Proceedings of the 7th ACM International Workshop on Data Warehousing and OLAP (DOLAP 2004), p. 48-57, Washington D.C. (USA), November 12-13 2004.

Physical Modeling of Data Warehouses using UML

Sergio Luján-Mora Juan Trujillo

DOLAP 2004

Physical Modeling of Data Warehouses using UML

Contents

- Motivation
- UML extension mechanisms
- DW design framework
- DW physical design
- · Conclusions and future work

Motivation

- Data warehouses are complex information systems
- Support:
 - OLAP
 - Data mining
 - Decision Support Systems
 - _ ...
- Building a DW: time consuming, expensive and prone to fail

Physical Modeling of Data Warehouses using UML

Motivation

- Partial approaches:
 - ETL processes
 - Logical and conceptual design of the DW based on the MD paradigm
 - Derive DW schema from ER schemas of the data sources
 - _
- Most of the research efforts focused on MD data models

Motivation

- Implementation decisions:
 - Storage in different disks
 - Replication
 - Vertical and horizontal partitioning
 - Influence performance and maintenance
 - **–** ...
- Solution:
 - Tackle physical design from early stages
 - Allows the designer to anticipate physical design decisions
 - Reduce development time and cost

Physical Modeling of Data Warehouses using UML

Motivation

- Previous work: Data Warehouse Engineering Process
 - Modeling language that assists an entire DW project
 - Based on standards (UML, UP, XML)
 - Represent the models at different levels of granularity (from high-level to low-level)
 - Used at different stages of the DW project
 - Used by different personal (business users, administrators, etc.)

Motivation

- This work: Physical Design of DW
 - Component and deployment diagram from UML
 - Integrated in our DWEP: maps elements from the logical level into the physical level
 - Aimed to be used by DW designers (how to build) and administrators (how to implement and maintain)

Contents

- Motivation
- UML extension mechanisms
- DW design framework
- · DW physical design
- Applying modeling schemas
- · Conclusions and future work

Physical Modeling of Data Warehouses using UML

UML extension mechanisms

- UML is a general purpose visual modeling language for systems
- Extension mechanisms allow the user to tailor it to specific domains
- Mechanisms:
 - Stereotypes → New building elements
 - Tagged values → New properties
 - Constraints → New semantics

Contents

- Motivation
- UML extension mechanisms
- DW design framework
- DW physical design
- Applying modeling schemas
- · Conclusions and future work

Physical Modeling of Data Warehouses using UML

DW diagrams

- Development of DW can be structured into an integrated framework:
 - Five stagesThree levelsFifteen diagrams
- Diagrams spread throughout the five stages and the three levels
- Each diagram uses different formalisms (class diagram, component diagram, etc.) → Several UML profiles have been proposed:
 - Multidimensional profile
 - ETL Profile
 - Data Mapping Profile
 - Database Deployment Profile

DW diagrams

Stages:

- Source: data sources (OLTP, external data sources, etc.)
- Integration: mapping between source and data warehouse
- Data Warehouse: structure of the DW
- Customization: mapping between data warehouse and clients' structures
- Client: structures used by the clients to access the DW (data marts, OLAP applications, etc.)

DW diagrams

- For each stage, different levels:
 - Conceptual
 - Logical
 - Physical
- Remarks:
 - Every DW project does not need the fifteen diagrams
 - The different diagrams of the same DW are not independent but overlapping (UML importing mechanism)

Physical Modeling of Data Warehouses using UML

Contents

- Motivation
- UML extension mechanisms
- DW design framework
- DW physical design
- Applying modeling schemas
- · Conclusions and future work

DW physical design

- Example:
 - DW with daily sales of a company that sales automobiles (cars and trucks)
 - Dimensions of analysis: automobile, customer, dealership, salesman, time
 - Two data sources:
 - · Sales server: transactions and sales
 - CRM server: customers
 - Different final users' requirements:
 - · MacOS and Windows
 - · Web and desktop application

Dhycical	Modeling	of Data	Warehouses	ucina HMI
Privsical	wodelina	oi Dala	vvarenouses	usina viviL

Level 1: Model definition

Contents

- Motivation
- UML extension mechanisms
- DW diagrams
- DW engineering process
- Applying modeling schemas
- Conclusions and future work

Conclusions

- UML component and deployment diagrams for DW physical design
- Advantages:
 - Part of a DW Engineering Process based on the UML & UP
 - Traces a project from the conceptual to the physical level
 - Reduces development cost thanks to tackle implementation issues in early stages
 - Different levels of abstraction

Physical Modeling of Data Warehouses using UML

Future work

- Index representation
- Formal definition with OCL
- · Design guidelines
- CASE tool support with Rational Rose
 → Add-in

Physical Modeling of Data Warehouses using UML

Sergio Luján-Mora Juan Trujillo

DOLAP 2004