsistency. This paper has discussed techniques for improving data quality by clustering different values 

that refer to the same term and replacing them with a unique form. So, we have presented an automatic 

method for reducing on the inconsistency found in existing databases. The method we have proposed 

achieves successful results with a considerably low error rate, although it does not eliminate the need to 

review the clusters obtained. 



The expansion of abbreviations improves on the results in most cases, but we have detected some cases in 

which it actually makes the results worse. In addition, we have seen that the combined use of four similarity 

measures (Levenshtein distance, invariant distance from word position, modified IDWP, and Jaccard’s 

coefficient) normally obtains the best performance. 

The final number of clusters and the effectiveness of the method strongly depends on the threshold value 

fixed by the user. A very small threshold (conservative) will produce a large number of small clusters and a 

decrease in the number of matching values that should be clustered, meanwhile a very large (aggressive) one 

will produce a small number of large clusters and an increase in the number of falsely matched values. 

Based on the data obtained in our research, we propose the use of a threshold between 0.1 and 0.25. 

Our first contribution is an algorithm that is domain-independent and language-independent. Previous 

related work deals with special cases of the field matching problem (customer addresses, census records, 

bibliographic databases, etc.). The second contribution is the use of two methods for evaluating the 

similarity between two strings: the invariant distance from word position, derived from the Levenshtein 

distance, and the combined similarity measure. Last but not least, we present the consistency index that 

permits the evaluation of the complexity of a cluster: the greater the value of the coefficient is, the more 

different the strings that form the cluster are. 

Currently, we are working on improving the algorithm in order to cluster the multilingual values. We are 

applying dictionaries and other techniques relating to natural language processing (e.g., removing stop 

words, lexical analysis). 
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